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Introduction

Cervical cancer (CC) is a significant public health 
problem affecting women in countries with low resource 
settings. According to the Global Cancer Observatory 
database, there were 570,000 cases and 311,000 deaths 
due to CC in 2018 (Ferlay et al., 2018). Over a third of 
the overall global CC cases were contributed together by 
India and China. In 2018, the CC cases in India and China 
were 97,000 and 106,000, respectively, with mortality 
of 60,000 and 48,000, respectively (Arbyn et al., 2020; 
Bray et al., 2018). The Squamous cell carcinoma (SCC) 
is the most common CC histological type. The standard 
method for CC treatment includes surgery, chemotherapy, 
and radiotherapy. Persistent infection with high-risk HPV, 
high parity, multiple sexual partners, smoking cigarettes, 
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and long-term use of oral contraceptive pills are a few risk 
factors associated with CC. The introduction of Pap testing 
and HPV typing has significantly reduced CC incidence 
in many countries (Johnson et al., 2019; Wudtisan et al., 
2019). Despite the availability of effective early screening 
and detection methods, CC is generally diagnosed at an 
advanced stage leading to a high mortality rate. The 5-year 
survival rate for stage 1, stage II, stage III, and stage IV CC 
was 81-96%, 65-87%, 35-50%, and 15-20%, respectively. 
CC with advanced stage shows recurrence and therapy 
resistance and most patients succumb within three years 
(Canfell et al., 2020; Charakorn et al., 2018). This suggests 
the need for biomarkers to identify the patients with poor 
prognosis at an early stage for intensified treatment for 
improved patient care. In this direction, identifying the 
molecular markers and associated networks may be useful 
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for better management of CC.
Genome-wide genetic and epigenetic studies 

using normal and tumor samples lead to identifying 
cancer-associated genes and related pathways for 
diagnostic and prognostic applications in cancer. Studies 
have shown that the genome-wide data’s reanalysis may 
provide (i) molecular markers for diagnosis, prognosis, 
therapy, and (ii) a novel gene-gene regulatory networks, 
mechanisms, and pathways facilitating CC. Interestingly, 
previous studies have indicated that the integrated 
bioinformatics analysis of big data generated from 
cancer studies can develop reliable and novel biomarkers, 
networks, and mechanisms related to CC pathogenesis 
(Lin et al., 2019; Wu et al., 2019).

Mitochondria are an intracellular organelle that plays a 
role in cellular bioenergetics, free radical generation, and 
cell signaling. The human mtDNA is 16.5kb in size and 
codes for 37 genes linked with the OXPHOS pathway, 
ATP production, and apoptosis initiation (Shaughnessy 
et al., 2015). Defects in both structure and function 
of mitochondria contribute to resistance to apoptosis, 
abnormal cell proliferation, and therapy resistance in 
cancer (Indran et al., 2011). Both somatic mutation and 
mtDNA copy number changes are linked with cancer, 
including CC (Chatterjee et al., 2006; Sun et al., 2020). 
Although mtDNA encodes for proteins, most of the 
protein required for its function is synthesized by nuclear-
encoded genes. As per the estimate, over 1,500 proteins 
are necessary for maintaining the structure and function 
of mitochondria. The anterograde and retrograde signaling 
between mitochondria and the nucleus is critical for the 
normal functioning of the cell (Pfanner et al., 2019). 
Many nuclear-encoded genes linked with mitochondrial 
function (NEMG) show a significant difference in their 
expression in normal and CC conditions (Sun et al., 2020). 
Therefore, profiling the expression of NEMG can be useful 
as a sensitive and specific biomarker for diagnostic and 
prognostic applications in CC.

In the present study, we have investigated the 
differentially expressed nuclear-encoded mitochondrial 
genes (DE-NEMG) and the associated network for 
diagnostic and prognostic applications in CC. We have 
analyzed The Cancer Genome Atlas, Cervical Squamous 
Cell Carcinoma and Endocervical Adenocarcinoma 
(TCGA-CESC) datasets for DE-NEMG in CC to 
evaluate its prognostic significance. Using the TCGA-
CESC dataset, we have constructed the protein-protein 
interaction network (PPIN) and hub genes (HG) and 
predicted the possible drug targets. The integrated 
bioinformatic analysis identified interaction networks and 
mitochondrial targets that may be useful as a potential 
marker for diagnosis, treatment, and CC therapy.

Materials and Methods

Selection of NEMG
MitoCarta2.0 contains human and mouse proteins 

having strong mitochondrial translocation signals from 
fourteen different tissue samples (Calvo et al., 2016). In 
the present study, we downloaded 1158 NEMGs from the 
MitoCarta2.0 database to identify the DE-NEMGs. 

TCGA-CESC datasets
The TCGA contains molecularly characterized epi 

(genomics), transcriptomics, and proteomics data for 
over 20000 primary tumors and matched normal samples 
across 33 different cancer types. The TCGA-CESC dataset 
contains clinical and molecular data for 310 samples (307 
tumors and 3 normal samples) (Tomczak et al., 2015). 
The differentially expressed genes in TCGA-CESE data 
sets were retrieved using the Transcriptome Alterations 
in Cancer Omnibus (TACCO: http://tacco.life.nctu.edu.
tw/) online tool. The TACCO is a freely available online 
tool for identifying differentially expressed genes (DEG) 
and miRNAs from TCGA datasets. The TACOO can be 
used for Gene Ontology (GO), pathway enrichment, and 
prognostic model construction using a user-defined gene 
list (Chou et al., 2019).

Identification of DE-NEMG
We have downloaded a list of 1,158 NEMGs from 

the MitoCarta2.0 database. We downloaded the list of 
differentially expressed protein-coding genes (DEGs) 
between normal and tumor samples in the TCGA-CESC 
dataset via the TACCO online tool. We have identified 
the DEGs in the TCGA-CESC data set using the “select 
DEGs” function with cut-off criteria of adjusted p-value 
< 0.05 and expression value log 2-fold change of +2 and 
-2 between tumor and normal tissue samples. We have 
compared the DEGs in TCGA-CESC dataset with that of 
NEMG downloaded from the MitoCarta2.0 using Venny 
2.1 (https://bioinfogp.cnb.csis.es/tools/venny/) online tool 
to identify the DE-NEMGs.

Identification of differentially methylated NEMG
We have used UALCAN (http://ualcan.path.uab.edu/

index.html) and DNMIVD (http://119.3.41.228/dnmivd/
index/) online resources for identification of methylation 
regulated NEMGs. UALCAN online tool can identify 
differentially expressed, methylation-regulated genes, 
along with clinical attributes such as survival, age, 
histology, tumor grade, and nodal metastasis. A beta values 
of 0 and 1 are considered as unmethylated and completely 
methylated respectively. Beta value: 0.7 - 0.5 and 0.3 -0.25 
and a P<0.05 considered significantly hypermethylated and 
hypomethylated (Chandrashekar et al., 2017). DNMIVD 
is a user-friendly interactive visualization of the DNA 
methylation profile of genes in TCGA datasets. The tool 
has a module for gene expression analysis, methylation 
and expression correlation, survival analysis, diagnostic 
and prognostic model generation. The samples were 
divided into high (H) and low (L) based on median DNA 
methylation beta values as a threshold. DNA methylation 
beta values of 0.3 and 0.7 were used as a cutoff for sample 
categorization (Ding et al., 2020).

Evaluation of metastatic potential of DE-NEMG
The Human Cancer Metastasis Database (HCMDB 

https://hcmdb.i-sanger.com/) is a freely available online 
tool for assessing gene metastatic potential. The interactive 
web tool contains metastatic data from 38 metastasis sites 
and 29 cancer types (Zheng et al., 2018). In the present 
study, the HCMDB database was used to test the metastatic 
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data. Next, we analyzed the expression of 10 HGs at the 
protein level using The Human Protein Atlas (HPA: http://
www.proteinatlas.org/) (Thul and Lindskog, 2018).

Drug and DE-NEMG interaction analysis
The drug-gene interaction database (DGIdb, https://

www.dgidb.org/) was used to screen the drugs that interact 
with DE-NEMGs. The DGIdb is a user-friendly online 
resource for screening a druggable genome. The tool has 
browse and search options to identify DGI and enrichment. 
Besides, the DGIdb has options for searching approved, 
antineoplastic, and immunotherapies options to filter the 
drugs (Cotto et al., 2018).

Results

Data Retrieval and differential gene expression analysis
Figure 1 depicts the workflow of the study. We first 

retrieved the DEGs in the TCGA-CESC dataset using the 
TACCO database. Our analysis identified 2020 (Figure 
2A) DEGs with a fold change of 2 and P<0.05. Among 
those 2020 DEGs, 802 and 1218 genes were upregulated 
and downregulated, respectively. The MitoCarta2.0 
database contained 1158 NEMG. Figure 2B shows the 
expression of 1158 NEMG in the TCGA-CESC dataset. 
The comparison between 2020 DEGs with that of 1158 
NEMG lead to the identification of 52 (27 upregulated 
and 25 downregulated) DE- NEMG (Table 1, Figure 2C, 
and 2D). The list of all DEGs in the TCGA-CESC dataset 
and NEMG retrieved from Mitocarta2.0 are shown in 
Supplementary Tables 1, 2 and 3.

DNA methylation regulated NEMG
Next, we analyzed the impact of promoter DNA 

methylation on the expression of 52 DE-NEMG using 
DNMIVD tools by Pearson’s correlation analysis. 
We considered genes that are commonly predicted 
as differentially methylated by the UALCAN and 
DNMIVD tools for all subsequent analysis. Among 
the 52 differentially expressed genes, 19 genes showed 
significant aberrant promoter methylation. Among the 
19 differentially methylated genes, 8 and 11 genes were 
hypomethylated and hypermethylated, respectively 
(Table 1). Furthermore, 27 genes showed an inverse 
correlation between methylation and expression by 
Pearson correlation analysis (Table 1, Supplementary 
Figure 1). Out of 27 genes, 19 of them showed significant 
differential methylation between normal and tumor 
samples. Interestingly, among the 19 significantly 
differentially methylated genes, only 15 revealed the 
inverse correlation between methylation and expression 
(Supplementary Figure 2).

Identification of DE-NEMG for CC staging application
By using UALCAN, we analyzed the expression 

of 52 DE-NEMG in various stages of CC. Among the 
DEGs, 16 of them showed the potential to differentiate 
CC stages (Table 1). Expression analysis of 6 genes 
(PIF1, DHCR24, CPT1B, FASN, DMGDH, and PDK4) 
can distinguish stage 1 from stage 2 CC. Genes, namely, 
HK2, NCEH1, NIPSNAP3B, ABCD2, ACACB, DEPP1, 

potential of DE-NEMG in TCGA-CESC data. 

Construction of PPIN and identification HG
The PPIN and HG play a crucial role in governing 

the biological process and signaling pathways. They are 
commonly used to predict cellular function, understand 
disease mechanisms, and design drug targets. Using 
the Search Tool for the Retrieval of Interacting Genes 
(STRING: https://string-db.org/) version 11, the PPIN 
of the DE-NEMG was constructed with the highest 
confidence score of 0.9 and minimum interaction number 
=2 (Szklarczyk et al., 2017). The cytoHubba V 0.1 plugin 
of Cytoscape was used to identify the HG of the PPIN. 
The 10 HG were selected based on the highest degree 
of connectivity on the PPIN. The two-dimensional 
visualization of the network was performed through 
Cytoscape 3.7.2 (https://cytoscape.org/ (Chin et al., 2014; 
Shannon et al., 1971).

Functional enrichment analysis (FEA) of DE-NEMG
The FEA included prediction of gene ontology (GO) 

[biological process (BP), cellular component (CComp) 
and molecular function (MF)], and pathway enrichment 
analysis using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG: http://www.genome.jp) (Kanehisa, 
2000). The analysis and visualization of functional and 
pathway enrichment for 52 DE-NEMG were performed 
using the clusterProfiler tool in the Bioconductor package 
in the R statistical environment (Yu et al., 2012).

Survival analysis of DE-NEMG
In the present study, prognostic prediction and 

pathological classification models were generated for 
CC using the 52 differentially expressed NEMG via 
the Random forest algorithm using TACCO online tool. 
Using GEPIA2 (http://gepia2.cancer-pku.cn/#index), we 
have predicted the association between DE-NEMGs with 
disease-free survival (DFS) and or overall survival (OS) 
at the individual gene level (Tang et al., 2019).

Identification of driver gene and enrichment analysis
The driver gene analysis was carried out using 

DriverDBv3 (http://driverdb.tms.cmu.edu.tw/) online 
tool. The DriverDBv3 uses genetic and epigenetic changes 
in OMICS databases to compare against clinical data 
to identify cancer driver genes (Liu et al., 2020). We 
have used the CCDB database (https://webs.iiitd.edu.in/
raghava/ccdb/index.php) (Agarwal et al., 2011) to identify 
the DE-NEMG, which are already reported in CC. Also, 
the disease enrichment analysis of 52 DE-NEMG was 
performed using Comparative Toxicogenomics Database 
(http://ctdbase.org) (Davis et al., 2019).

Analysis of the HG
We evaluated the relative expression 10 HG via the 

GEPIA2 tool. The GEPIA2 is an online tool for in silico 
differential expression analysis of genes using TCGA 
transcriptome and GTEx expression data. It allows the 
expression analysis between normal and tumor samples, 
multiple gene comparisons, and survival analysis. We 
analyzed the survival data of 10 HGs using TCGA-CESC 
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ACSS3, and PABPC5, were differentially expressed 
between stage 1 vs. stage 3 CC. NIPSNAP3B and 
DMGDH expression were significantly different in stage 
1 vs. stage 4 CC. Gene, namely, NCEH1 and ABCD2 
expression, was significantly different in stage 2 vs. 
stage 3 CC. SLC25A10 and NIPSNAP3B expression 
showed significant differential expression between stage 
2 vs. stage 4 CC.  ACACB expression was significantly 
different between stage 3 vs. stage 4 CC. Interestingly, 
genes such as NCEH1, NIPSNAP3B, ABCD2, DMGDH, 
and ACACB showed a significant difference in expression 

in more than one CC stage (Supplementary Table 4). 

Identification of NEMG for prognostic application
We investigated the differentially methylated and 

DEGs for their predictive utility in CC using DNMIVD, 
UALCAN, and TACCO tools with default parameters. 
The multivariate proportional hazard regression model 
was applied to divide the patients into high-risk and 
low-risk groups to generate the Kaplan Meier (KM) plot. 
The prognostic model generated using 19 differentially 
methylated NEMG suggested a significant prognostic 

Figure 1. The Flow Diagram of Bioinformatic Analysis NEMG and Associated Pathways in CC. 

Figure 2. Nuclear Encoded Mitochondrial Genes (NEMG) are Differentially Expressed between Normal and Cervical 
Cancer Samples. A) Represents the expression profile of genes in TCGA-CESC dataset. B) Represents the expression 
profile of 1158 NEMG in TCGA-CESC dataset. C) Represents the expression profile of 52 DE-NEMGs in TCGA-
CESC dataset. D) Venn diagram showing 52 DE-NEMGs. 
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value in CESC (Figure 3A). The high-risk category patients 
showed lower OS as opposed to low-risk categories. When 
analyzed individually, the differential methylation of gene 
promoters had substantial implications in CC prognosis 
(Figure 3B). Methylation status of SCO2, MOCS1, 
DEPP1, and ABCA9 was linked with OS, and DEPP1 
was linked with DFS, and NUDT5, DEPP1 with PFS 
(Figure 3B) (Table 1).

Using the Random Forest model, we assessed the 
association between DE-NEMG with CC prognosis using 
the TACCO tool (Figure 4A). The DE-NEMGs displayed 
a sensitivity and specificity of 0.91 and 0.89, respectively, 
to distinguish high risk from low-risk categories (Figure 
4B). The prognostic ability of the individual genes was 
tested by the GEPIA2 tool using Cox Proportional-
Hazards Model. The genes with significant OS (499 
genes) and DFS (500 genes) in the TCGA-CESC dataset 
were downloaded from GEPIA2 and compared against 52 
DE-NEMG using Venny 2.1.0 tool. We found that genes, 

namely, HK2, MSRB3, FASN, and BDH1, showed a 
significant prognostic value towards OS; while CKMT2 
towards DFS (Figure 4C) (Table 1). Besides, PDK4 
and BCL2 are additional genes significantly associated 
with (i) OS and DFS and (ii) metastasis by literature 
analysis. Next, these genes (HK2, MSRB3, FASN, 
BDH1, CKMT2, PDK4, and BCL2) were used for risk 
score construction using the SurvExpress tool (http://
bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.
jsp) (Aguirre-Gamboa et al., 2013). CC patients were 
categorized into high-risk and low-risk groups as per the 
median risk score for survival outcomes. The KM plot 
suggested that the high-risk patients showed a significantly 
lower survival rate than the low risk-group (Figure 4D).

Identification of DE-NEMG associated with metastasis
The DE-NEMG with metastatic potential in CC was 

identified using HCMDB online tool and by literature 
search using PubMed. Among the 52 DEGs, 10 genes 
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Figure 3. Prognostic Model Based on DNA Methylation. A) Represents the KM plot generated using multivariate 
proportional hazard regression model based on the 19 differentially methylated genes. B) Represents the KM plot for 
differentially methylated individual genes linked with OS, DFS and PFS. 
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(BDH1, CPT1B, CKMT1A, MSRB3, MGARP, PMAIP1, 
TDRKH, CKMT1B, PDK4, and BCL2) were linked with 
head and neck, lung, or lymph node metastasis (Table 1). 

PPIN and HG analysis
The PPINs of 52 DEGs were generated using the 

STRING database. The PPIN of DE-NEMG displayed 
52 nodes and 13 edges with a PPIN enrichment p-value 
of 1.56e-12 (Figure 5A). The top 10 connection proteins 
or HG were predicted using the CytoHubba tool and 
visualized via the Cytoscape tool. The CytoHubba 
analysis identified FASN, HK2, ACACB, PIF1, COX7A1, 

Figure 4. Survival Analysis of DE-NEMGs. A) The association between DE-NEMG with CC prognosis generated 
using random forest model. B) Represents the sensitivity and specificity of DE-NEMG. C) Represents the KM plot of 
DE-NEMG associated with OS and DFS. D) Represents the KM plot and risk score construction using 52 DE-NEMGs.
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CKMT2, CPT1B, PDK4, DNA2, and COX4I2 as top 10 
Hub genes, and these 10 proteins may play a key role in 
CC development or progression (Figure 5B). 

Driver Gene Identification
The DriverDBv3 database has predicted 337 genes as 

a potential driver gene in the TCGA-CESC dataset. The 
comparison of 52 DE-NEMG with that of 337 identified 
IDH2 as a potential driver gene. In addition, the CCDB 
database compared 538 genes reported in CC with 52 
DE-NEMG identified 2 common genes (BCL2, DUSP26). 
The disease enrichment analysis of 52 DE-NEMG using 
Comparative Toxicogenomics Database identified 17 
genes (ABCA9, ABCD2, ACSM1, BCL2, CDC25C, 
CLIC4, CPT1B, DEPP1, EFHD1, FASN, HK2, IDH2, 

MAOB, PDK4, PMAIP1, SLC25A10, and TUBB3) 
associated with various cancers.

Functional enrichment analysis of DE-NEMG
The GO and KEGG pathway analysis were carried 

out for 52 DE-NEMG using clusterProfiler to understand 
their function in CC (Figure 6A). The pathway enrichment 
using KEGG annotations identified genes related to 
pathways such as arginine and proline metabolism, 
Parkinson disease, Amyotrophic lateral sclerosis, 
Thermogenesis, Central carbon metabolism in cancer, 
Cardiac muscle contraction, Carbon metabolism, AMPK 
signaling pathway, Oxidative phosphorylation, and Insulin 
signaling pathway as highly enriched. The 52 differentially 
expressed NEMG linked with biological process, cellular 

Figure 5. PPIN of DE-NEMG. A) Represents the PPIN of 52 DE-NEMGs. B) Represents the PPIN of 19 hub genes. 

Expression Gene Name

Upregulated (27) BDH1; SLC25A10; IDH2; DARS2; SCO2; COX6B2; GTP2; CPT1B; HK2; CKMT1A; TUBB3; FASN; 
TSTD1; RECQL4; DHRC24; NUDT5; NCEH1; PIF1; AGMAT; COMTD1; PMAIP1; TDRKH; CYP27B1; 
MGME1; CKMT1B; CDC25C; DNA2

Downregulated (25) PDK4; COX7A1; MOCS1; ACSM1; CKMT2; COX4I2; DMGDH; ABCD2; ACACB; ACSS3; HSPB7; 
ABCA9; NT5DC3; MAOB; PPM1K; MSRB3; NIPSNAP3B; MGARP; DUSP26; EFHD1; BCL2; 
PABPC5; PRSS35; C10orf10; CLIC4

Methylation

Hypermethylated (11) CPT1B; DMGDH;CKMT2;ACSS3;COX7A1;MAOB;PDK4;PABPC5;MSRB3;MGARP;HSPB7

Hypomethylated genes (8) CKMT1A; CKMT1B;TSTD1;AGMAT;COMTD1;SCO2;NCEH1;BCL2

Inverse correlation (Methylation 
vs Expression)

COX6B2;CYP27B1;CKMT1A;RECQL4;CKMT1B;PIF1;PMAIP1;TSTD1;AGMAT;GPT2;COMTD1;TD
RKH;CPT1B;NT5DC3;MOCS1;DMGDH;COX4I2;CKMT2;PPM1K;ACSM1;ACSS3;COX7A1;PDK4;PA
BPC5;MSRB3;MGARP; HSPB7

Staging (16) HK2;PIF1;DHCR24;SLC25A10;CPT1B;FASN;NCEH1;NIPSNAP3B;ABCD2;DMGDH;ACACB;DEPP1; 
ACSS3;MAOB;PDK4;PABPC5

Metastasis (10) BDH1; CPT1B; CKMT1A; MSRB3; MGARP; PMAIP1;TDRKH;CKMT1B; PDK4; BCL2

Prognosis

Methylation OS: SCO2;MOCS1;DEPP1;ABCA9 

DFS: DEPP1 

PFS: NUDT5;DEPP1 

Expression OS: HK2;MSRB3;FASN; BDH1

DFS: CKMT2

Table 1. NEMG and TCGA-CESC
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components, and molecular functions are shown in Figure 
6B-6E.

HG cross validation in independent datasets
The HG in the PPIN were predicted using CytoHubba 

and visualized using Cytoscape. The top 10 HG identified 
by CytoHubba includes FASN, HK2, ACACB, PIF1, 
COX7A1, CKMT2, CPT1B, PDK4, DNA2, and COX4I2. 
The HG analysis using SurvExpress showed that the 
low-risk group patients showed significantly higher 
survival than high-risk group patients (Risk group hazard 
ratio: 3.64, p=0.0002. Independent validation of HG 
expression was performed using Oncomine Research 
Edition (https://www.oncomine.org/resource/login.html) 
online tool (Rhodes et al., 2007). Oncomine analysis 
identified genes, namely, HK2, PIF1, COX7A1, CPT1B, 
DNA2, and COX4I2, were significantly differentially 
expressed in more than two independent datasets. 
Besides, 10 hub genes’ expression was also independently 
validated using the human protein atlas (HPA) database 
(https://www.proteinatlas.org/). Among the 10 genes, 

immunohistochemical data were available for only 8 
genes (FASN, HK2, ACACB, PIF1, CKMT2, CPT1B, 
PDK4, and DNA2). The expression of the 8 genes was in 
concordance with TCGA-CESC expression data (Figure 
7, Supplementary Table 5).

Identification of Drugs targeting NEMG
The potential druggable candidates in the 52 

DE-NEMGs were predicted using the drug-gene 
interaction database (DGIdb; https://www.dgidb.org/). 
The DGI was evaluated for 52 DE-NEMG against 
approved, anti-neoplastic, and immunotherapeutic 
agents. Our analysis identified 195 drugs targeting 16 
DE-NEMG (Supplementary Table 6). Drugs such as 
Cisplatin, Fluorouracil, Paclitaxel, Docetaxel, Vincristine, 
Adriamycin, and Doxorubicin are already being used to 
treat various cancers. Besides, our analysis also identified 
several novel drugs that can be repurposed to treat CC.

Figure 6. Functional and Pathway Enrichment Analysis of DE-NEMG. A) Signaling pathways analysis (B) biological 
process (C) cellular components (D) molecular components. E) Cent plot represent connection between genes and 
enriched ontology terms.
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Figure 7. Validation of the HG Expression at Protein Level. A) The bar graph and IHC images represents the expression 
of HG at RNA and protein level. B) Survival analysis of hub genes performed by using SurvExpress. C) Heatmap 
showing the hub gene expression. 

Discussion

CC is one of the common gynecological problems in 
many developing and underdeveloped countries (Arbyn 
et al., 2020). Various risk factors such as infection with 
high-risk HPV, smoking, alcohol consumption, multiple 
sexual partners, parity, and oral contraceptives are well 
recognized to influence CC’s development and progression 
(Johnson et al., 2019; Wudtisan et al., 2019). Despite the 

availability of early diagnostic procedures and advances 
in CC treatment, there is little improvement in the disease 
prognosis. The detection of the disease at an advanced 
stage contributes to poor clinical outcomes and high 
mortality (Canfell et al., 2020). Besides, only limited 
prognostic markers are available for clinical use in CC. 
Hence, it is indispensable to explore new prognostic 
markers and additional target genes for CC treatment.

Mitochondria play a critical role in bioenergetics 
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and cellular metabolism. Besides, mitochondria also 
participate in various signaling, programmed cell 
death, heme, and steroid synthesis (Shaughnessy et 
al., 2015). In humans, dysregulation of mitochondria’s 
structure and function is linked with all stages of cancer 
progression. Additionally, studies have reported the 
association between pathogenic mtDNA variations with 
CC (Sun et al., 2020). Moreover, mitochondrial defects 
can promote tumor growth and metastasis by providing 
energy to growing cancer cells, promoting cell survival 
via activation of anti-apoptotic signaling pathways. Both 
anterograde and retrograde signaling is critical for normal 
homeostasis of the cells. Defective NEMG signaling 
contributes and controls several aspects of carcinogenesis, 
such as growth, proliferation, migration, and metastasis. 
The abnormal expression of NEMG has been reported 
as a potential diagnostic and prognostic marker and a 
novel target for therapy in various cancers (Chatterjee et 
al., 2006; Indran et al., 2011). However, such studies are 
limited in CC. Hence, a comprehensive investigation of 
NEMG may significantly improve CC’s management by 
providing markers for diagnosis, prognosis, and treatment. 
Accordingly, in the present study, we identified the NEMG 
with potential prognostic applications in CC.

Cancer staging is vital for designing the treatment 
and predicting the prognosis. Towards this, using the 
UALCAN database, we predicted the potential of 52 DE-
NEMG for CC staging. The 52 genes were significantly 
differentially expressed between normal and tumor 
samples, suggesting their potential in CC diagnosis. 
However, out of 52 DEGs, the differential expression of 
16 genes could differentiate specific stages of CC. Thus, 
our study has identified a panel of genes whose expression 
profiling could be useful for staging CC and required to 
be evaluated further in clinical samples.

Metastasis is a critical factor for therapeutic resistance 
and poor patient survival. Thus, identifying the metastasis-
associated genes is proposed to improve patient care. 
Towards this, we investigated the potential of 52 DE-
NEMG and their contribution towards the induction of 
metastasis in CC. Among the 52 DE-NEMG, 10 genes 
have been linked to head and neck, lung, or lymph node 
metastasis in CC. Among the various metastatic genes 
identified, elevated expression of CPT1B is reported in 
chemoresistant metastatic breast tumors (Wang et al., 
2018). An axis comprising of lncRNA n335586/miR-
924/CKMT1A is reported in metastasis of hepatocellular 
carcinoma cells (Fan et al., 2018). Overexpression of 
MSRB3 is reported in peritoneal metastasis and poor 
prognosis in gastric cancer (Zhang et al., 2020). The role 
of PDK4 in colon cancer metastasis is also reported. The 
PDK4 mediated metabolic reprogramming contributes 
significantly to the metastasis cascade (Leclerc et al., 
2017). BCL2 promotes and accelerates metastasis in 
breast and colorectal cancer (Um, 2016). In-silico analysis 
using HCMDB identified 10 proteins associated with CC 
metastasis based on clinical correlation analysis. Many of 
these genes are either directly or indirectly participating 
in metabolic reprogramming and/or adaptation to promote 
cancer cells’ growth and survival. However, more 
functional studies are required to identify the precise role 

of these genes in metastasis and metabolic reprogramming 
in CC.  

The role of abnormal DNA methylation in 
carcinogenesis is well established. Both promoter 
hypermethylation resulting in tumor suppressor gene 
silencing and hypomethylation activating oncogenes are 
reported to promote CC. Previous studies have indicated 
that measuring DNA methylation has the potential 
diagnostic and prognostic value in CC (Kabekkodu et al., 
2014).  Herein, we investigated the association between 
methylation and expression via correlation analysis. Our 
analysis identified 19 gene promoters were significantly 
differentially methylated between normal and tumor 
samples. Interestingly, 15 out of 19 NEMG showed an 
inverse correlation between methylation and expression. 
Moreover, our analysis recommends the use of SCO2, 
MOCS1, DEPP1, and ABCA9 for OS, and NUDT5, 
DEPP1 for PFS in CC after further validation.

A PPIN was constructed to better understand the 
interaction and functions of 52 DE-NEMG. PPIN 
identified 52 nodes and 13 edges, suggesting that these 
proteins’ interactions may have a critical role in CC 
development and progression. CytoHubba analysis 
identified FASN, HK2, ACACB, PIF1, COX7A1, 
CKMT2, CPT1B, PDK4, DNA2, and COX4I2 as critical 
members of the network or HG. Our study’s 10 HG were 
linked to fatty acid biosynthesis, AMPK signaling, insulin 
signaling, oxidative phosphorylation, and metabolic 
process. Abnormal activation or suppression of these 
pathways has already been linked to various cancers, 
including CC. The hub genes’ cross-validation using 
the Oncomine tool in 5 independent data sets identified 
HK2, PIF1, COX7A1, CPT1B, DNA2, and COX4I2 as 
commonly altered in CC. Thus, abnormal expression of 
these genes might be critical for CC pathogenesis. The 
details of these hub genes commonly identified in multiple 
datasets are described below.

The conversion of glucose to glucose-6-phosphate is 
mediated by HK2 (Hexokinase 2) enzyme. Cancer cells 
activate glycolytic enzymes to promote metabolic changes 
to support the growth and proliferation of cancer cells. 
HK2 is often upregulated in numerous cancers, including 
CC. HK2 overexpression promotes proliferation, 
migration, and inhibition of apoptosis in SiHa cells via 
phosphorylation of AKT. High HK2 expression correlates 
with the size of the tumor, pathological grade, and 
prognosis (Liu et al., 2019). Inhibition of HK2 sensitized 
the CC cells to radiation and induced apoptosis via 
caspase-3 and PARP cleavage activation. Thus, targeting 
HK2 can be used to sensitize cancer cells to radiotherapy 
and control tumor cells’ growth and proliferation (Liu et 
al., 2017). PIF1 (5’-To-3’ DNA Helicase) encodes for a 
protein with 5’ to 3’ DNA helicase function required to 
maintain nuclear and mtDNA genome stability. PIF1 acts 
as a tumor promoter in CC via suppressing the TERT. 
CC cells show a high expression of PIF1 and promote 
proliferation by inhibiting apoptosis by targeting BAX 
and Caspase-3 (Wang et al., 2020).

COX7A1 (Cytochrome C Oxidase Subunit 7A1) 
takes part in a biochemical reaction involving electron 
transfer activities during the OXPHOS reaction. COX7A1 
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acts as a tumor suppressor by inhibiting non-small cell 
lung cancer’s growth and proliferation by induction 
of apoptosis via blocking autophagic flux (Zhao et al., 
2019). Another study demonstrated the downregulation 
of COX7A1 by promoter hypermethylation in breast 
cancer (He et al., 2019). Besides, COX7A1 is implicated 
in tumor metabolism and therapy. However, their precise 
role in CC is yet to be established. CPT1B (Carnitine 
Palmitoyltransferase 1B) is a rate-controlling enzyme that 
participates in the transfer of long-chain fatty acyl-CoAs 
from the cytoplasm to mitochondria. Yeh and colleagues 
in 2006 demonstrated the overexpression of this gene in 
colorectal cancer (Yeh et al., 2006). In muscle-invasive 
bladder cancer, CPT1B deregulation correlated with a 
higher rate of mortality (Kim et al., 2016). In our study, 
we found overexpression of CPT1B in CC. This suggests 
that the overexpression of CPT1B leading to metabolic 
alterations may be a prerequisite for cancer cells’ 
growth and survival. In gastrointestinal cancer, higher 
expression of CPT1B displayed a superior response to 
Carnitine palmitoyltransferase inhibitors (Wang et al., 
2020). Furthermore, targeting CPT1B in cancers with 
abnormal lipid metabolism and fatty acid oxidation 
(castration-resistant prostate cancer) is proposed. CPT1B 
overexpression is correlated with poor prognosis in 
prostate cancer (Abudurexiti et al., 2020). However, the 
role of CPT1B in CC is yet to be uncovered.

DNA2 (DNA Replication Helicase/Nuclease 2) is a 
protein required to maintain mitochondrial and nuclear 
DNA stability by participating in the replication and repair 
process. Similar to our findings, Li et al. 2018 reported the 
upregulation of DNA2 in CC (Li et al., 2018). However, 
the molecular mechanism and pathways regulated by 
DNA2 in CC are still elusive. Overexpression of DNA2 
is reported in multiple human cancers. By counteracting 
the replication stress, DNA2 can act as a cancer promoter 
(Zheng et al., 2020). Targeting DNA2 is proposed as a 
therapeutic target to control tumor growth in pancreatic 
cancer (Kumar et al., 2017). Thus, DNA2 may act as a 
potential driver of carcinogenesis. COX4I2 (Cytochrome 
C Oxidase Subunit 4I2) is an enzyme that drives oxidative 
phosphorylation and is downregulated in our analysis. 
Hypoxic condition induces COX4I2 expression as it 
harbors hypoxia-responsive elements. In HeLa cells, 
hypoxia enhances the promoter activity of COX4I2 
(Fukuda et al., 2007).

Therapy resistance is one of the major problems 
in cancer treatment. To overcome the drug resistance, 
researchers are looking for new targets and repurposing 
of the existing drugs. Herein, we have tested the potential 
druggable DE-NEMG using the DGIdb database. Our 
study leads to the identification of 16 druggable genes and 
195 drugs. Based on our analysis, we propose the use of a 
combination of drugs for treating CC. The various known 
drugs identified in our study, which are already in use for 
treating cancer in general and CC in particular, include 
Cisplatin, Fluorouracil, Paclitaxel, Docetaxel, Vincristine, 
Adriamycin, and Doxorubicin.

The present study has some limitations. CC has several 
histological types. The data used in the study included 
all histological types without performing any subgroup 

analysis. Besides, our survival analysis also contained 
data for all histological types of CC without performing 
subgroup analysis. Lack of experimental validation is 
another limitation of our study.

Nevertheless, our study is the first comprehensive 
study investigating the role of DE-NEMG as potential 
markers for prognostic application in CC. Our in silico 
investigation identified new insights into the interaction 
of NEMG and associated pathways regulated during CC. 
Although we have analyzed many tumor samples, the 
normal samples included are still inadequate, suggesting 
the need for further experimental validation before further 
conclusions are drawn. Besides, several genes reported as 
significantly differentially expressed in TCGA-CESC data 
require further validation in patient cohort and functional 
studies using in vitro and in vivo models.

In the present study, we assessed transcriptomic 
and corresponding clinical data from the TCGA-CESC 
dataset and identified 52 significantly DE-NEMGs. The 
prognostic utility, functional and pathway enrichment, and 
PPIN were performed using in silico methods. The PPIN 
constructed suggested the novel PPIN in CC. The findings 
of our study have potential prognostic implications in 
CC. Our DGI analysis identified novel drugs that can be 
repurposed to treat CC. The druggable genes identified in 
our study may facilitate the development of specific and 
more effective treatments against CC.
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