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Introduction

Doxorubicin (Dox), commercially named as 
Adriamycin, was extracted from Streptomyces peucetius 
and was first used in clinical trials in the 1960s. It 
is a compound that has anthracycline group with a 
four-member ring system containing a chromophore, 
anthraquinone, and aminoglycoside (Cutts et al., 2005). 
Dox is a common chemotherapeutic drug for treating a 
number of cancers including bladder, ovarian, and lung 
cancer (Al-malky et al., 2020). Anticancer action of Dox 
is achieved by the intercalation of this drug in the genetic 
materials. The intercalation undergoes mainly at GC-rich 
sites, which causes the malfunction of topoisomerase-II, an 
enzyme which relaxes supercoils in DNA for transcription. 
After forming Dox-topoisomerase-II complex, the 
process of DNA replication is inhibited (Pommier et al., 
2010). Another mechanism is that Dox induces oxidative 
stress resulting in reactive oxygen species (ROS) in 
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cells (Yurtcu et al., 2015), and increases the exposure 
of naked DNA resulting in DNA damage and cell death 
(Tewey et al., 1984). Side effects of Dox are nausea, 
vomiting, cardiotoxicity, immune suppression, unusual 
tiredness, weakness, and red coloration of urine (Wadler 
and Schwartz, 1990). To improve therapeutic efficiency 
and overcome those side effects, a number of strategies 
have been proposed and investigated. For instance, a 
combination between Dox and curcumin enhanced the 
anti-cancer activity in colorectal cancer (CRC) cells 
(Khameneh et al., 2019). In the issue of cardiotoxicity, 
Dox was combined with Dexrazoxane, a cardioprotective 
agent, and they were administered to patients (Wakharde 
et al., 2018). A PEGylated liposomal Dox formulation 
showed promising results in reducing the toxicity and 
maintaining anticancer activity of Dox (Franco et al., 
2018). The ability of Dox to differentiate between cancer 
and normal cells was another major concern in using 
this drug effectively. Many recognition molecules such 
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as small biomolecules, peptides, and antibodies have 
been used to improve the specificity of Dox to its target 
sites. For instance, folic acid, a small molecule, was 
incorporated to a magnetic nano-carrier which exhibited 
the selective delivery of Dox to (CRC) (Martin et al., 2021). 
Dox-encapsulated nanomicelles that were decorated with a 
peptide ligand targeting CD36 receptor showed promise of 
recognizing CD36-overexpressing cell lines (Zheng et al., 
2021). The antibody specific to epidermal growth factor 
receptor helped nanoparticles to deliver Dox to the breast 
cancer cells in both in vitro and in vivo tests (Dorjsuren et 
al., 2020). Although these recognition molecules showed 
encouraging results, there were major concerns needing to 
be addressed. Because the affinity of the small molecules 
and peptides to their targets is within nano to micro molar 
range, a large quantity of these molecules were required 
to be incorporated into the delivery system (Hoppe-Seyler 
et al., 2004). This could limit the potential fabrication of 
the systems. The application of antibodies was highly 
limited by their fragile structure (Wu and Senter, 2005), 
and immunogenicity (Presta, 2006). Therefore, the search 
for the molecules that have high specificity and affinity 
and can be used for integrating with cancer therapeutic 
drugs has drawn much attention to this field.   

Aptamers are short single-stranded oligonucleotides 
(e.g. DNA or RNA) with length between 20-200 
nucleotides. The aptamers are generally developed 
from SELEX (Song et al., 2012). They form unique 
three-dimensional structures such as single-stranded 
segment, internal loop, triplex, G-quadruplex, hairpin 
and bulge (Sullivan et al., 2019) which provide proper 
sites for binding to a number of targets including nucleic 
acids, proteins, viruses, bacteria, whole cells, and small 
molecules (Mann et al., 2005; Li et al., 2014; Rong et al., 
2016; Alizadeh et al., 2017; Carvalho et al., 2019; Wang et 
al., 2019; Zou et al., 2019). The key binding interactions 
are van der Waals forces, hydrogen bonding, and 
electrostatic interaction. Moreover, the aptamers rarely 
induce immune response. They have been applied in a 
number of applications including antivirus (Ghobadloo et 
al., 2014) anticancer (Ireson and Kelland, 2006) and drug 
delivery (Zhang et al., 2011). Previously, our study has 
demonstrated that using PDGF-BB aptamer to interfere 
with the binding of PDGF-BB to its receptor suppressed 
CRC cell proliferation in part via down-regulation of 
the Ras/Raf/MEK/ERK signaling pathway (Sae-Lim et 
al., 2019). AS1411 aptamer (ASA) is the most common 
aptamer that has been investigated in cancer treatment 
because it binds to nucleolin overexpressed on plasma 
membranes of many cancer cells (Bates et al., 1999). It is a 
single-stranded DNA and a guanosine-rich molecule with 
a length of 26 mers that forms a variety of G-quadruplex 
structures (Fan et al., 2016). As a therapeutic agent, ASA 
has anti-proliferative effect on several cancer cells (Reyes-
Reyes et al., 2010; Rosenberg et al., 2014).  Moreover, it 
was developed for delivering drugs specifically to tumors 
by conjugating this aptamer with several materials such 
as gold nanoparticles (Kabirian-Dehkordi et al., 2019), 
liposomes (Liao et al., 2015), and polymeric micelles 
(Li et al., 2017). These modified materials were able 
to bind specifically to cancer cells and tumor tissues 

(Reyes-Reyes et al., 2015). For example, Malik (2015) 
revealed that ASA-linked gold nanospheres (ASA-GNS) 
were more effective in cellular uptake and they could 
enhance the anti-proliferative/cytotoxic effects compared 
to an unmodified ASA sequence. In addition ASA-GNS 
inhibited cancer growth but showed no toxicity to the 
normal cells. However, a direct usage of Dox and ASA for 
CRC treatment has not been well documented. 

CRC is the third most common cancer found in men 
and women and it has high incidence and mortality rate 
(Bray et al., 2018). The development of CRC initiates as 
a growth of tissues called a polyp inside colon or rectum, 
a part of the digestive system. Subsequently, the cells 
divide abnormally, and they are able to invade other 
tissues. Cancer cells are able to spread to other parts of 
the body through the blood and lymph system (Howlader 
et al., 2021). CRC has several potential risk factors such 
as genetics, environment, lifestyle (e.g. lack of physical 
exercise, addiction of alcoholic beverage, and smoking), 
dietary behavior (e.g. consuming high amounts of fat, red 
meat, and processed meats), and other diseases such as 
Crohn’s disease and ulcerative colitis. Many researchers 
have aimed to develop novel strategies, and efficient 
drug delivery for treating CRC. This also inspires us to 
study a chemotherapeutic formulation based on ASA and 
Dox (Dox-loaded ASA) for CRC treatment. This study 
proposed that ASA provided the intercalation sites for 
Dox and brought the drug to a target of CRC cells. The 
CRC and normal control cells were human colorectal 
adenocarcinoma cell line (SW480) and human colon 
cell CCD 841 CoN (CCD841), respectively. Binding of 
ASA to CRC cells was investigated by flow cytometry 
and fluorescence microscopy. Cytotoxicity of Dox, ASA, 
and Dox-ASA complex was determined by cell viability 
test. Apoptotic pathway was investigated by western blot 
analysis.

Materials and Methods

Reagent 
AS1411 aptamer  (ASA) and  non-binding 

oligonucleotide (NBO) were purchased from Integrated 
DNA Technologies (USA), and their sequences were 
tabulated in Table 1. They were dissolved in sterile 
distilled water at a concentration of 100 µM and 
stored at -20°C. Doxorubicin hydrochloride (Dox) was 
purchased from Fresenius Kabi, Thailand. The following 
rabbit polyclonal antibodies were purchased from Cell 
Signaling Technology (USA): caspase-3 (#9662), and 
beta actin (#4967). These antibodies were prepared at 
1: 1,000 dilution in the diluent solution provided by the 
manufacturer. Odyssey blocking buffer and goat anti-rabbit 
IRDye 800CW secondary antibody (#926-32211) were 
purchased from Li-COR (USA). The secondary antibody 
was diluted at 1: 10,000 dilution using its provided diluent 
solution. 4’, 6’-diamidino-2-phenylindoledihydrochloride 
(DAPI) solution was purchased from Sigma-Aldrich 
(USA). CellTiter 96 Aqueous One Solution, an MTS kit, 
was purchased from Promega (USA).
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IC50 was calculated using GraphPad Prism 5 (GraphPad, 
USA).
Toxicity of Dox on SW480 cells

SW480 cells were seeded approximately 5×103 cells 
into each well of 96-well plates, and further incubated for 
24 hours. Then, the cells were cultured in media containing 
Dox at the designated concentrations: 0, 0.5, 1, 1.5, 2, 
2.5, and 3 µM. The cells were incubated with Dox for 48 
hours before adding MTS solution. The absorbance of the 
solution was determined by the microplate reader and IC50 
was calculated using GraphPad Prism 5.

Effect of Dox-loaded AS1411 aptamer on SW480 and 
CCD841 cell growth

SW480 and CCD841 cells were seeded approximately 
5×103 cells into each well of 96-well plates. After 24 hours, 
the cells were treated with following solutions; 5 µM ASA, 
5 µM NBO, 0.95 µM Dox, 5 µM Dox-loaded NBO, and 
5 µM Dox-loaded ASA. Molar ratios between Dox and 
ASA or NBO were 1 to 5. The treatment was carried out 
for 48 hours. Then cell viability was determined using 
MTS assay.

Protein extraction and Western blot
SW480 cells were treated with 5 µM NBO, 5 µM 

ASA, 0.95 µM Dox, 5 µM NBO loaded with 0.95 µM 
Dox, and 5 µM ASA loaded with 0.95 µM Dox. After cell 
collection, the pellets were washed three times with cold 
PBS, lysed with RIPA buffer (Ameresco, USA) containing 
protease inhibitors (Ameresco, USA), and sonicated 
until completely dissolved. Protein concentrations were 
measured using a Pierce BCA protein assay kit (Thermo 
Scientific, USA). The cell lysates were subjected to 
polyacrylamide gel electrophoresis (PAGE, resolving 
gel 12% and stacking gel 4%), and transferred to PVDF 
membrane by electrical blotting. After blocking with 
Odyssey blocking buffer for 1 hour at room temperature, 
the membranes were incubated with primary antibodies at 
4oC overnight. After that, the membranes were incubated 
with secondary antibodies at room temperature for 1 hour. 
Band visualization and quantitation were performed using 
a LI-COR Odyssey Imager (Li-COR, USA).

Statistical analysis
All data were represented as mean ± standard deviation 

(SD) of at least triplicate samples. Comparisons between 
control and study groups were performed using Student’s 
t-test. Statistical significance was set at *P <0.05.

Results

Binding ability of AS1411 aptamer on SW480 cells 
To investigate the binding ability of ASA, SW480 

cells treated with the aptamer and non-binding sequence 
were characterized by flow cytometry. From the histogram 
(Figure 1a), the vertical axis represents the number of 
analyzed SW480 cells, and the horizontal axis represents 
fluorescence intensity from FAM. Untreated SW480 
exhibited relatively low fluorescence intensities from 
FAM. The cells treated with NBO showed slightly high 
fluorescence intensity from FAM due to non-specific 

Cell culture
Human colorectal adenocarcinoma cell line (SW480) 

and human normal colon cell line (CCD841) were 
purchased from American Type Culture Collection 
(ATCC, USA). The cells were cultured in DMEM 
medium (Gibco, USA) containing 10% fetal bovine serum 
(Gibco, USA) and 1% penicillin-streptomycin (Gibco, 
USA) at 37oC, 5% CO2 atmosphere. After reaching 80% 
confluence, the cells were sub-cultured. 

Studying the binding ability of AS1411 aptamer by flow 
cytometry

SW480 cells were seeded into 12-well plate at a 
density of 3×105 cells and further incubated for 24 hours at 
37oC, 5% CO2 atmosphere. Then, the cells were incubated 
with 5 µM FAM-labeled ASA and FAM-labeled NBO. 
After 1 hour, the cells were washed four times with PBS 
and characterized by a BD FACSverse™ flow cytometer 
(BD Biosciences, USA). The percentage of cell that was 
labeled by the fluorescent dye was quantified.

Studying the binding ability of AS1411 aptamer by 
fluorescence microscope

Approximately 3×104 cells of SW480 and CCD841 
cells were seeded into each well of 96-well plates 
and further incubated for 24 hours at 37oC, 5% CO2 
atmosphere. Next, the cells were treated with 10 µM 
FAM-labeled ASA and FAM-labeled NBO for 1 hour. 
Then, cell nuclei were stained with 1 mg/mL of DAPI 
solution (Sigma-Aldrich, USA) for 10 minutes and the 
cells were washed 4 times. To investigate the aptamer 
binding, the cells were observed and imaged by ECLIPSE 
Ts2R inverted fluorescence microscope (Nikon, USA). 

RT-PCR of nucleolin and β-actin
Total RNA was purified from cells using miRNeasy 

Micro Kit (Qiagen, USA), and reversely transcribed 
to cDNA using a High Capacity cDNA Reverse 
Transcription Kits (Applied Biosystems, USA). The 
mRNA levels of nucleolin and β-actin (internal control) 
were evaluated by RT-PCR. The primer sequences are 
shown in Supplementary Table 1.

Preparation of Dox-loaded AS1411 aptamer
ASA with the concentration of 5 µM was mixed with 

0.95 µM Dox in phosphate-buffered saline (PBS) for 1.5 
hour at room temperature to allow the intercalation of 
Dox at CG base pairing sites. Fluorescence signals from 
both free Dox and the intercalated Dox were measured by 
a Varioskan LUX microplate reader (Thermo Scientific, 
USA) (λEx = 480 nm, λEm = 500-800 nm).

Effect of AS1411 aptamer on the viability of SW480 cells
SW480 cells were seeded approximately 5×103 cells 

into each well of 96-well plates. After 24 hours, the cells 
were treated with ASA at designated concentrations 
for 6 days. The aptamer concentrations were 0, 3.125, 
6.25, 12.5, 25, 50, 100, and 200 µM. Cell viability was 
determined by MTS assay according to the supplier’s 
protocol. The absorbance of the solution was determined 
at 490 nm using a microplate reader (Bio Tek, USA), and 
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binding, whereas the cells treated with ASA had higher 
fluorescence intensity from FAM than the other cell 
samples (Figure 1b). These results informed us that ASA 

was able to bind to SW480 cells, as demonstrated from 
fluorescence signal of FAM. The binding was facilitated 
by interaction between ASA and nucleolin (Reyes-Reyes 

Name Sequence (5ˊ→3ˊ)
AS1411 aptamer (ASA) GGTGGTGGTGGTTGTGGTGGTGGTGGCCATCGGCTATCGAAGCTCGAT
Non-binding oligonucleotide (NBO) TTCCTCCTCCTCCTTCTCCTCCTCCTCCATCGGCTACTATCGAAGCTCGAT

Table 1. Oligonucleotide Sequences. The Underline indicates AS1411 Sequence

Figure 1. Specific Binding of ASA on SW480 Cells Examined by Flow Cytometry. (a) Histogram represents the 
number of SW480 cells treated with 5 µM FAM-labeled ASA (red line), 5 µM FAM-labeled NBO (blue line) and no 
treatment (black line). (b) Column chart indicates mean intensity ± SD in each treatment, * P < 0.05. 

Figure 2. Specific Binding of ASA on SW480 Cells Observed under a Fluorescence Microscope at 20x Magnification. 
SW480 cells were treated with 10 µM FAM-labeled ASA (a), 10 µM FAM-labeled NBO (b), and without treatment 
(c). From the left to right column, representative images demonstrated a bright field, DAPI nuclear staining (blue), and 
FAM-labeled aptamers inside the cells (green).
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et al., 2010; Mosafer and Mokhtarzadeh, 2018).
To confirm binding capability of ASA, the aptamer was 

labeled with FAM, a fluorophore, and then it was used to 
treat SW480 cells. The treated cells were observed under 
fluorescence microscope. The result showed that SW480 
treated with the aptamer demonstrated higher fluorescence 
signal than the cells treated with NBO (Figure 2). The 
binding specificity of ASA was further investigated using 
CCD841 cells for a comparison. The result showed that 
CCD841 cells treated with the aptamer indicated lack of 

fluorescence signal (Figure 3). The expression of nucleolin 
mRNA was significantly lower in CCD841 than that in 
SW480 cells (Figure 4). These results indicated that ASA 
bound specifically to SW480 cells via the interaction 
between this aptamer and the nucleolin highly expressed on 
the cell surface (Soundararajan et al., 2009). As mentioned 
in the literature, the binding capability of this aptamer was 
dependent on aptamer concentration, backbone chemistry, 
and cell type (Bates et al., 2009), and binding mechanism 
relied on receptor-mediated endocytosis (Juliano et al., 

Figure 3. No Binding of ASA on CCD841 Cells Observed under a Fluorescence Microscope at 20x Magnification. 
CCD841 cells were treated with 10 µM FAM-labeled ASA (a), 10 µM FAM-labeled NBO (b), and without treatment 
(c). From the left to right column, representative images demonstrated a bright field, DAPI nuclear staining (blue), and 
FAM-labeled aptamers (green).

Figure 4. Nucleolin mRNA Expression in SW480 and CCD 841 CoN Cell Lines. The mRNA levels of nucleolin and 
β-actin were analyzed by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) analysis. Bar graphs represent 
quantitative analysis of band intensities normalized as to β-actin. The values are presented as mean ± SD, *P < 0.05.
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2008). 

Effect of AS1411 aptamer on the viability of SW480 cells
To assess the anti-proliferative effect of ASA, 

SW480 cells were treated with the aptamer at several 
concentrations for 6 days using methods reported in 
a publication (Ireson and Kelland, 2006). MTS assay 
was carried out to determine cell viability of the treated 

samples. The results showed that the ASA had no effect 
on the proliferation of SW480 cells when the aptamer 
concentrations were not greater than 12.5 µM. When 
concentrations of the aptamer were over 25 µM, the ASA 
could suppress cell growth in a concentration-dependent 
manner (Figure 5a). The half maximal inhibitory 
concentration (IC50) of ASA calculated by GraphPad Prism 
5 was 144 µM. 

Figure 5. Effects of ASA and Dox on the Cell Viability of SW480. SW480 Cells were Treated with ASA (3.125, 6.25, 
12.5, 25, 50, 100 and 200 µM) for 6 days (a), and Treated with Dox (0.5, 1, 1.5, 2, 2.5, and 3 µM) for 48 hours (b). 
The cell viability was measured using MTS assay. The values are presented as mean ± SD, n = 3, *P < 0.05 compared 
with the control. 

Figure 6. Intercalation of Dox into ASA Molecule. Dox with the concentration of 0.95 µM was incubated with 5 µM 
ASA in phosphate-buffered saline (PBS) for 1.5 hour at room temperature. A line graph represents fluorescence spectra 
of free Dox (red), ASA (yellow), and Dox-loaded ASA (gray). 
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Figure 7. Effect of Dox-Loaded ASA on SW480 (a) and CCD841 (b) Cell Growth. Cells were treated with 5 µM ASA, 
5 µM NBO, 0.95 µM Dox, 5 µM Dox-loaded NBO, and 5 µM Dox-loaded ASA for 48 hours. The cell viability was 
measured using MTS assay. The values are presented as mean ± SD, n = 3, *P < 0.05 compared with the control. 

Figure 8. Decrease in Procaspase-3 Protein Level after Treatment with Dox-loaded ASA. SW480 cells were treated 
with NBO, ASA, Dox and combination, and the untreated cell served as control. The protein levels of procaspase-3 
and β-actin were analyzed by western blot. Bar graphs represent quantitative analysis of band intensities normalized 
as to β-actin. The values are presented as mean ± SD, n = 3, *P < 0.05. 
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Toxicity of Dox on SW480 cells
Toxicity of Dox on SW480 cells was investigated by 

treating the cells with Dox at designated concentrations for 
48 hours. Then MTS assay was used to measure the cell 
viability. The result showed that Dox was toxic to SW480 
in a dose-dependent manner (Figure 5b). The IC50 value 
of Dox on SW480 cells was 0.95 µM, and it was further 
applied in following experiments about the intercalation 
of Dox into ASA. Dox, a chemotherapeutic drug for 
cancer treatment, is also toxic to normal cells resulting in 
a number of side effects to the patients (Carvalho et al., 
2009). To overcome this shortcoming of Dox, strategies 
which relied on incorporating Dox into other molecules 
have been studied (Green and Rose, 2006; Liao et al., 
2015; Zhao et al., 2018; Zhang et al., 2020a). In this 
research, we proposed a strategy for reducing Dox toxicity 
by intercalating the Dox into ASA (Dox-loaded AS1411 
aptamer) and validated its functionality.

Preparation of Dox-loaded AS1411 aptamer 
Dox intercalated into ASA molecules was evaluated 

by fluorescence spectroscopy. The spectra of Dox, ASA, 
Dox-loaded ASA are shown in Figure 6. Dox emitted a 
maximum fluorescence signal at approximately 590 nm 
as reported in other research (Airoldi et al., 2014). Its 
fluorescence signal was lowered upon mixing with ASA, 
indicating the intercalation of Dox in base pairing sites of 
ASA. Molar ratio of Dox to ASA was 1:5 for a complete 
quenching and intercalation.

Effect of Dox-loaded ASA on SW480 and CCD841 cell 
growth

Effect of Dox-loaded ASA on SW480 and CCD841 
cell proliferation was evaluated by treating the cells by 
the following reagents: NBO, ASA, free Dox, Dox-loaded 
NBO, Dox-loaded ASA. Then MTS assay was used to 
measure cell viability. The SW480 cells treated with NBO 
and ASA had the level of cell viability comparable to the 
cells with no treatment, although the ASA alone did not 
obviously suppress cell viability in previous experiments 
(Figure 7a). 

When SW480 cells were cultured in the presence of 
free Dox, the cell viability had the lowest level compared 
to other tested samples because Dox was toxic to these 
cells. Dox-loaded NBO was non-toxic to SW480, since 
Dox was intercalated into oligonucleotide duplex having 
anionic nature which could prevent a cellular uptake of 
Dox (Tseng et al., 2009). Dox-loaded ASA exhibited 
toxicity to SW480 cells but it was less toxic than free Dox. 
The toxicity of Dox-loaded ASA came from the binding 
ability of AS1411 aptamer for bringing this toxic drug 
into the cells. Meanwhile the intercalation of Dox in the 
aptamer structure reduced the toxicity of Dox in cells as 
found in a previous study (Meng et al., 2012).

On the other hand, the cell proliferation assay showed 
that ASA, free Dox and Dox-loaded ASA had no effect 
on CCD841 cell growth, compared with the control group 
(Figure 7b). This indicated that ASA, free Dox, and Dox-
loaded ASA were non-toxic to the normal colon cells. The 
result suggested that Dox-loaded ASA had the ability to 
selectively reduce CRC cell proliferation without affecting 

normal cells.

Induction of apoptosis by Dox-loaded ASA via caspase-3
To clarify whether Dox-loaded ASA induced cell 

apoptosis, the degradation of procaspase-3 was measured 
as an indicator since different upstream pathways 
leading to apoptosis depend on caspase-3 activation 
for final execution. Western blot analysis revealed that 
the level of procaspase-3 normalized with β-actin was 
significantly decreased after treatment of ASA, free 
Dox, and Dox-loaded ASA compared to the untreated 
cells (Figures 8). The result was consistent with the 
previous studies showing that inhibition of nucleolin with 
antisense oligodeoxynucleotides promoted apoptosis in 
nasopharyngeal cancer (Wu et al., 2012), and Dox could 
provoke cell apoptosis via caspase-3 activation in breast 
cancer (Pilco-Ferreto and Calaf, 2016). This finding 
suggested that Dox-loaded ASA induced apoptosis in 
SW480 cells mediated by the proteolytic cleavage of 
caspase-3. 

Discussion

Dox is an anti-cancer drug that is commonly used 
for treatment of many cancers. It damages the cells by 
poisoning topoisomerase-II, inhibiting DNA replication, 
and inducing the formation of reactive oxygen species 
in cells. This causes a number of side effects that make 
the treated patients suffer.  A possible way to overcome 
this undesirable issue in using Dox is an integration of 
recognition elements to improve the ability of this drug to 
target specific corresponding sites. A recognition element 
of interest is an oligonucleotide, known as AS1411 
aptamer that exhibits specific binding ability to nucleolin. 
This molecule is overexpressed in a number of cancer cells 
including SW480 cell, a human colorectal adenocarcinoma 
cell, which has been used as a representative cell in our 
CRC study.

Flow cytometer and fluorescence microscope were 
used to verify the binding of ASA to SW480 cells. Both 
assays gave a solid evidence that ASA bound to SW480 
cells because the cells highly expressed nucleolin. RT-PCR 
results demonstrated that nucleolin was overexpressed 
in SW480 cells when compared to the CCD841 cells, 
confirming the findings of other studies showing the 
upregulation of nucleolin protein in several cancer cell 
lines (Dam et al., 2014). The expression of nuleolin protein 
in SW480 cells was reported in a previous study (Semba 
et al., 2010). This investigation suggested that nucleolin 
played an important role in the acceleration of CRC growth 
via a signaling of phosphatase of regenerating liver-3. 
In addition, the binding interaction between ASA and 
nucleolin enhanced the specificity of gold nanoparticles 
to CRC cells which was beneficial in chemophotothermal 
therapy (Zhang et al., 2020b).  

Cytotoxicity of ASA was another concern in applying 
this aptamer as chemotherapeutic agents. ASA exhibited 
anti-proliferative effect to a number of CRC such as HCC 
2998, HT-29, KM12 cells (Bates et al., 2009). However, 
to the best of our knowledge, the growth inhibition of 
ASA to SW480 cells has not been reported. Cytotoxicity 
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of ASA presented in this work might fill in the missing 
information. From acquired information about the 
cytotoxicity of ASA, the concentration of ASA used in 
preparation of Dox-loaded ASA was kept below the IC50 
of ASA, so that the anti-proliferation of SW480 cells was 
caused by the drug formulation not the aptamer which 
was the main focus of this work. Moreover, cytotoxicity 
level of Dox reported in this work was in the same order 
of magnitude as the results from other research groups.  
For instance, after treating the cells with Dox for 24, 
48, and 72 hours, the IC50 values were 65.25 µM (Xu et 
al., 2003), 0.35 µM (Zhang et al., 2020b) and 0.29 µM 
(Mielczarek-Puta et al., 2019), respectively.  This might 
indicate that cytotoxicity of Dox increased with the longer 
treatment durations.

Fluorescence spectrometry was used to demonstrate 
the intercalation of Dox, because the fluorescence signal 
of Dox was quenched in DNA duplex. Dox intercalation 
proceeds through two moieties in the drug structure: an 
amino sugar group and a tetracyclic core. The amino sugar 
moiety interacts at AT sites of DNA duplex, while the 
tetracyclic is inserted in the GC sites (Perez-Arnaiz et al., 
2014). The ASA sequence used in this work had a total of 
48 nucleotides, of which the first 28 nucleotides starting 
from the 5’ end were in the nucleolin binding region, and 
the other 20 nucleotides were designated as sites for the 
intercalation of Dox.

Dox and ASA have been integrated in a number 
of materials such as aptamer-drug hybrids, liposomes, 
micelles, DNA nanostructures, polymers, and silver and 
gold nanoparticles. The anti-cancer functions of these 
systems have been tested toward liver, breast, cervical, 
prostate, and lung cancer (Yazdian-Robati et al., 2020). 
There have been few studies focusing on applying Dox 
and ASA to colorectal cancer. For instance, the DNA nano 
structure formed by four molecules of ASA was used to 
selectively deliver Dox into CT26 colon cancer cells and 
killed these cells effectively (Yao et al., 2020), but the 
effect of Dox and ASA formulation on cellular pathways 
of CRC required more studies to fill in the information. 
Our work demonstrated that Dox-loaded ASA inherited 
binding ability of the aptamer and cytotoxicity of the drug 
resulting in anti-proliferative effect toward CRC cells. No 
change was observed after exposure of normal colon cells 
to the same concentration as that used in CRC cells. The 
finding indicated that Dox-loaded ASA selectively killed 
cancer cells while sparing normal cells.

Apoptosis pathway investigated by western blot was 
proceeded through the determination of procaspase-3, 
a key apoptotic signaling molecule. The significant 
reduction of procaspase-3 was observed in SW480 cells 
treated with ASA, Dox, and Dox-loaded ASA, confirming 
that these drugs when used alone or in combination were 
able to activate caspase-3. The elevated expression of 
nucleolin, the specific target of ASA, was associated with 
several processes in carcinogenesis, including survival, 
proliferation, metastasis, and angiogenesis. Nucleolin 
promoted the anti-apoptosis by stabilizing Bcl-xL mRNA 
and preventing it from degradation in breast cancer (Wang 
et al., 2014). Besides, nucleoin was supposed to bind 
FAS, block the FAS/FASL interaction, and thus inhibit 

the FAS-mediated apoptosis in B-cell lymphoma (Wise et 
al., 2013). Since FAS signaling pathway was commonly 
impaired in chemoresistant cancers, using ASA combined 
with Dox might empower the treatment efficacy. Although 
Dox is widely used as an effective anti-cancer drug, 
its clinical use is limited by cardiotoxicity resulting in 
congestive heart failure. However, the evidence showed 
that Dox induced apoptosis in cancer and normal cells by 
different mechanisms. Dox caused apoptosis in cancer 
by activating p53 and then stimulating caspase-3, while 
hydrogen peroxide played a crucial role in apoptosis in 
endothelial and myocardial cells (Wang et al., 2004). 
To reduce the toxicity from Dox in normal cells, a 
combination of Dox-loaded ASA with some agents that 
can detoxify hydrogen peroxide such as redox-active 
metalloporphyrin and glutathione peroxidase is worth 
exploring further.

The development of targeted chemotherapeutic agents 
is an important task for improving the well-being of cancer 
related patients. As mentioned above, Dox, a traditional 
anticancer drug, has some vital side effects that limit its 
applications. Meanwhile, nucleic acid aptamers exhibiting 
recognition ability makes them the ideal molecules for 
enhancing the specificity of chemotherapeutic drugs. 
Through this work, the exploration of Dox-loaded ASA 
on CRC provides more understanding of our formulation 
in cellular levels, and the integration of Dox and ASA is 
a promising strategy that yields a safe and effective anti-
cancer drug. 
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