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Introduction

Breast cancer is the most common cancer and has a 
lifetime prevalence of about 12% in women in the USA 
(Harbeck and Gnant, 2017). Endogenous and exogenous 
factors influence the etiology of breast cancer. Breast 
epithelial cells grow and function under female hormone 
control (Harbeck et al., 2019). Estrogen is associated with 
the mitotic activity of breast epithelial cells, and thus, 
excessive estrogen exposure increases their excessive 
proliferation and increased the mutation rates to increase 
breast cancer risk (Harbeck et al., 2019). The risk factors 
of breast cancer known to interact with estrogen exposure 
are age, age at menarche and menopause, pregnancy 
experience, breastfeeding period, hormone replacement 
therapy, and obesity (Harkness et al., 2020). However, the 
association between estrogen exposure and breast cancer 
development remains unclear.
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Genetic factors influence breast cancer development. 
For example, women with a family history of breast cancer 
are at greater risk of developing the disease (Chen and 
Parmigiani, 2007). Genetic factors include rare coding 
variants in susceptible genes such as breast cancer 
type 1 susceptibility protein (BRACA)-1 and BRACA2 
and common non-coding variants. BRACA1 and BRACA2 
mutations have been demonstrated as major genetic 
factors in Caucasians. However, a recent study showed 
that BRACA mutations are associated with substantial 
differences in breast cancer risk between Caucasians and 
Chinese (Bhaskaran et al., 2019). Genetic variants related 
to estrogen signaling need to be examined to influence 
breast cancer risk because estrogen exposure is a known 
risk factor of breast cancer in Asians. The genes involved 
in estrogen production, degradation, and estrogen receptor 
signaling have also been studied (Sun et al., 2015), but 
their associations with genetic variants in breast cancer 
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need to be examined in Asians. Furthermore, poly-genetic 
variants have shown to exhibit accumulative effects on 
breast cancer risk (Mavaddat et al., 2019). 

Estrogen secretion is affected by lifestyles and nutrient 
intakes, which influence breast cancer risk directly or 
indirectly through obesity. Furthermore, interactions 
between genetic variants and obesity, hyperglycemia, and 
lifestyles are known to influence breast cancer risk (Engin, 
2017). Obesity is a primary risk factor of breast cancer and 
is associated with increased estrogen exposure by estrogen 
overproduction and early menstruation due to excessive 
aromatization activity in adipose tissues. Obese women 
also overproduce pro-inflammatory cytokines, and exhibit 
increased insulin resistance, up-regulation of insulin-like 
growth factor pathways, and excessive oxidative stress, 
which all impact breast cancer risk (Engin, 2017). Obesity 
is associated with excessive energy intakes, high-fat diets, 
and lack of exercise that are independent risk factors of 
breast cancer. Furthermore, advanced-glycated endproduct 
(AGE) level increases caused by hyperglycemia are 
positively associated with estrogen receptor-positive breast 
cancer patients, and reductions in AGE levels modulate 
estrogen receptor-a signaling (Walter et al., 2019). The 
results suggest that less AGE production mitigates the risk 
of estrogen-positive breast cancer development, and it has 
therapeutic potential. AGE generation is mainly associated 
with blood glucose concentration and is modulated by 
lifestyle factors. Therefore, obesity and hyperglycemia, 
directly and indirectly, influence breast cancer risk, and 
nutrient intake and dietary patterns may interact with 
genetic factors to influence breast cancer risk. 

Here, we hypothesized that polygenetic variants related 
to the estrogen signaling pathway influence breast cancer 
risk, and that they interact with metabolic parameters 
and nutrient intake. This hypothesis was assessed in 
36,680 women aged >40 years who participated in a large 
hospital-based city cohort. 

Materials and Methods 

Participants
During the ten years from 2004 to 2013, a total 

of 37,116 women aged >40 years participated in the 
Korean Genome and Epidemiology Study (KoGES), a 
hospital-based city cohort study organized by the Korean 
Center for Disease and Control. The present study was 
approved by the institutional review boards of the Korean 
National Institute of Health (KBP-2015-055) and Hoseo 
University (1041231-150811-HR-034-01). Written 
informed consent was obtained from all participants. 

 
Criteria of breast cancer

This is a case-control study. Participants were asked 
for the diagnosis of breast cancer, and if they answered 
yes, they were allocated to a breast-cancer group as the 
control group (n=390). As the participants had a history of 
any cancers other than breast cancer, they were excluded 
from the study (n=436). The participants in the control 
group (n=36,290) did not have a history of any cancers. 

Anthropometric and biochemical measurements 
The participants provided age, education, income, 

smoking history, alcohol consumption, and physical 
activity during a health interview (Liu et al., 2020). 
Menarche, the age of initial menstruation, was provided. 
Menopause was defined as no menstruation for the last 
12 months, and age at menopause was provided. If the 
participant had ovariectomy and hysterectomy, the age 
at the surgery was considered as menopause age. As 
the participants provided the periods to have hormone 
replacement therapy, the periods were extended into the 
menstruation age, although they had menopause. The 
pregnancy experience was also provided. Education 
level was categorized into three groups: less than high 
school, high school, and college or more. Household 
income (USD/month) was categorized into four groups: 
very low (<$1,000), low ($1,000–2,000), intermediate 
($2,000–4,000), and high (>$4,000) (Park et al., 2015). 
Smoking status was divided into three categories: 
current smoker, past smoker, and never-smoker (Park 
et al., 2015). Alcohol consumption status was classified 
into three categories according to average daily alcohol 
consumption: nondrinker (0 g), mild drinker (0-20 g), and 
moderate drinker (> 20 g) (Table 2) (Park et al., 2015). 
The World Health Organization has recommended < 40g 
for men <20 g for women per day (Daya et al., 2020). 
The women’s recommendation amount was used for the 
cutoff for daily alcohol intake since the participants did 
not drink alcohol a lot in the present study. 

Body-weight, height, and waist circumference were 
measured using a standardized procedure (Kim and 
Han, 2017). Body mass index (BMI) was calculated by 
dividing weight in kilograms by the height in meters 
squared. Blood was collected after an overnight fast, and 
plasma and serum samples were subjected to laboratory 
testing (Kim and Han, 2017). Fasting serum glucose and 
blood hemoglobin A1c (HbA1c; glycated hemoglobin) 
concentrations were determined using a Hitachi 7600 
Automatic Analyzer (Hitachi, Tokyo, Japan). Blood 
pressure was measured on the right arms in a sitting 
position at heart level using a sphygmomanometer. 

Assessments of food and nutrient intakes using a 
semi-quantitative food frequency questionnaire (SQFFQ) 
and dietary pattern analysis

Dietary intakes were estimated using an SQFFQ 
developed and validated for KoGES (Ahn et al., 2007). 
This questionnaire requested information regarding the 
consumption of food items, and the participants completed 
it. The consumption of 106 food items was calculated by 
multiplying the frequencies of specified serving sizes by 
the portion size over the previous year. The intakes of 23 
nutrients on the SQFFQ were estimated using CAN Pro 
3.0 (Computer-Aided Nutritional Analysis Program), 
a nutrient database developed by the Korean Nutrition 
Society (Ahn et al., 2007). 

The 106 food items in the SQFFQ were categorized 
into 29 predefined food groups (Supplemental Table 1). 
These food groups were included as independent variables 
during factor analysis conducted to find dietary patterns 
using the FACTOR procedure. We determined the number 



Asian Pacific Journal of Cancer Prevention, Vol 23 15

DOI:10.31557/APJCP.2022.23.1.13
SNPs Related to Estrogen Signaling and Breast Cancer

version 2.0 (http://pngu.mgh.harvard.edu/~purcell/plink) 
and SAS version 9.3 (SAS Institute, Cary, NC, USA). 
Using a GMDR program, the best gene-gene interaction 
model was selected using P- values of <0.05 in sign rank 
tests of TRBA and TEBA after adjusting for age, gender 
and living area or age, gender, living area, education, 
income level, and body mass index (Uma Jyothi and 
Reddy, 2015). Ten-fold cross-validation was also used to 
check CVC since the sample size was greater than 1000 
(Uma Jyothi and Reddy, 2015). In the best PRS models 
determined by GMDR analysis, the non-risk and risk 
alleles of each SNP were counted as 0 and 1, respectively 
(Hong et al., 2018). For example, when the G allele was 
associated with an increased risk of breast cancer, then 
TT, GT, GG were given 0, 1, and 2, respectively. The 
PRS was calculated by summing risk allele scores in each 
SNP included in the PRS models. PRS obtained using 
the 4-SNP PRS model were divided into three categories 
(0-3, 4-5, and >5) by tertile, and these are referred to as 
low-, medium- and high-PRS, respectively. The model 
containing seven SNPs (the seven-SNP PRS model) was 
also classified into three categories (0-6, 7-8, and >8) by 
tertile, and they are also referred to as low-, medium-, and 
high-PRS, respectively. A high-PRS indicated a higher 
number of risk alleles in the best gene-gene-interaction 
model. Adjusted odds ratios (ORs) and 95% confidence 
intervals of the high-PRS were calculated for breast 
cancer risk, as the reference of the low-PRS in either the 
four- or seven-SNP PRS models after adjusting covariates 
to eliminate the effect of covariates. Covariates in the 
group 1 included age, education, income, residence area, 
survey year, and body mass index, whereas covariates 
in the group 2 contained the covariates in the covariate 
group 1 plus menopause, menopause age, energy intake, 
menstrual initiation, and experience of pregnancy. 

Descriptive statistics of categorical variables, such 
as gender and lifestyle, were calculated by frequency 
distributions according to PRS tertiles. Frequency 
distributions of classification variables were statistically 
analyzed using the chi-squared test. Means and standard 
deviations were analyzed for continuous variables 
according to PRS categories or breast-cancer and control 
groups, and the significances of differences between 
PRS categories or breast-cancer/control groups were 
determined by one-way analysis of variance (ANOVA) 
after adjustment for two different covariate groups. 
Multiple comparisons were performed using the Tukey 
test. The values of each lifestyle parameter were 
dichotomized into the ‘high’ or ‘low’ groups to explore 
the interactions between PRS and lifestyles. Two-way 
ANOVA with main effects and an interaction term was 
conducted to examine interactions between PRS and 
lifestyles and estrogen exposure parameters after adjusting 
for covariates. P-values of ≤ 0.05 were considered 
statistically significant.

Results

General characteristics of the participants according to 
the presence of breast cancer

Table 1 describes the demographic and clinical 

of factors to retain using eigenvalues of >1.5 and 4 
dietary factors describing the distinct dietary patterns of 
participants. The orthogonal rotation procedure (varimax) 
was applied during the principal component (PCA) 
analysis (Park and Kang, 2020). Factor-loading values 
≥ 0.40 were considered to make major contributions to 
distinct dietary patterns (Supplemental Table 2). 

Genotyping and quality control
Genomic DNA of the participants was extracted from 

whole blood, and their genotypes were assessed on an 
Affymetrix Korean Chip (Affymetrix, Santa Clara, CA), 
and results were made available to scientists from the 
Center for Genome Science of the Korea National Institute 
of Health. This chip has been used to study Korean genetic 
variants and includes prevalent disease-related single 
nucleotide polymorphisms (SNPs) (Lee and Kim, 
2016). Genotyping accuracies were determined by 
Bayesian Robust Linear Modeling using the Mahalanobis 
Distance Genotyping Algorithm (Rabbee and Speed, 
2006). Genotype analysis from the DNA samples had a 
genotyping accuracy of ≥98%, a missing genotype call 
rate of <4%, heterozygosity of <30%, Hardy-Weinberg 
equilibrium (HWE) of P>0.05, and showed no gender 
bias (Park and Kang, 2020). 

Identification of the best models for gene-gene interactions 
by generalized multifactor dimensionality reduction 
(GMDR) 

The flow chart used to produce polygenetic risk scores 
that influence breast cancer risk is presented in Figure 1. 
Participants were categorized as having (breast-cancer 
group, n=390) or not having any cancer (control group, 
n= 36,290). A genome-wide association study (GWAS) 
was performed to find genetic variants associated with 
breast cancer risk by the breast-cancer and control study 
using a P-value < 0.0001. The 493 genetic variants were 
selected from the GWAS results. The names of selected 
genetic variants were determined using scandb.org. 
SNPs of the genes that interacted with estrogen signaling 
were selected using genemania.org. GMDR analysis 
included the SNPs of the genes involved in estrogen 
signaling. Linkage disequilibrium (LD) analyses were 
performed on the selected genetic variants in the same 
chromosomes using Haploview 4.2 in PLINK. The genetic 
variants exhibiting strong LD (D’>0.4) were excluded 
in the GMDR analysis because they provided similar 
information concerning breast cancer risk. The final ten 
potential genetic variants for the best model generated by 
GMDR analysis in the same chromosome did not have 
a strong correlation among the SNPs, determined by LD 
analysis (D’<0.4). The model for gene-gene interactions 
influencing breast cancer risk was selected by trained 
balanced accuracy (TRBA), testing balanced accuracy 
(TEBA), and cross-validation consistency (CVC) from 
the GMDR analysis. The genetic variants to be select 
from the genetic variant-genetic variant interaction were 
used to calculate the polygenetic risk score (PRS) models. 

Statistical analyses
Statistical analysis was performed using GPLINK 
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characteristics of the study population, which included 
390 women in the breast-cancer group and 36,290 in no 
cancer (control) group. Age was significantly higher in the 
breast-cancer group than in the control group. Participants 
that experienced early menstruation, early menopause, or 
had no experience of pregnancy had higher incidences 
of breast cancer (Table 1). Participants that had an early 
initiation of menstruation or no pregnancy experience had 
1.6- and 2.8-fold greater risks of breast cancer, respectively, 
and those that experienced late menopause had a 0.53-
fold lower the risk. These results strongly suggest that 
female hormones influence breast cancer risk. BMI and 
waist circumferences were not found to be associated 
with breast cancer. Blood pressure and lipid profiles, 
except plasma total cholesterol concentrations, were not 
significantly different in the breast-cancer and control 
groups. Plasma total cholesterol in the breast-cancer group 
was significantly lower in the breast-cancer group than 
in the control group (Table 1). However, hyperglycemia 
was associated with a 1.5-fold increase in breast cancer 
risk. White blood cell counts, but not serum high-sensitive 
C-reactive protein (hs-CRP) concentrations, were 
negatively associated with breast cancer risk. Education 
and income levels were not significantly different in the 

breast-cancer and control groups. 

Nutrient intake and dietary patterns of the participants 
Table 2 provides a summary of nutrient intakes and 

dietary patterns in breast-cancer and non-breast cancer 
(control) groups. Intakes of fat (P<0.001), alcohol 
(P<0.05), and coffee (P<0.05) were significantly greater 
in the breast-cancer group than in the control group. 
Principle component analysis of dietary patterns showed 
that the breast-cancer group had a more prudent diet 
(P<0.01) and less rice-based food intake (P<0.05) than 
the control group (Table 2). Consumption intakes of a 
traditional balanced diet or a noodle/meat diet were not 
significantly different in the breast-cancer and control 
groups (Table 2), and neither were energy, carbohydrate, 
protein, or cholesterol intakes, exercise, or smoking 
(Table 2).

Selection of the model of gene-gene interactions related to 
estrogen receptor signaling to influence breast cancer risk 

The following ten SNPs involved in estrogen signaling 
metabolism were selected to influence breast cancer risk; 
rs17043393 of ESRRG, rs3753686 of Set and Mynd 
domain-containing protein 3 (SMYD3) on chromosome 

No breast cancer (n=36,290) Breast cancer (n=390) Adjusted OR (95% CI)
Age1 (years) 52.9±5.5 54.2±5.4*** 0.928 (0.711-1.212)
Early menstration2 (Yes, %) 3061 (13.4) 72 (21.6)*** 1.550 (1.077-2.229)*
Late menopausal women3 (Yes, %) 12,747 (55.8) 131 (39.2)*** 0.529 (0.389-0.720)***
Pregnancy experience4 (No, %) 1,206 (3.29) 27 (6.94)*** 2.862 (1.813-4.519)***
BMI5 (kg/m2)  23.6±2.8 23.4±2.9 0.810 (0.891-1.040)
Waist circumference6 78.1±8.1 78.0±8.1 0.965 (0.728-1.279)
Plasma total cholesterol 7(mg/dL) 200±35.8 192±35.6*** 0.666 (0.455-0.974)*
Plasma HDL8 (mg/dL) 56.2±13.1 54.9±13.1 1.102 (0.882-1.376)
Plasma triglyceride9 (mg/dL) 113±72.9 124±77.5* 1.212 (0.958-1.535)
Type 2 diabetes10 7135 (19.4) 83 (21.3) 1.495 (1.023-2.183)*
Blood pressure11 7656 (20.9) 73 (18.7) 0.816 (0.618-1.078)
White blood cell counts12(109/L) 5.49±1.45 5.15±1.40*** 0.629 (0.471-0.840)**
Plasma hs-CRP13 (ng/mL) 0.12±0.31 0.16±0.85 1.100 (0.404-2.994)
Education14 (Number, %) 1
     <High school  5,948(20.8) 56(18.6) 1.183 (0.620-2.257)
     High school, college 6,520(22.8) 65(21.6) 1.118 (0.435-2.873)
     College more 16,092(56.3) 180(59.8)
Income15 (Number, %) >2000 1
     <$1000/y 3,977 (11.5) 43 (11.8) 0.938 (0.734-1.199)
     $1000-2000 7,420 (24.4) 86 (23.6)
     $2000-4000 14,950 (43.2) 151 (41.4)
     >$4000 8,227 (23.8) 85 (23.3)

The values represent means ± standard deviations or number of the subjects (percentage of each group); The cutoff points of the reference were as 
following: 1< 60 years old for age, 2<14 years old for initial menstration age, 3<50 years old for menopause age, 4no pregnancy experience, 5< 25 
kg/m2 BMI, 6< 90 cm for men and 85 cm for women waist circumferences, 7<230 mg/dL plasma total cholesterol concentrations, 8>40 mg/dL for 
men and 50 mg/dL for women plasma HDL cholesterol, 9<150 mg/dL plasma triglyceride concentrations, 10<126 ml/dL fasting serum glucose plus 
diabetic drug intake, 11<140 mmHg SBP, 90 mmHg DBP plus hypertension medication, 12<5.6X109/L white blood cell counts, 13<0.5 mg/dL serum 
high sensitive-C-reactive protein (hs-CRP) concentrations, 14high school graduation and 15<$2000/month income; Adjusted odds ratio (ORs) after 
adjusting for covariates including initial menstruation age, menopause, pregnancy experience, body mass index, energy intake, education, income, 
residence are, and survey year in logistic regression models. * Significant differences by breast cancer at P<0.05, ** at P<0.01, *** P<0.001. 

Table 1. Socioeconomic and Metabolic Characteristics of the Participants According to Breast Cancer 
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1, rs62255841 of thyroid hormone receptor beta (THRB), 
rs2134635 of fibroblast growth factor 12 (FGF12) on 
chromosome 3, rs2046210 of estrogen receptor-1 (ESR1) 
on chromosome 6, rs6958497 of epidermal growth factor 
receptor (EGFR) on chromosome 7, rs57120191 of 
microcephalin (MCPH1) on chromosome 8, rs10873289 
of estrogen-related receptor beta (ESRRB) on chromosome 
14, rs12600325 of H-cadherin (CDH13) on chromosome 
16, and rs6125040 of nuclear receptor coactivator 3 
(NCOA3) on chromosome 20; after adjusting for age, 
gender, residence area, survey year, body mass index, 
daily energy intake, education, and income (Table 3). Each 
genetic variant was significantly associated with estrogen 
signaling metabolism in breast cancer (ORs = 0.65 -2.65, 
P-value = 3.60XE-06 to 2.77XE-02). Genotype frequency 
distributions met HWE (P>0.05), and their MAF values 
were > 0.01 (Table 3). 

Interactions between genetic variants related to 
estrogen receptor signaling were assessed using GMDR. 
Table 4 shows ten models generated from the ten SNPs. Of 
these models, the best models were selected using TRBA, 
TEBA, and CVC values with and without adjusting for 
the covariates detailed in Table 4. Models including 
four, seven, and nine genetic variants showed significant 

(P<0.05) associations with genetic variant-genetic variant 
interactions in breast cancer (Table 4). However, a model 
included four SNPs that had the lowest P-value and a 
CVC of 10/10. This model included four SNPs (four-
SNP PRS model) that were selected from the best model 
of genetic variant-genetic variant interaction by GMDR 
analysis. The four-SNP PRS model contained CDH13 
_rs12600325, SMYD3_rs3753686, FGF12_rs2134635, 
and ESRRB_rs10873289  (Table 4). TRBA, TEBA, and 
CVC of this model were 0.6035, 0.5488, and 10/10, 
respectively, after adjustment for age, residence area, and 
BMI. Furthermore, the model with seven SNPs also met 
the best model criteria of GMDR analysis, and it could 
be also applied for estimating breast cancer risk (Table 4). 
The seven-SNP PRS model included CDH13_rs12600325, 
SMYD3_rs3753686, FGF12_ rs2134635, ESRRB_
rs10873289, ESR1_rs2046210, ESRRG_rs17043393, 
EGFR_rs6958497 and their TRBA, TEBA and CVC 
values were 0.7105, 0.5518, and 10/10, respectively, after 
adjusting for age, residence area, and BMI (Table 4).

Association between PRS and breast cancer after 
adjusting for covariates

As shown in Figure 1, the adjusted ORs of breast 

No breast cancer (n=36,290) Breast cancer (n=390) Adjusted OR (95% CI)
Energy intake1 (kcal)  1693±531 1635±516 0.831 (0.670-1.030)
CHO percent intake2 70.7±20.8 72.8±20.0*** 1.340 (0.920-1.952)
Protein percent intake3 13.2±5.8 13.1±5.6** 0.721 (0.503-1.033)
Fat percent intake4 13.4±8.7 13.0±8.0** 0.457 (0.332-0.630)***
Cholesterol intake5 167±125 157±106 0.799 (0.601-1.061)
Exercise (Number, %)
     No 17,536 (47,8) 166 (42.7)* 1
     Yes 19,093 (52.1) 223 (57.3) 1.203 (0.971-1.490)
Smoking (Number, %)
     No 35,458 (96.8) 385 (99.0) 1
     Former smoking 439 (1.2) 1 (0.26) 0.301 (0.075-1.216)
     Smoking 726 (2.0) 3 (0.77) 0.233 (0.033-1.664)
Alcohol intake (Number, %) 
     No 25,941 (70.6) 332 (85.1)*** 1
     Mild drink (0-20g) 979 (2.7) 5 (1.3) 0.390 (0.124-1.226)
     Moderate drink (≥20g) 9,806(26.7) 53 (13.6) 0.378 (0.254-0.563)*
Coffee intake6 (Number %) 1
     Low (<3 g/day) 14,865 (40.5) 208 (53.3)*** 0.729 (0.555-0.955)*
     Medium (3-16 g/day) 21,560 (58.7) 181 (46.4)
     High (≥16 g/day) 301 (0.82) 1 (0.26)
Traditional balanced diet7 10604 (28.9) 95 (24.4) 0.865 (0.664-1.128)
Prudent diet7 14065 (38.3) 179 (45.9) 1.408 (1.117-1.775)**
Noodle/meat diet7 10121 (27.6) 90 (23.1)* 0.887 (0.673-1.167)
Rice-based diet7 12039 (32.8) 112 (28.7) 0.746 (0.585-0.951)*

Table 2. Nutrient Intake and Dietary Patterns of the Participants According to Breast Cancer Presence

The values represent means ± standard deviations or number of the subjects (percentage of each group). The cutoff points of the reference were 
as following: 1< estimated energy intake, 2< 65 energy % carbohydrate (CHO) intake, 3<13 energy % protein intake 4<15 energy % fat intake, and 
, 5<250 mg/day cholesterol intake, 6< 3 g/day coffee drinking, and 7<70th percentile intake of each dietary pattern. Adjusted odds ratio (ORs) after 
adjusting for covariates including initial menstruation age,  menopause, pregnancy experience, body mass index, energy intake, education, income, 
residence area, and survey year in logistic regression models.* Significant differences by cataract at P<0.05, ** at P<0.01, *** P<0.001. 
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cancer in the high-PRS group of the four-SNP model 
were 2.55 and 2.89 (P<0.001), respectively, as compared 
with subjects in the low-PRS group after adjusting 
different covariates (covariate groups 1 and 2). This 
result indicated that the participants in the high-PRS 
group were at a 2.55- and a 2.89-fold higher risk of breast 
cancer, respectively than subjects in the low-PRS group. 
Individuals with a high-PRS group of the seven-SNP 
model had a higher risk of breast cancer by 2.01- and 
2.23-times (P<0.001), respectively, than subjects in the 
low-PRS group after adjusting covariates model 1 and 2 
(Figure 1). However, there was no significant association 
between the low-PRS and high-PRS groups after adjusting 
covariates in BMI, waist circumference, type 2 diabetes, 
hypertension, serum concentrations of total cholesterol, 
LDL-C, HDL-C, triglyceride, and hs-CRP, and white 
blood cell counts (Supplemental Table 2).

Interaction between PRS and menstruation and lifestyles 
in breast cancer

Age at menarche (P=0.049) and menopause (P=0.004) 
ages showed significant interactions with the PRS groups 
of the 4-SNP model for breast cancer risk, and pregnancy 
experience (P=0.042) also interacted with the PRS groups 
for breast cancer risk (Table 5). Early menopause and 

early initiation of menstruation had a positive association 
with a high-PRS for breast cancer risk. The participants 
in early menarche and early menopause with a high-PRS 
had 2.98 and 3.22 times had higher risks of breast cancer, 
respectively than those with a low-PRS (Figures 2A, 2B). 
In having no history of pregnancy, the participants with a 
high-PRS had a similar risk of breast cancer to those with 
a low-PRS. However, in having a history of pregnancy, the 
participants with a high-PRS had a 2.73-fold higher risk 
of breast cancer than those with a low-PRS (Figure 2C). 
However, no significant interactions were found between 
PRS and intakes of energy, protein, carbohydrate, or fat 
(Table 5) and dietary patterns (data not shown) for the 
risk of breast cancer. On the other hand, the interaction 
between alcohol intake and PRS modulated breast cancer 
risk (P=0.004). In a mild alcohol intake group, the subjects 
with a high-PRS had a 2.33-fold higher risk of breast 
cancer than those with a low-PRS. In the moderate alcohol 
intake group, the participants with a high-PRS had an 
8.07-fold higher risk of breast cancer than those with a 
low-PRS. However, the prevalence of breast cancer was 
much higher in the participants with mild alcohol intake 
than in those with moderate alcohol intake, regardless of 
the PRS (Figure 2D). 

Figure 1. Flow Chart of Haplotypes that Influence Breast Cancer Risk
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Discussion

We explored the genetic variants of genes related to 
estrogen receptor signaling and their influence on breast 
cancer. GMDR analysis of 493 genetic variants detected 
in the breast-cancer and the control groups identified ten 
gene variants related to estrogen signaling. Based on 
considerations of these ten variants, we identified a model 
best suited for evaluating gene-gene interactions related to 
the estrogen receptor. These models included SNP-SNP 
interactions of four or seven SNPs. The four-SNP model 
included CDH13_rs12600325, SMYD3 _rs3753686, 
FGF12_rs2134635, and ESRRB_rs10873289 while 
the seven-SNP model contained  the genetic variants 
in four-SNP model plus ESR1_rs2046210, ESRRG_ 
rs17043393, and EGFR_rs6958497. 

Cadherin (CDH13) is involved in cell proliferation, 
growth, and survival and acts as a tumor suppressor 
gene. Its expression is reduced in human tumors, and it 
is methylated in breast and lung cancer cells (Yang et al., 
2016), and thus, mutations in CDH13 may induce tumor 
formation. SMYD3 is required for estrogen-regulated gene 
transcription in the estrogen signaling pathway, and its 
overexpression is associated with the risk of breast cancer 
(Huang and Xu, 2017).

FGF12 is a gene with broad mitogenic and cell 
survival activities and is involved in tumor growth and 
invasion, and over-methylation of FGF12 is observed in 
breast tissue. The genes included in the four-SNP PRS 

model are associated with the proliferation of estrogen-
sensitive cells via indirectly promoting the estrogen 
receptor signaling pathway, and conformational changes 
in these genes by SNPs or methylation could induce breast 
cancer cell growth (Lian et al., 2012). 

Estrogen is involved in various physiological 
and disease processes, including reproduction, bone 
remodeling, and breast cancer control. Its effects are 
transmitted through estrogen receptor-alpha and -beta, 
which are encoded by ESR1 and ESR2 and estrogen-
related receptors (ESRR-α, -β, and -γ)(Madhu Krishna 
et al., 2018). These receptors are expressed in estrogen-
sensitive organs such as the ovary, breast, and brain. In 
the present study, ESRRB_rs10873289, ESR1_rs2046210, 
and ESRRG_rs17043393 were included in the seven-SNP 
PRS model. However, in the four-SNP PRS model, the 
only estrogen receptor included was ESRRB_rs10873289. 
ESRRB plays an inhibitory role in cancer cell proliferation 
in estrogen-dependent cells (Tanida et al., 2015), and 
ESRRG is a nuclear receptor also involved in breast 
cancer development. In fact, in a study conducted in 
Thailand, ESRRG rs1857407 and rs945453 were found to 
be associated with breast cancer risk (Sangrajrang et al., 
2009). Furthermore, ESRRG modulates cell proliferation 
and estrogen signaling in breast cancer (Ijichi et al., 2011). 
Recently, ESR1 rs2046210 was reported to be associated 
with susceptibility to breast cancer and suggested to be a 
genetic biomarker in Asians and Caucasians (Campa et 
al., 2011; Jin et al., 2019), and to play a crucial role in 

Figure 2. Frequencies of breast cancer in participants categorized with low, medium, or high 4- or 7- SNP PRS groups. 
A, Participants categorized by initial menstruation age (a cutoff value: 14 years old); B, Participants categorized by 
age at menopause (a cutoff value: 50 years old); C, Participants categorized by pregnancy experience (a cutoff: no 
pregnancy); D, Participants categorized by alcohol intake (a cutoff value: 20 g/day); ** Significantly different among 
low and high-PRS groups at P<0.01 and *** at P<0.001 
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the etiology of breast cancer in Chinese, Japanese, and 
Vietnamese women (Li et al., 2016; Mizoo et al., 2013; 
Thanh et al., 2018). In the present study, ESR1 rs2046210 
was one of the genetic variants in the seven-SNP PRS 
model. Epidermal growth factor receptor (EGFR) is a 
receptor tyrosine kinase (RTK), and the first RTK linked 
with cancer, and the overexpression and mutation of EGFR 
are observed in many cancers, including breast cancer 
(Wang, 2017). EGFR overexpression is shown in 15-30% 
of breast cancers, and EGFR expression is up-regulated by 
3~6 fold in breast cancer cells. Estrogen-depleted breast 
cancer cells are more susceptible to epidermal growth 
factor mitotic effects, which results in cell death due to the 
simultaneous blocking of estrogen and EGFR signaling 
pathways (Jeong et al., 2019). 

Polygenetic genetic variants affect breast cancer risk in 
an additive manner (Mavaddat et al., 2019). In the present 
study, the adjusted ORs of breast cancer in subjects with 
high-PRS as determined using the four- and seven-SNP 
PRS models were 2.89 (P<0.001) and 2.23 (P<0.001), 
respectively, after adjusting for covariates compared to 
subjects with a low-PRS. In previous studies, women 
with polygenetic BRCA1/2 variants were found to be at 
elevated risk of breast and ovarian cancers (Barnes et 
al., 2020), and in a triple-negative breast cancer study, a 
four-fold risk difference was found between the highest 
and lowest PRS quintiles (Purrington et al., 2014). These 
findings suggest that the PRS of the genes related to 

estrogen signaling influences breast cancer risk and that 
this risk is associated with estrogen exposure. 

Menstruation-related events are important risk factors 
of breast cancer; early menarche and late menopause are 
known to increase the risk of breast cancer, as shown by 
a meta-analysis conducted on European women (Cancer, 
2012) and a review of reproductive factors in breast cancer 
(Kapil et al., 2014). Since early menarche has reported 
being associated with childhood obesity and food intake, 
it can be prevented by modifying lifestyles (Brix et al., 
2020; Kim and Lim, 2020). However, breast cancer risk 
has been reported to increase after menopause in Southeast 
Asia (Nindrea et al., 2017). It is not clear whether this 
is a result of comparing early menopause with late 
menopause. Although breast cancer risk increase doubles 
every ten years until menopause and then slows after 
menopause, the incidence of breast cancer remains high 
after menopause (Momenimovahed and Salehiniya, 2019). 
Consistent with this previous study (Momenimovahed and 
Salehiniya, 2019), the current study showed that early 
menarche increased breast cancer risk. This result might be 
involved in a longer estrogen exposure to the breast from 
an immature stage. However, in the present study, early 
menopause increased breast cancer risk, indicating that the 
estrogen exposure at an immature stage of the breast may 
play a critical role in inducing breast cancer more than 
the extended periods of estrogen exposure. When women 
may develop breast cancer during menstruation, the 

Low- PRS
(n=14,420)

Medium-PRS
(n=21,641)

High-PRS
(n=4,201)

Gene-nutrient interaction
P value

Early menstration1 1 1.198  (0.521-2.758) 2.976  (1.330-6.658)*** 0.049
Late mentration 1.486  (0.942-2.345) 2.402  (1.521-3.795)***
Early menopause2 1 2.096  (1.139-3.956) 3.222  (1.746-5.947)*** 0.004
Late menopause 1.049  (0.614-1.792) 2.221  (1.316-3.747)***
No pregnancy 1 0.846  (0.253-2.835) 1.063  (0.300-3.767) 0.042
Pregnancy  1.492  (0.972-2.288) 2.726  (1.784-4.167)***
Low energy3 1 1.162 (0.728~1.855) 1.955 (1.225-3.118)*** 0.561
High energy 2.256 (1.030-4.944) 4.395 (2.018-9.568)***
Low CHO4 1 1.089  (0.626-1.895) 1.839  (1.059-3.196)** 0.608
High CHO  1.830  (1.022-3.277) 3.400  (1.906-6.066)***
Low protein5 1 1.089 (0.687~1.725) 1.919 (1.215~3.030)*** 0.415
High protein 2.700 (1.166~6.253) 4.920 (2.131~11.356)***
Low fat6 1 1.264 (0.819~1.952) 2.337 (1.519~3.596)*** 0.125
High fat 2.379 (0.846~6.690) 3.864 (1.376~10.854)**
Low cholesterol7 1 1.165 (0.765~1.776) 2.052 (1.349~3.119)*** 0.309
High cholesterol 4.797 (1.155~19.92) 9.015 (2.181~37.26)***
No and milld alcohol8 1 1.186 (0.786~1.791) 2.332 (1.554~3.501)*** 0.004
Moderate alcohol 7.998 (1.086~58.88) 8.074 (1.068~60.13)**

Table 5. Adjusted Odds Ratios for the Risk of Breast Cancer by Polygenetic Risk Scores of the Best Model (PRS) for 
Gene-Gene Interaction after Covariate Adjustments According to the Patterns of Lifestyles

Values represent odd ratios and 95% confidence intervals; PRS with 4 SNPs was divided into 3 categories (0-3, 4-5, and >5) by tertiles as the low, 
medium and high groups of the best model of GMDR; The cutoff point were as following: 1 <14 years old, 2<50 years old, 3<estimated energy 
intake, 4< 65% carbohydrate (CHO) intake, 5< 13% protein intake, 6< 15% fat intake, 7< 250 mg/d cholesterol intake, and 8 <20 g/day alcohol 
intake. Multiple logistic regression models include the corresponding main effects, interaction terms of SNPs and main effects (energy and nutrient 
intake), and potential confounders such as age, residence area, survey year, body mass index (BMI), education, income, smoking, alcohol, energy, 
physical activity, fat percent intake, and carbohydrate percent intake; Reference was the low-PRS; *Significantly different from low-PRS in logistic 
regression analysis at * P<0.05, ** P<0.01, *** P<0.001. 
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chemotherapy results in menopause since chemotherapy 
has a 53~89% risk of developing early menopause (Zhou 
et al., 2015). As previously reported, reproductive period 
duration may be an indication of estrogen exposure and is 
associated with the risk of breast and endometrial cancers 
(Li et al., 2011). 

Pregnancy experience and parity are also associated 
with breast cancer risk. Pregnancy experience and 
higher parity are associated with a lower risk of breast 
cancer. During the first pregnancy, breast tissue is either 
less susceptible to cancer or carcinogenic stimuli to 
the breast are reduced. Women produce three major 
estrogens: estrone, estradiol, and estriol. During 
pregnancy, total estrogen secretion greatly increases, but 
estriol levels increase significantly more than those of 
estrone or estradiol. Estriol may be less likely to enhance 
carcinogenic potential than other estrogens, and thus, 
younger women with low estriol to estrone plus estradiol 
ratio have a higher risk of breast cancer, which may reduce 
breast cancer risk during early pregnancy (Kapil et al., 
2014). Many studies have revealed that higher parity is 
associated with a significantly lower risk of breast cancer 
(Terry et al., 2018). Furthermore, the present study shows 
that the risk of breast cancer among women with no 
experience of pregnancy was not significantly different 
between those with high- or low-PRS groups, which 
indicates that no experience of pregnancy offsets genetic 
impacts on breast cancer development. However, subjects 
with high-PRS and pregnancy experience had a 2.73 times 
higher risk of breast cancer than those with low-PRS.

A systematic review of the literature showed that 
moderate alcohol consumption increased the risks of 
breast cancer and other cancers (de Menezes et al., 2013). 
Alcoholic drinks are regarded as carcinogenic by the 
International Agency for Research on Cancer. Alcohol 
is metabolized in breast tissue to acetaldehyde, which 
is associated with the production of reactive oxygen 
species and DNA damage (Singletary and Gapstur, 
2001). Furthermore, alcohol can increase circulating 
estrogen levels, which is a risk factor for breast cancer. 
Many recent studies have reported a positive association 
between alcohol intake and estrogen-positive breast 
cancer (Romieu et al., 2015). A pooled analysis reported 
a stronger positive association with alcohol at an occasion 
exceeding 15g per day (Jung et al., 2016). However, cancer 
risk associated with alcohol intake may be modulated 
by genetic factors (Park and Kang, 2020), for example, 
genetic polymorphisms of alcohol dehydrogenase (ADH) 
and CYP2E1 have been shown to affect breast cancer 
risk (Lu et al., 2017). A multitude of genetic factors is 
also probably associated with altering breast sensitivity 
to carcinogenic stimuli. The present study also showed a 
significant difference between high- and low-PRS groups 
(P=0.004). Subjects with high-PRS and mild alcohol intake 
(< 20g/day) were found to have 2.33 times higher risk of 
breast cancer than those with low-PRS. Furthermore, 
subjects with high-PRS and moderate alcohol intake 
(≥20g/day) had an 8.07 times higher risk of breast cancer 
than those with low-PRS. However, energy, carbohydrate, 
protein, and fat intakes, and four different dietary patterns 
(data not shown) did not show the interaction with genetic 

variants to modulate breast cancer risk. 
Since Asians have less association with BRACA1/2 

than Caucasians (Bhaskaran et al., 2019) and estrogen 
exposure is a predominant risk factor for breast cancer in 
Asians (Sun et al., 2015), the SNPs associated with the 
estrogen signaling pathway play a critical role in breast 
cancer risk. The strength of the present study was to use 
the pooling four or seven genetic variants related to the 
estrogen signaling pathway to explain the breast cancer 
risk in Asians. The high-PRS in the four- and seven-
SNP model elevated breast cancer risk.  Furthermore, 
the PRS had an interaction with early menarche, early 
menopause, pregnancy experience, and alcohol intake. 
The results could be applied to the young persons who 
have the high-PRS to prevent breast cancer in later life. 
The limitations of the present study are as follows: 1) 
Since this study was conducted with the case-control, 
the results could not be interpreted as the cause-and-
effect relation. 2) Subjects were recruited from an urban 
hospital-based cohort, and thus, our results cannot be 
extended to the Korean population. 3) Since lifestyles 
and nutrient intakes were self-reported, the results might 
exhibit some bias. However, the semi-quantitative food 
questionnaire used to assess nutrient intakes contained 
106 commonly consumed food items and was validated 
using three day-food records over four seasons by KoGES 
(Ahn et al., 2007). 

In conclusion, the four-SNP PRS model that included 
CDH13_rs12600325, SMYD3 _rs3753686, FGF12_
rs2134635, ESRRB_rs10873289, which are all related 
to estrogen signaling, were found to be positively 
associated with the risk of breast cancer and to interact 
with menstruation patterns and pregnancy experience to 
modulate breast cancer risk. PRS also interacted with 
alcohol intake to amplify the impact of alcohol on breast 
cancer risk. The present study cautions that women with 
a high-PRS should avoid alcohol intake and that lifestyles 
be changed to delay menarche and reduced the risk of 
later breast cancer development. The persons who have 
early menarche need to check the genetic variants in the 
clinical setting, and their lifestyles can be modified as a 
prevention measure.
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