Correlation between Programmed Death Ligand-1(PD-L1) Expression and Driver Gene Mutations in Non-Small Cell Lung Carcinoma- Adenocarcinoma Phenotype

Document Type : Research Articles

Authors

1 Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, (UP), India.

2 Department of Biosciences, Integral University, Lucknow, (UP), India.

3 Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, (UP), India.

4 Department of Respiratory Medicine, King George’s Medical University, Lucknow, (UP), India.

5 Department of Surgical Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, (UP), India.

Abstract

Background: Targeted therapy in adenocarcinoma is recommended. The use of immune check point inhibitors for the treatment of Non-small cell lung carcinoma (NSCLC) is used as both first-line and the second-line treatment strategy. The current study was undertaken to assess the frequency of programmed cell death ligand-1 (PD-L1) expression with anaplastic lymphoma kinase (ALK), proto-oncogene 1, receptor tyrosine kinase (ROS), epidermal growth factor receptor (EGFR), Kirsten rat sarcoma (KRAS), and v-Raf murine sarcoma viral oncogene homolog B (BRAF)V600E driver gene mutations in NSCLC adenocarcinoma phenotype. It assesses the frequencies of all markers in the cases where both treatment strategies can be implemented. Expression of the all markers was further compared with demographic, clinical parameters, and overall survival rate. Materials and Methods: The formalin-fixed paraffin-embedded (FFPE) tissue blocks were used in immunohistochemistry (IHC) staining and real-time polymerase chain reaction (RT-PCR) for determining the driver genes and PD-L1 expression in the 100 NSCLC-Adenocarcinoma cases. Results: PD-L1 positivity was observed in 26.36% (n=29/110) cases in adenocarcinoma. No significant differences in PD-L1 expression were observed among patients harboring ALK, ROS1, EGFR, KRAS, and BRAF mutations EGFR mutations had significant association with smoking status. (p= 0.008), Thyroid transcription factor 1 (TTF1) (p=0.0005) and Napsin (p=0.002) expression. ALK gene re-arrangement was significantly related to age (p= 0.001), gender (p= 0.009) and smoking status (p= 0.043). The single versus multiple driver mutations were significantly correlated with smoking status (p=0.005). In the survival rate analysis, EGFR (p=0.058), KRAS (p=0.021), and PD-L1 (p=0.039) were significantly high with the positive versus negative group. Conclusions: The current study is a novel attempt to document the co-expression of multiple driver mutations in the NSCLC-adenocarcinoma phenotype. PD-L1 immunopositivity in NSCLC-adenocarcinoma was higher with EGFR mutation as compared to those of KRAS, ALK, ROS, and BRAF driver genes.

Keywords

Main Subjects