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Introduction

Lung cancer remains a primary cause of death in 
both males and females worldwide(American Cancer 
Society, 2015). In order to improve the survival rate 
of lung cancer patients, it is essential to identify the 
characteristics of lung cancer. Lung cancer has been 
classified into two categories, namely non-small cell lung 
cancer and small cell lung cancer. Recent improvements 
in chemotherapy and radiation therapy (Baas et al, 2006) 
have resulted in the former being further classified 
into adenocarcinoma, squamous cell carcinoma, and 
large cell carcinoma (Travis et al, 2015). In clinical 
practice, it is often difficult to precisely differentiate 
adenocarcinoma and squamous cell carcinoma in terms 
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of their morphological characteristics, thus requiring 
immunohistochemical evaluation. Cytodiagnosis is 
advantageous for the cytological evaluation of small 
cell carcinoma compared to histological specimen, often 
showing crushed small cell cancer cells. To obtain accurate 
diagnosis result, a combination of cytological evaluation 
and histopathological diagnosis is essential. However, 
the cell morphology of these three types of cancer cells 
varies. Here we focused on the automated classification 
technique of cancer types using cytological images. 
Among the four major types of carcinoma, the large 
cell carcinoma is the easiest to detect because of its cell 
morphology. We therefore concentrate on the classification 
of adenocarcinoma, squamous cell carcinoma, and small 
cell carcinoma that are sometimes confused with each 
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other in the cytological specimen.
In our previous studies (Teramoto et al, 2017; 

Teramoto et al, 2019), an automated classification 
scheme of lung cancer types in the cytology images using 
DCNN was developed. The original DCNN model was 
employed and trained using 15,000 cytological images, 
and the classification accuracy was found to be 71%. 
However, for clinical use, further improvement in the 
classification ability is necessary. As an improvement 
method, increase in the number of data used for training 
can be mentioned. The lung cytological specimen has a 
three-dimensional structure in which cells overlap each 
other, acquisition of images by a uniform scanning method 
such as a whole slide scanner is difficult, and observation 
by a conventional microscope is mainstream. Therefore, 
collection of many cytological images is more difficult 
than that of histopathological images.

Transfer learning is a technique known for improving 
the performance of deep learning (Ravishankar et al, 
2016). This is a method of diverting the majority of the 
deep learning architecture learned using a large number of 
natural images and performing another classification task. 
To further improve the accuracies, additional supervised 
classifiers (Amancio et al, 2014) have been utilized to 
support the DCNNs. In this study, we evaluated four 
pretrained DCNN architectures plus subsequent four 
supervised classifiers for comparison of classification 
accuracy of lung cancer tissue types.

Materials and Methods

Image Dataset
Cancer cells were collected from 55 cases by 

exfoliative or interventional cytology under bronchoscopy 
or CT-guided fine-needle aspiration cytology. The 
55 cases comprised 36 cases of adenocarcinoma, 14 
cases of squamous cell carcinoma, and five cases of 
small cell carcinoma. Final diagnosis was made in 
all cases via a combination of histopathological and 
immunohistochemical diagnosis. Specifically, biopsy 
tissues, simultaneously collected with cytology specimen, 
were fixed using 10% neutral buffered formalin, dehydrated, 
and embedded in paraffin. The 3-µm tissue sections were 
subjected to immunohistochemical analysis for some 
cases. Cancer lesions were immunohistochemically 
identified as adenocarcinoma if TTF-1 (8G7G3/1, DAKO, 
Glostrup, Denmark) and/or napsin A (IP64, Novocastra, 
Leica Biosystems, New Castle upon Tyne, UK) were 
positive and as squamous cell carcinoma if p40 (BC28, 
Roche Diagnostics, Basel, Switzerland) and/or cytokeratin 
5/6 (D5/16 B4, DAKO) were present. Positivity of 
neuroendocrine markers including chromogranin A (rabbit 
polyclonal, DAKO), synaptophysin (MRQ-40, Roche), 
and CD56 (MRQ-42, Roche) was suggestive of small 
cell carcinoma. Immunohistochemical procedures were 
performed using the iView DAB Universal Kits run on 
Ventana Benchmark Ultra (Roche) as described elsewhere 
(Tsukamoto et al., 2017).

The cytological specimens were prepared with a 
liquid-based cytology (LBC) system using BD SurePath 
liquid-based Pap Test (Beckton Dickinson, Durham, NC, 

USA) and were stained using the Papanicolaou method 
(Teramoto et al, 2017). Some LBC specimens were 
immunostained like histological sections. Using a digital 
still camera (DP70, Olympus, Tokyo, Japan) attached to a 
microscope (BX51, Olympus) with ×40 objective lens, 82 
images of adenocarcinoma, 125 images of squamous cell 
carcinoma, and 91 images of small cell carcinoma were 
collected in JPEG format. The initial matrix size of each 
JPEG image was 2,040 × 1,536 pixels. Subsequently, 768 
× 768 pixels square images were generated by cropping 
and were further resized to 256 × 256 pixels. Duplicate 
768 × 768 pixels square images were cut from the original 
image to avoid overlap therefrom. Finally, they were 
resized to 256 × 256 pixels.

Data augmentation
DCNN training requires a large amount of data, as a 

small dataset may cause overfitting. To prevent overfitting, 
we augmented the training dataset using image processing. 
The microscopic images are direction invariant, and the 
sharpness of the target cell in each image varies according 
to the position of the focal plane of the microscope. 
Moreover, staining varies depending on the specimen, 
and color balance fluctuates by the automated white 
balance function. Therefore, image data were augmented 
by rotating, flipping, and filtering the original images as 
shown in Figure 1 (Teramoto et al., 2017).

First, images were flipped to obtain a twofold increase 
in the number of images. A Gaussian filter, with standard 
deviation of Gaussian kernel being three pixels, and a 
convolutional edge enhancement filter, with center weight 
5.4 and the eight surrounding weights of −0.55, were 
applied to the images. Then, images were rotated at 90°, 
180°, and 270°. Furthermore, color augmentation was 
applied by adding random RGB offsets to the images, 
generating images with different color balance. The 
number of images augmented by color adjustment was 
determined such that the total number of augmented 
images was the same for the three output classes.

Transfer learning using major DCNN models
DCNN shows excellent performance for image 

classification. In the recent ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC), CNN architectures 
compete to correctly classify objects. In the competition 
so far, several excellent DCNN architectures have been 
proposed. In this study, we compared the following 
four architectures originally trained to classify color 
photographs using ImageNet database and retrained them 
using cytological images to classify the lung cancer types 
(Ravishankar et al., 2016).

AlexNet
AlexNet was designed by the SuperVision group, 

consisting of Alex Krizhevsky, Geoffrey Hinton, and 
Ilya Sutskever (Krizhevsky et al., 2012). It significantly 
outperformed all the prior competitors and won the 
ILSVRC 2012. This network has a deeper structure 
compared with the conventional feed forward neural 
networks. It consists of five convolution layers, three 
pooling layers, and three fully connected layers as shown 
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with XEON CPU and NVIDIA Quadro P5000 for GPU, 
taking 10 h per dataset for training using the augmented 
images. Training was conducted using a mini-batch size 
of 32, optimization based on stochastic gradient descent, 
learning rate of 0.0001, and momentum of 0.9.

Inter-architectural agreements
Cohen’s kappa coefficients were calculated between 

every two architectures as described (Cohen, 1960).

Integration of additional supervised classifiers
The output value of each histological type drawn in 4 

DCNNs were utilized in additional classifiers, including 
Naïve Bayes, Support vector machine, Random forest, and 
Neural network, to further classify the lung cancer types to 
improve the classification accuracy using Orange software 
version 3.18 (Demsar et al, 2013). The parameters of these 
classifiers are listed in Table 3.

Results

Comparison of classification accuracy of DCNNs
For the classification of the three cancer types, 

four DCNN models were trained and evaluated using 
augmented data. Table 2 shows the confusion matrices of 
each DCNN model. From these results, the classification 
accuracy was found to be exceeded 70% in AlexNet, 
VGG16, and ResNet50, whereas as low as 66.8% in 
the case of Inception V3. The classification accuracy 
of VGG16 was the highest at 76.8%, approximately 
5% improvement compared with our previous method 
(Teramoto et al, 2017). Regarding each histological type, 
AlexNet was the best for adenocarcinoma and small cell 
carcinoma. On the other hand, VGG16 was the best for 
squamous cell carcinoma. 

Inter-architectural concordance was evaluated with 
Cohen’s kappa coefficients. All the combinations with 
Inception V3 revealed values less than 0.6 compared with 
other combinations that revealed values as high as 0.715 
± 0.035 between AlexNet and VGG16 (Table 4).

Correlation of morphology and prediction
Representative images of adenocarcinomas and 

the predicted results of four architectures are shown 
in Figure 3. Images with moderate sized cells/nuclei, 
single nucleoli, and tubular or papillary cell mass were 
identified as adenocarcinoma (Figure 3, A-D). On the other 
hand, images with small cells/nuclei (Figure 3E) were 
misjudged as small cell carcinoma, whereas images with 
larger cells/nuclei with rough nuclear matrix (Figure 3F) 
were misdiagnosed as squamous cell carcinoma. Images 

in Figure 2A.

GoogLeNet (Inception V3)
The winner of the ILSVRC 2014 was GoogLeNet 

developed by Google (Szegedy et al, 2015). The key 
feature of GoogLeNet is to introduce the small network 
called inception module. Several inception modules are 
connected together to go deeper as shown in Figure 2B.

VGG16
VGG16 was designed by Simonyan et al. in the Visual 

Geometry Group (Simonyan and Zisserman, 2015), and 
it showed excellent performance in the ILSVRC 2014. 
It consists of 13 convolution and pooling layers and 3 
fully connected layers as shown in Figure 2C. Because 
the architecture is simple and publicly available with the 
weight configuration, VGG16 has been used in many 
other applications (Bychkov et al., 2018; Qu et al., 2018).

ResNet50
ResNet won the ILSVRC 2015 developed by Kaiming 

et al. in the Microsoft research (He et al., 2016). It 
employed a residual structure that has shortcut connection 
to ease the training of deeper networks. Kaiming proposed 
several architectures with numerous network layers. In 
this study, we employed ResNet50 with 50 layers as 
shown in Figure 2D.

Transfer learning using pretrained networks
Based on the pretrained model of the above-mentioned 

four DCNNs trained using ImageNet, which is a 
database composed of a large number of natural images, 
retrain was performed using collected and augmented 
cytological images. For classification, we replaced the 
fully connected layers of the original DCNN models with 
three layers having 1024, 256, and 3 units (corresponding 
to adenocarcinoma, squamous cell carcinoma, and small 
cell carcinoma). The output was given by a Softmax layer. 
The parameters of the replaced layers were randomly 
initialized, and our fine-tuning was performed only for 
these layers.

Training and evaluation
By dividing the images randomly into three datasets, 

the classification performances of the four DCNN models 
were evaluated using three-fold cross-validation. Here, 
images of the same case were included in the same dataset. 
The number of cases and images of the three datasets are 
listed in Table 1.

The DCNN training and evaluation were implemented 
using the Keras 2.12 and TensorFlow 1.4 on a computer 

SET 1 SET 2 SET 3 Total number of 
original imagesOriginal Augmented Original Augmented Original Augmented

Adenocarcinoma 23 5000 27 5000 25 5000 75
Squamous cell carcinoma 44 5000 40 5000 46 5000 130
Small cell carcinoma 26 5000 26 5000 32 5000 84
Total 289

Table 1. Number of Images in Each Dataset for Cross Validation
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with focused and unfocused cells might be predicted as 
adenocarcinoma by AlexNet.

Squamous cell carcinomas (Figure 4) are characterized 
by Orange G prone colored keratinized cytoplasm in 
a well differentiated type. Cancer cells with larger and 
rougher nuclear matrix, multiple nucleoli, flat cell mass, 
and spindle cell morphology were correctly diagnosed 
as squamous cell carcinoma (Figure 4, A-C). Those 

with smaller cell/nuclei were misjudged as small cell 
carcinoma (Figure 4E). Three-dimensional cell mass or 
prominent nucleoli (Figure 4, D-F) were misclassified as 
adenocarcinoma.

Small isolated cells with granular nuclear matrix 
were identified correctly as small cell carcinoma (Figure 
5, A-C). Planar or three-dimensional cell masses were 
identified as squamous cell carcinoma or adenocarcinoma, 

Figure 1. Data Augmentation Methods

AlexNet Predicted Total Overall accuracy
ADC SqCC SmCLC

Actual ADC 57 (76.0%) 10 (13.3%) 8 (10.7%) 75 (100%)
SqCC 37 (28.5%) 75 (57.7%) 18 (13.8%) 130 (100%)
SmCLC 1 (1.2%) 2 (2.4%) 81 (96.4%) 84 (100%) 73.7%

GoogLeNet (InceptionV3) Predicted Total Overall accuracy
ADC SqCC SmCLC

Actual ADC 46 (61.3%) 17 (22.7%) 12 (16.0%) 75 (100%)
SqCC 36 (20.0%) 80 (61.5%) 14 (10.8%) 130 (100%)
SmCLC 13 (15.5%) 4 (4.8%) 67 (79.8%) 84 (100%) 66.8%

VGG16 Predicted Total Overall accuracy
ADC SqCC SmCLC

Actual ADC 56 (74.7%) 12 (16.0%) 7 (9.3%) 75 (100%)
SqCC 25 (19.2%) 89 (68.5%) 16 (12.3%) 130 (100%)
SmCLC 3 (3.6%) 4 (4.8%) 77 (91.7%) 84 (100%) 76.8%

ResNet50 Predicted Total Overall accuracy
ADC SqCC SmCLC

Actual ADC 56 (74.7%) 14 (18.7%) 5 (6.7%) 75 (100%)
SqCC 30 (23.1%) 88 (67.7%) 12 (9.2%) 130 (100%)
SmCLC 5 (6.0%) 9 (10.7%) 70 (83.3%) 84 (100%) 74.0%

ADC, adenocarcinoma; SqCC, squamous cell carcinoma; SmCLC, small cell lung carcinoma

Table 2. Confusion Matrix of Classification Results by Fine-Tuned DCNN Architectures
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respectively (Figure 5, D-F), even though being obtained 
from a same patient.

Practically, some adenocarcinomas and squamous 
cell carcinoma could not be distinguished correctly and 
would be compromised as non-small cell carcinomas. 
Figure 6 shows the resembling cases for adenocarcinoma 
and squamous cell carcinoma. Figure 6A has planar 
distribution and wide cytoplasm but has peripheral nuclei 
and prominent single nucleoli. Immunohistochemical 
analysis revealed this case as an adenocarcinoma. Figure 
6B, squamous cell carcinoma being positive for p40, was 
morphologically misjudged as adenocarcinoma by all four 
architectures.

Some cases show variable cell morphologies even 
from one patient. Figure 7 shows Orange G colored cells, 
a characteristic of squamous cell carcinoma, whereas the 
second and the third cells are not typical of squamous 

cell carcinoma, being misjudged by all four DCNNs. 
Immunohistochemical analysis confirmed the cell type 
as squamous cell carcinoma.

Effect of additional machine learning classifiers
After processing the image classification with 

pre-trained DCNNs, additional machine learning 
techniques were further employed to improve the accuracy 
(Table 5). Neural network revealed best overall accuracy 
of 78.9% among 4 classifiers. 

Discussion

In this study, we have evaluated four fine-tuned 
DCNNs for the classification of lung cancer types. 
AlexNet, VGG16, and ResNet50 revealed that more than 
73% of cases were classified correctly compared with our 
previous result (71.1%), whereas Inception V3 showed 
the worse figure of 66.8%. The combinations with the 
former three architectures showed better concordance 

Figure 2. Architectures of Deep Convolutional Neural Networks and Subsequent Classifiers Used in this Study

Parameter Value
Naïve Bayes - -
Support vector 
machine

Regression loss epsion 0.1
Cost 1.00
Kernel Polynomial

Random forest Number of trees 20
Neural network Number of Hidden layers 2 (100-100)

Activation function tanh
Optimizer SGD
Number of iteration 300

Table 3. Parameters of the Used Classifiers

AlexNet Inception V3 VGG16 ResNet50

AlexNet – 0.565±0.040 0.715±0.035 0.654±0.037

Inception 
V3

– – 0.543±0.041 0.548±0.041

VGG16 – – – 0.672±0.037

ResNet50 – – – –
–, not applicable

Table 4. Kappa Coefficients between Every 2 Fine-
Tuned DCNNs.
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revealing good kappa values of more than 0.6 compared 
to the combinations with Inception V3 providing values 
less than 0.6 (i.e., 0.5s).

Figure 3. Representative Images of Adenocarcinoma. v and x represent correct- and mis-classifications, respectively. 
Papanicolaou staining. Ad, adenocarcinoma; Sq, squamous cell carcinoma; Sm, small cell carcinoma

Figure 4. Representative Images of Squamous Cell Carcinoma. v and x represent correct- and mis-classifications, 
respectively. Papanicolaou staining. 

Patel et al., (2017) recently reported the accuracy of 
subtyping of non-small cell lung carcinomas. Fine-needle 
aspiration cytology allowed tumor typing in 83 (77.6%) 
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Figure. 5. Representative Images of Small Cell Carcinoma. v and x represent correct- and mis-classifications, 
respectively. Papanicolaou staining.  

Naïve Bayes Predicted total Overall accuracy
ADC SqCC SmCLC

Actual ADC 59 (78.7%) 11 (14.7%) 5 (6.7%) 75 (100%)
SqCC 30 (23.1%) 92 (70.8%) 8 (6.2%) 130 (100%)
SmCLC 5 (6.0%) 13 (15.5%) 66 (75.6%) 84 (100%) 75.1%

Support vector machine Predicted total Overall accuracy
ADC SqCC SmCLC

Actual ADC 44 (58.7%) 26 (36.7%) 5 (6.7%) 75 (100%)
SqCC 15(11.5%) 110 (84.6%) 5 (3.8%) 130 (100%)
SmCLC 0 (0%) 14 (16.7%) 70 (83.3%) 84 (100%) 77.5%

Random forest Predicted total Overall accuracy
ADC SqCC SmCLC

Actual ADC 51 (68.0%) 19 (25.3%) 5 (6.7%) 75 (100%)
SqCC 17 (13.1%) 107 (82.3%) 6 (4.6%) 130 (100%)
SmCLC 2 (2.4%) 14 (16.7%) 68 (81.0%) 84 (100%) 78.2%

Neural network Predicted total Overall accuracy
ADC SqCC SmCLC

Actual ADC 54 (72.0%) 17 (22.7%) 4 (5.3%) 75 (100%)
SqCC 21 (16.2%) 98 (75.4%) 11 (8.5%) 130 (100%)
SmCLC 4 (4.8%) 4 (4.8%) 76 (90.5%) 84 (100%) 78.9%

ADC, adenocarcinoma; SqCC, squamous cell carcinoma; SmCLC, small cell lung carcinoma

Table 5. Confusion Matrix of Classification Results by Additional Classifiers

cases (36 adenocarcinomas and 47 squamous cell 
carcinomas) out of 107 cases. Twenty-four non-small 
cell carcinomas could not be further classified and 
remained as “non-small cell lung carcinoma, not otherwise 
specified.” Twelve out of 14 cases were diagnosed 

immunohistochemistry using biopsy samples. Wallace and 
Rassl (Wallace and Rassl, 2011) also reported comparable 
result to distinguish adenocarcinoma and squamous 
cell carcinoma among non-small cell carcinomas. 
The overall accuracy of classification measured using 



Tetsuya Tsukamoto et al

Asian Pacific Journal of Cancer Prevention, Vol 231322

Figure 6. Two Resembling Non-Small Cell Lung Carcinomas, v and x Represent Correct- and mis-classifications, 
respectively. Papanicolaou and immunostaining for TTF-1 and p40.  

Figure 7. Non-Resembling Images of Squamous Cell Carcinomas from a Same Patient. v and x represent correct- and 
mis-classifications, respectively. Papanicolaou and immunostaining for TTF-1 and p40. 

immunohistochemical methods of simultaneously 
obtained biopsy samples was 37 out of 48 cases (75.0%). 
Nizzoli et al. (Nizzoli et al., 2011) also reported that 85% 
cases (158 cases) were categorized as adenocarcinoma 
or squamous cell carcinoma, whereas 15% cases were 
categorized as non-small cell carcinoma with significant 
concordance of histology and cytology (kappa = 0.755). In 
the current analysis, DCNNs were forced to identify one of 
the three categories, namely adenocarcinoma, squamous 
cell carcinoma, and small cell carcinomas, and were not 
allowed to stay in non-small cell carcinomas. Although, 
it is not feasible to compare our results with the data from 
previous literatures, the classification performance of 
the current fine-tuned DCNNs may be considered to be 
comparable with human cytopathologists.

Zusman-Harach et al., (1991) stated that the presence 
of glands, cell balls, branching or papillary structures, 
cylindrical cells, and nuclear grooving were major 

diagnostic indicators for adenocarcinoma. On the other 
hand, the major cytological indicators for squamous cell 
carcinomas were the presence of keratin and eosinophilic 
spindle cells with glassy or laminated cytoplasm. Sigel 
et al., (2011) reported that non-small cell carcinomas 
were distributed into 69% definitive, 19% favored, and 
12% unclassified categories as evaluated with diagnostic 
certainty by the individual pathologist. Definitive 
diagnoses for adenocarcinoma were rendered when tumor 
cells featured obvious glandular features or cytoplasmic 
mucin. For the identification of squamous cell carcinoma, 
keratinization was considered as a reliable morphologic 
feature. Images that were correctly identified by all four 
DCNNs tended to show such typical morphology tubular 
or papillary cell mass, moderate size of nuclei, single 
nucleoli with fine nuclear matrix. However, smaller 
or larger nuclei show difficulties for correct diagnosis. 
Intermediate cell types between adenocarcinoma and 
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squamous cell carcinoma, usually diagnosed as non-small 
cell carcinoma, revealed difficulties in identification as 
expected. However, a combination of several images 
would help more accurate diagnosis even though there 
are difficulties in each single figure. It is notable that 
DCNNs could recognize both single cell morphology 
and shape of cancer cell mass solely from images without 
prior knowledge and experience of biology and pathology. 
Thus, automated classification should be performed with 
multiple sampling of cellular images from one patient.

Transfer learning has recently attracted the attention of 
many researchers. Deniz et al., (2018) utilized AlexNet and 
VGG16 to diagnose breast cancer images. The evaluation 
results showed that the transfer learning produced better 
results than the deep feature extraction and support vector 
machine classification. For the comparison of various 
DCNN architectures, Too et al., (2019) compared VGG16, 
Inception V4, ResNet with 50, 101 and 152 layers and 
DenseNets with 121 layers to evaluate diseased images of 
plant leaves; DenseNet showed consistent improvement 
of accuracy without overfitting. The CNN methodology 
has been getting established; however, there have not 
been enough research publications for the comparison of 
different architectures. Although weight optimization of 
the artificial neural network would be performed during 
the learning, architecture itself should be determined 
empirically before the analysis (Shirakawa et al, 2018).

Subsequent use of additional classifiers following 
DCNNs improved the overall accuracy. McAllister et 
al., (2018) revealed that ResNet-152 with Support vector 
machine with RBF kernel detected food items with 99.4% 
accuracy. Wu et al., (2020) showed better performance in 
brain tumor segmentation in MRI images using DCNN 
in combination with Support vector machine. To analyze 
time domain vibration signal, Xu et al., (2019) converted 
the signals to gray scale images, which was classified with 
CNN model and further analyzed with multiple Random 
forests. This ensemble learning proved better performance. 

In this study, we have evaluated and compared four 
automated classification schemes for lung cancers in 
microscopic images using fine-tuned DCNNs. Typical 
morphology was identified correctly by all four schemes. 
But poorly differentiated carcinomas showed difficulties 
in concordance between architectures. Certain DCNNs 
tended to judge certain histological types. Additional 
machine learning classifiers proved better performance 
compared to DCNNs alone. The study results warrant 
further analysis to develop a method to comprehensively 
classify cells and arrays of cells. So, we hope our method 
would help assisting cytological examination in lung 
cancer diagnosis.
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