
Asian Pacific Journal of Cancer Prevention, Vol 23 1107

DOI:10.31557/APJCP.2022.23.4.1107
Gene Mutations Are Risk Factor for MDS Transformation into AML

Asian Pac J Cancer Prev, 23 (4), 1107-1116

Introduction

Myelodysplastic syndromes (MDS) is defined as a 
group of clonal hematopoietic stem cell (HSC) disorders 
with characteristics of ineffective hematopoiesis and 
dysmorphic bone marrow, which clinically presents with 
cytopenia(s) and an increased risk of transformation into 
acute myeloid leukemia (AML) (1982; Hong and He, 2017; 
Mohammad, 2018; Cazzola, 2020). Several epidemiologic 
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Meta-Analysis

studies have shown that MDS predominantly affects 
males and increases with age (Rådlund et al., 1995; Aul 
et al., 2001; Rollison et al., 2008; Neukirchen et al., 2011; 
Ma, 2012; Sultan and Irfan, 2016). For example, a study 
conducted by Sekeres et al. found that the median age of 
MDS diagnosis in United States is approximately 71 years 
(Sekeres et al., 2008). Additionally, according to Rollison 
et al., the prevalence of MDS is around 7 to 35 cases per 
100,000 persons (Rollison et al., 2008). However, due to 
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the heterogenous clinical presentations of MDS, ranging 
from asymptomatic to severe clinical phenotypes, a 
significant proportion of patients remain undiagnosed and 
there may be an underestimation or underreporting of the 
total global burden of MDS (Cogle et al., 2011; Pavlu et 
al., 2011; Zeidan et al., 2013; Cazzola, 2020). 

The pathogenesis and pathophysiology of MDS 
is astoundingly very complex and currently remained 
incompletely understood. However, it is now widely 
accepted that the core of MDS pathophysiological 
process is self-renewal and selective growth advantage 
of a somatically mutated clonal HSC displacing normal 
HSC through clonal expansion (Zeidan et al., 2013; 
Cazzola, 2020; Fontenay et al., 2021). This process 
occurs through sequential accumulation of genetic and 
epigenetic mutations in the clonal HSC (Bejar et al., 
2011; Fontenay et al., 2021). Indeed, somatic mutations 
in individual genes are observed to be very frequent in 
MDS with around 80% of MDS patients harboring at least 
1 somatic mutation (Bejar et al., 2011; Malcovati et al., 
2013; Papaemmanuil et al., 2013; Haferlach et al., 2014; 
Kwok et al., 2015). Cytogenetic abnormalities are also 
common in MDS but were only observed in around 50% of 
MDS patients (Kawankar and Rao Vundinti, 2011; Kwok 
et al., 2015). Thus, gene mutations may play a bigger role 
than cytogenetic abnormalities in MDS development and 
clinical presentations.

Some of the commonly mutated genes in MDS have 
role in RNA splicing machinery which excise introns to 
create mature messenger RNA transcripts such as serine/
arginine-rich splicing factor 2 (SRSF2), splicing factor 
3B subunit 1 (SF3B1), and U2 auxiliary factor protein 1 
(U2AF1) (Wu et al., 2012; Dolatshad et al., 2015; Li et 
al., 2018; Hosono, 2019). Meanwhile, other genes such as 
additional DNA methyltransferases 3A (DNMT3A), sex 
combs-like 1 (ASXL1), tet methylcytosine dioxygenase 
2 (TET2), enhancer of zeste 2 (EZH2), isocitrate 
dehydrogenases 1 (IDH1), and isocitrate dehydrogenases 
2 (IDH2) are epigenetic regulators through DNA 
methylation and histone modification (Fontenay et al., 
2021). Other mutated genes commonly observed in 
MDS is runt-related transcription factor 1 (RUNX1) that 
produces transcription factor protein. The majority of 
these genes (SF3B1, SRSF2, ASXL1, DNMT3A, TET2, 
and RUNX1) can be found mutated in more than 10% of 
MDS patients (Papaemmanuil et al., 2013; Haferlach et 
al., 2014). 

Currently, the prognostic values of genetic mutations 
in MDS are still uncertain, resulting in genetic mutations 
not being used as a risk stratification criteria such as in 
International Prognostic Scoring System revised version 
(IPSS-R) or World Health Organization Classification-
Based Prognostic Scoring System (Kantarjian et al., 2008; 
Greenberg et al., 2012; Arber et al., 2016).Several studies 
have been conducted in an attempt to elucidate the role 
of individual genetic mutations in MDS (Papaemmanuil 
et al., 2013; Bejar, 2017; Bejar, 2018). Nevertheless, 
it is actually difficult to determine which genetic 
mutations and their respective roles in pathogenesis of 
MDS, clinical phenotypes, and AML progression due to 
overlapping mutations in MDS and occurrence of these 

mutations in other malignancy such as de novo AML 
and myeloproliferative neoplasm (MPN) (Yoshida et al., 
2011; Couronné et al., 2012; Kwok et al., 2015). Due to 
the uncertainties in the role of these genes in MDS, we 
aim to conduct a systematic review and meta-analysis in 
population of adult MDS patients to elucidate the role of 
these genes in AML transformation risk. 

Materials and Methods

Method
The protocol for this systematic review and 

meta-analysis was registered in the international 
prospective register of systematic reviews (PROSPERO) 
with ID number of CRD42020218581. Furthermore, 
this systematic review and meta-analysis followed 
recommendations from Preferred Reporting Items for 
Systematic Reviews and Meta-Analysis (PRISMA). 

Ethical Approval
As this study was a systematic review with 

meta-analysis using studies and grey literatures published 
on medical databases, no ethical approval was necessary 
for this study.

Search Strategy
Systematic literature search was conducted by 

all authors up to October 2021 on: (1) PubMed, (2) 
EBSCOhost, (3) Scopus, (4) JSTOR, and (5) grey 
literatures. Hand-searching for relevant articles was also 
conducted. Any difference in search results and opinions 
were resolved by consensus. The following keywords with 
their synonyms and combinations using Boolean operators 
were applied to all database: “myelodysplastic syndrome”, 
SRSF2”, “SF3B1”, “U2AF1”, “ASXL1”, “DNMT3A”, 
“TET2”, “IDH1”, “IDH2”, “RUNX1”, “acute myeloid 
leukemia progression”, and “leukemia free survival”. 

Eligibility Criteria
The inclusion criteria were: (1) studies with design of 

prospective cohort or retrospective cohort; (2) studies with 
adult population aged ≥18 years diagnosed with MDS of 
any classification; (3) studies that include MDS patients 
with any gene mutations of “SRSF2”, “SF3B1”, “U2AF1”, 
“ASXL1”, “DNMT3A”, “TET2”, “IDH1”, “IDH2”, and 
“RUNX1”; (4) studies that have control group of MDS 
patients without the respective gene mutations; (5) studies 
that have acute myeloid leukemia transformation risk or 
leukemia free survival as outcomes; and (6); English or 
Indonesian language as primary language. The exclusion 
criteria were literature review, case report, non-human 
studies, and articles with inadequate data to calculate 
hazard ratio. No publication year restrictions were applied 
for the literature search. 

Data Extraction 
Data extracted from literatures include name of first 

author, year of publication, country of origin, MDS 
diagnosis criteria, sample size, median follow-up, 
proportion of male patients, median age, median 
hemoglobin, median leukocyte, median absolute 
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as low, moderate, and high heterogeneity respectively. 

Results

Study Selection
A total of 334 articles were initially retrieved from 

literature search (Figure 1). Out of these, a total of 51 
duplicates were excluded, leaving a total of 283 unique 
articles. Subsequently, screenings of titles and abstracts 
excluded 259 irrelevant articles. Citation searching was 
also conducted which yielded 8 articles. Hence, only 32 
articles were available for full-text review. However, 4 
articles were not in English language, 2 articles were non-
human studies, 6 articles did not have outcome of AML 
progression, and 6 articles did not have adequate data for 
hazard ratio calculation. Thus, we identified 14 articles 
to be used for this systematic review and meta-analysis 
(Dicker et al., 2010; Malcovati et al., 2011; Walter et al., 
2011; Thol et al., 2012; Wu et al., 2013a; Lin et al., 2014; 
Hong et al., 2015; Kang et al., 2015; Jung et al., 2016; 
Tefferi et al., 2017; Xu et al., 2017; Gangat et al., 2018; 
Lin et al., 2018; Yan et al., 2021).

Characteristic of Selected Studies
The studies used were published between year 2010 

and 2018 (Table 1). The studies were conducted in North 
America, Europe, and Asia. The majority of the studies 
diagnosed MDS based on WHO classification. The sample 
size ranged from 58 patients to 634 patients. Median 
duration of follow up ranged from 18.5 months to 66 
months. All studies only included adult patients with mean 
or median age ranging from 54 to 74 years old. 

neutrophil count, median platelet, median blast, 
percentage of patients with aberrant karyotype, and 
type of gene mutations. Hazard ratios (HRs) with their 
95% confidence intervals (Cis) for AML transformation 
outcome were extracted. If there is literature that reported 
the outcome with both univariate analysis and multivariate 
analysis, then multivariate analysis data will be preferred. 
Data extraction was conducted by two authors. 

Quality Assessment
All selected literatures were independently assessed 

by two authors for risk of bias using Newcastle - Ottawa 
Quality Assessment (NOS).(Ottawa Hospital Research 
Institute, n.d.) Discrepancies in the judgement using NOS 
Scale was discussed between all authors of this review to 
reach a consensus. 

Statistical Analysis
All statistical analysis was performed using Review 

Manager application version 5.4 (The Nordic Cochrane 
Center, Copenhagen). Generic inverse variance method 
was used to calculate combined HRs and their 95% CIs. All 
statistical analysis was conducted using random-effects 
model. Statistical significance was defined as p value of 
<0.05 and 95% CI not overlapping the value of 1. Slight 
differences may be observed between original numbers 
and forest plot results in some studies due to conversion 
towards Review Manager 5.4 format (Forero et al., 2019; 
Rinaldi et al., 2020). 

Heterogeneity of the results was evaluated using the 
Cochrane standard statistical I². I2 values of less than 25%, 
between 25% to 50%, and above 50% were considered 

Figure 1. Study Selection Process Flowchart 
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Risk of Bias Assessment
The risk of bias assessment was independently 

conducted in each study by two authors using Newcastle-
Ottawa scale (Table 2). 

Pooled Analysis of Splicing Factors Gene Mutations
Literature search for studies that include splicing 

factors gene mutation yielded 11 studies to be used. 
From these, 6 studies included U2AF1, 7 studies included 
SRSF2, 5 studies included SF3B1, and 2 studies included 
ZRSR2 (Figure 2). 

From the 6 U2AF1 studies used for pooled analysis, 
there were no statistically significant difference between 
U2AF1 mutant and U2AF1 wildtype MDS patients (HR: 
1.41; 95% CI: 0.95–2.07, p=0.08, I2=0%). The majority 
of studies did not find any association between U2AF1 
mutation with AML transformation except the study by 
Wu et al (Wu et al., 2013b). 

The SRSF2 study by Tefferi et al. reported the 
highest HR for AML progression (HR, 6.90; 95% CI, 
2.76–17.21) (Tefferi et al., 2017). In total, there are 5 
studies indicating that SRSF2 mutation cause higher 
risk of AML transformation. Meanwhile, the studies by 
Hong et al. and Yan et al. did not find any association 
between SRSF2 and AML transformation (Hong et al., 
2015; Yan et al., 2021). Pooled hazard ratio showed that 
patients with SRSF2 mutation had higher risk of leukemia 
transformation (HR 2.62; 95% CI: 1.54-4.45; p= .0004). 
However, there is high heterogeneity with I2 of 55%.  

The pooler HR for SF3B1 was 0.48 (95% CI: 
0.22–1.06, p=0.07, I2=55%). We then conducted an 
analysis excluding the study by lin et al. since the study 
contributed solely to the heterogeneity (Lin et al., 2018). 
Excluding the study resulted in HR of 0.35 (95% CI: 
0.19-0.65; p= 0.0009; I2= 0%). 

Pooled Analysis of Epigenetic Regulator Mutations
Only mutations of DNMT3A and IDH genes were 

associated with risk of AML transformation (Figure 
3). Mutations of TET2, ASXL1, and EZH2 were not 
associated with AML transformation. A total of 5 studies 
were available for DNMT3A with pooled HR of 2.73 
(95% CI: 1.43-5.21; p= 0.08; I2: 67%). Meanwhile, the 
pooled HR for IDH genes was smaller (HR: 2.92; 95%CI: 
1.21-7.06; p=0.02; I2:65%)

Pooled Analysis of RUNX1 Mutation
RUNX1 is a transcription factor gene which is 

commonly mutated in MDS. From our pooled analysis, 
patients with RUNX1 mutation were associated with 
AML transformation (HR: 1.85; 95%CI: 1.11-3.09; 
p=0.02; I2:38%).

Funnel Plot
We use funnel plot to evaluate the publications bias 

of the studies qualitatively (Figure 5). From the funnel 
plots, there are low indication of publication bias due to 
symmetricalness of the funnel plots. 
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Figure 2. Forest Plot of the Association between RNA Splicing Machinery Gene Mutations and AML Transformation. 

Figure 3. Forest Plot of the Association between DNA Methylation Gene Mutations and AML Transformation 
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Discussion

MDS has a heterogenous clinical course. Some 
patients are asymptomatic while others have MDS that 
can rapidly transform into leukemia. The heterogeneity 
of MDS shows that there is a complex pathogenesis and 
pathophysiology of MDS. Indeed, currently there are still 
many aspects of MDS which are not fully elucidated such 
as genetic mutations and bone marrow microenvironment.

Our first understanding of MDS comes from 
recognition of cytogenetic abnormalities which are present 
in at least 50% of MDS (Kelly et al., 2002). Recently, 
from genetic studies of MDS, it is observed that somatic 
mutations in individual genes are very frequent in MDS 

with around 80% of MDS patients harboring at least 1 
somatic mutation (Bejar et al., 2011; Papaemmanuil et 
al., 2013; Haferlach et al., 2014; Kwok et al., 2015). 
Despite the explosion of information regarding mutation 
in MDS, determining which mutations that contribute to 
the disease itself is difficult since many mutations do not 
have pathogenic consequences (passenger mutations) 
such as due to aging hematopoietic stem cells (Welch et 
al., 2012; Vogelstein et al., 2013). Nevertheless, mutations 
with significant consequences tend to occur frequently in 
MDS. Currently, it is known that genes affecting RNA 
splicing (SRSF2, SF3B1, U2AF1) and affecting epigenetic 
regulation (TET2, ASXL1, EZH2, DNMT3A) are the 
most commonly mutated (Wu et al., 2012; Dolatshad et 

Figure 4. Forest Plot of the Association between RUNX1 Mutation and AML Transformation

Figure 5. Funnel Plots for Publication Bias. A, Splicing Factors Gene Mutations; B, Epigenetic Regulators; C, RUNX1 
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al., 2015; Hosono, 2019). These mutations are likely to 
occur randomly. 

Molecular genetic testing has now become a 
standard in many cancers to determine prognosis and 
treatments. For example, AML guideline from European 
LeukemiaNet incorporate genetic mutation testing such as 
ASXL1, TP53, FLT3, and RUNX1 as part of its prognosis 
stratification (Döhner et al., 2017).  In contrast, the 
prognosis risk stratification of MDS such as from revised 
international prognostic scoring system (IPSS-R) which 
is used by many clinicians does not include molecular 
genetic testing despite the recurrently mutated genes 
shown above (Greenberg et al., 2012; Fenaux et al., 2021). 
The reason for this is mainly due to still unclear role of 
the genetic mutations for MDS. However, just like other 
malignancies, it is only a matter of time before molecular 
genetic testing is incorporated into prognosis. 

RNA splicing machinery genes such as SRSF2, 
SF3B1, U2AF1 play an important role in messenger 
RNA maturation (Wang et al., 2019). In this study, forest 
plot in SRSF2 mutation has statistically significant result 
with overall HR is 2,57 (95% Cl: 1.57- 4.20, P .0002, 
I2 =59%). Thus, this indicates that MDS patients with 
SRSF2 mutation have higher risk for AML transformation. 
However, the heterogeneity is moderate which may 
be caused by studies with different methodology and 
follow-up. SRSF2 mutation is present in approximately 
15% of MDS patients (Thol et al., 2012). According to a 
study, MDS patients with SRSF2 mutation have higher 
dysplasia of the granulocytic lineage when compared 
with patients with SF3B1 mutations (Wu et al., 2012) . 
On the other hand, SF3B1 mutation is associated with 
ring sideroblast MDS type. In this study, we did not find 
an association between SF3B1 mutations with risk of 
AML transformation. Indeed, a study by Damm et al. 
showed that this mutation was not associated with poor 
prognosis (Damm et al., 2012). Of interest is that in the 
pooled analysis, the HR for SF3B1 almost crosses 1 
which may indicate that SF3B1 mutation can lower risk 
of AML transformation but due to the heterogeneity in 
the pooled analysis, this effect was not evident. If the 
meta-analysis was conducted using fixed effect models, 
the pooled analysis would show that patients with SF3B1 
mutation had lower HR for AML progression. However, 
due to differences in methodologies of the studies used, 
we decided to use random-effects model. For U2AF1 
mutation, we did not find an association with AML 
transformation. Out of 6 studies used for pooled analysis, 
only the study by Wu et al. that showed association 
between U2AF1 mutation with AML transformation (Wu 
et al., 2013b). 

DNA methylation can influence gene expression 
without DNA sequence alteration through methylation 
(Yang et al., 2015; Xu et al., 2017; Zhang et al., 2020). 
Current knowledge shows that DNA methylation is 
mediated by three DNA methylation enzymes, consisting 
of DNMT1, DNMT3A, and DNMT3B (Okano et al., 1998; 
Yang et al., 2015). 

Based on numerous observations, DNA methylation 
is highly suspected to have important role in cancer and 
may have a role as future targeted therapies. Aberrant 

DNA methylation for example, were observed in many 
malignancies (Yang et al., 2015; Wong et al., 2019; Zhang 
et al., 2020). Furthermore, loss-of-function DNMT3A 
mutation is very commonly observed in hematological 
malignancies, including MDS (Yang et al., 2015; Brunetti 
et al., 2017). However, if DNMT3A loss-of-function 
is widely prevalent, which suggested hypomethylation 
state, why does  many hematological malignancies can be 
treated by DNA hypomethylating agents (Garcia-Manero 
and Fenaux, 2011; Al-Ali et al., 2014; Yun et al., 2016). 
This discrepancy may suggest that there are still currently 
unknown molecular mechanisms. 

DNMT3A is one of DNA methyltransferase that 
has role in DNA methylation process. Alterations in 
this gene have been implicated in the pathogenesis of 
MDS but underlying mechanism remains unknown.  In 
this study, DNMT3A mutation has higher risk for AML 
progression with overall HR 6.87 (95% CI: 2.80–16.87, P 
<0.0001, I2=55%). A study of aberrant DNA methylation 
in MDS showed a significant transformation to leukemia 
(Liang et al., 2019).  However, it was not stated either 
the process was specifically caused by DNMT3A gene 
mutation or other related mutations. Meanwhile, other 
study showed about 20% of Total AML have somatic 
DNMT3A heterozygous mutation (Graubert and Walter, 
2011). In consequence, there is an association that makes 
DNMT3A mutation act as a poor outcome indicator in 
MDS patients that could worsen into AML. For other 
epigenetic regulator genes (TET2, ASXL1, and EZH2), 
we did not find association with AML progression risk. 

We also observed that patients with transcription factor 
RUNX1 mutation were associated AML transformation 
(HR: 1.85; 95%CI: 1.11-3.09; p=0.02; I2:38%). RUNX1 
mutation often occurs in the later stage of MDS (Menssen 
and Walter, 2020). It is possible that RUNX1 mutation 
is one of the mutations needed for AML transformation. 

Based from the data of this systematic review and 
meta-analysis, MDS patients with mutations in SRSF2, 
DNMT3A, IDH, and RNX1 should be monitored more 
actively than those without mutations due to higher risk 
of AML transformation. 

Study Limitations
Limitation of this study is that the interaction of gene 

mutations with each other was not assessed. It is unknown 
that the AML progression is due to combination of some 
mutations or independently certain mutation. Moreover, 
in this study, there were different definitions of outcome 
measured. 

In conclusion,this study found that some of the MDS 
gene mutations may potentially be used as markers for 
predicting risk of AML transformation. Based from 
our analyses, MDS patients with mutation of SRSF2, 
DNMT3A, and RUNX1 have higher risk of AML 
transformation. Additional analysis of gene mutations 
interactions is urgently needed. 
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