Aspirin Restores Radiosensitivity in Cervical Cancer Cells by Inducing Mitotic Catastrophe through Downregulating G2/M Effectors

Document Type : Research Articles

Authors

1 Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, Kolkata, India.

2 Department of Medical Physics, Chittaranjan National Cancer Institute, Kolkata, India.

Abstract

Background/Aim: Compromised cell-cycle checkpoint is a major obstacle for rendering radiotherapeutic success of radioresistant cells. Aspirin (ASA), an anti-inflammatory agent was repurposed previously for improving radiotherapy by limiting radiation toxicity. However, the underlying mechanism was unclear. The present study aimed to identify the mechanism of ASA mediated reversal of radioresistance in cervical cancer cells. Methods: Radioresistant subline SiHa/RR was developed from parental cervical squamous carcinoma cell line SiHa by chronic fractionated irradiation (IR). The radioresistance property of SiHa/RR was confirmed by clonogenic assay. Alteration in cell-cycle by ASA was determined by flow cytometry. ASA induced nuclear damage as consequence of mitotic catastrophe was confirmed by microscopic observation. The interaction between ASA and G2/M regulators was explored through in silico docking analysis and expressional change of them was affirmed by western blotting. Immunofluorescence study to examine Aurora Kinase A localization in presence and absence of ASA treatment was conducted. Finally the radiosensitizing ability of ASA was verified by apoptotic parameters (flow cytometrically and by western blotting). Result: Higher colony forming ability of SiHa/RR compared to SiHa became restrained upon ASA (5μM) treatment prior to IR. Flow cytometric analysis of ASA treated cells showed increased G2/M population followed by enlargement of cells displaying giant multinucleated morphology; typical characteristics of mitotic catastrophe. Underlying noteworthy mechanisms involved decreased expressions of G2/M regulatory proteins (Cyclin B1, CDK1, Aurora A Kinase, pAurora A Kinase) in IR/ASA along with inhibiting nuclear localization of Aurora Kinase A in SiHa/RR. Docking results also supported the findings. Prolonged treatment (12 h) with ASA led to apoptosis by altering expressions of Bcl2, Bax and Cytochrome C; which was achieved through the event of mitotic catastrophe. Conclusion: This work established that G2/M arrest and mitotic catastrophe can be considered as the principle mechanism of restoration of radiosensitivity in SiHa/RR by ASA pretreatment.

Keywords


Volume 23, Issue 11
November 2022
Pages 3801-3813
  • Receive Date: 06 June 2022
  • Revise Date: 01 August 2022
  • Accept Date: 01 November 2022
  • First Publish Date: 01 November 2022