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Introduction

Carcinomas are malignant neoplasms that originate 
from epithelial cells and are surrounded by specialized 
stroma that coordinate with cancer cells to control disease 
progression (Sahai et al., 2020). Cancer associated 
fibroblasts (CAFs) have been acknowledged as important 
modifiers of carcinogenesis in tumor microenvironment 
(Wang et al., 2017; Fozzatti and Cheng, 2020). They can 
be mediated through either direct heterotypic cell-cell 
contacts (Mao et al., 2021) or diffusible molecules, such 
as inflammatory mediators, cytokines or chemokines 
(Xing et al., 2010; Adekoya and Richardson, 2020). 
Most of these molecules are primarily proliferative and 
participate in promoting carcinogenesis (Greten and 
Grivennikov, 2019). Transforming growth factor-beta 
(TGF-β), Interleukin(IL)-6 and IL-8, secreted from 
CAFs, which are typically secreted by CAFs, form the 
tumor-promoting microenvironment in oral squamous cell 
carcinoma (OSCC) progression, including proliferation, 
angiogenesis, and invasion (Ayob and Ramasamy, 2018). 
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Thus, the interaction between CAFs and OSCC cells is 
essential for cancer progression (Bae et al., 2014; Fiori 
et al., 2019). 

Angiopoietin-like proteins (ANGPTLs) have emerged 
as an important regulator of lipid and glucose metabolism 
as well as insulin sensitivity (Hassan, 2017). It is well 
known that ANGPTL3 plays a crucial role in regulating 
triglyceride and cholesterol mainly via reversible 
inhibition of lipoprotein lipase activity and vascular 
endothelial growth factors (Hassan, 2017; Carbone et 
al., 2018). In particular, ANGPTL3 activity is one of the 
most important factors in cancer growth and invasion 
through signaling pathways, such as mitogen-activated 
protein kinase (MAPK) signaling cascades (Yu et al., 
2011). Overexpression of ANGPTL3 has been observed 
in OSCC, hepatocarcinoma, and ovarian cancer (Koyama 
et al., 2015; Carbone et al., 2018). The potential role 
of ANGPTL3 has been demonstrated in OSCC, as 
evidenced by the fact that ANGPTL3 knockdown can be 
occurred in cell cycle arrests at G1 phase by upregulating 
cyclin-dependent kinase inhibitors and thus reduced 
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cell proliferation and growth (Koyama et al., 2015). 
Although ANGPTL3 have been studied in OSCC, the 
role of ANGPTL3 between OSCC and CAFs has yet to 
be clearly defined. 

In this study, we examined secreted factors derived 
from OSCC cells. Among them, ANGPTL3 has the 
most secreted factors derived from oral cancer cells. 
Thus it is involved in fibroblastic differentiation, such as 
myofibroblastic phenotypes. Our findings are the first to 
demonstrated a role of ANGPTL3 in the differentiation 
of CAFs, and thus showing that it may have potential in 
targeting tumor-promoting microenvironments.

Materials and Methods

Reagents and antibodies
Antibodies for α-smooth muscle actin (α-SMA; 

#M0851, 1:100, mouse monoclonal, Dako, Glostrup, 
Denmark), fibroblast activation protein (FAP) (#ab28244, 
1:500, abcam, Cambridge, UK), and β-actin (#BS6007M, 
1:5000, Bioworld Technology, St. Louis, MN) were used. 
Horseradish peroxidase (HRP)-conjugated anti-mouse or 
anti-rabbit secondary antibodies were obtained from Cell 
Signaling Technology (Beverly, MA, USA). Recombinant 
human ANGPTL3 (rhANGPTL3; #3829-AN, R&D 
systems, Minneapolis, MN, USA) was used. 

Cell cultures
Previously described immortalized human gingival 

fibroblasts by hTERT-transfection (hTERT-hNOFs) were 
used (Illeperuma et al., 2015). The hTERT-hNOFs were 
cultured in a F medium, which is made up of Dulbecco’s 
modified Eagle medium (Gibco BRL, NY, USA) and 
Ham’s F12 (Gibco BRL) mixed in a 3:1 ratio and added 
with 10% fetal bovine serum (FBS) and 1% penicillin/
streptomycin. Among the OSCC cells, we maintained 
HSC2 cells in a F medium. The other OSCC cells (YD cell 
lines) were cultured in a F medium, added with 1 ×10-10 M 
cholera toxin, 0.4 mg/mL hydrocortisone, 5 μg/mL insulin, 
5 μg/mL transferrin, and 2 × 10-11 M triiodothyronine 
(T3). Normal human epidermal keratinocytes (HEK) 
were obtained from Yonsei University College of 
Dentistry. The cells had been ethically approved by the 
Institutional Review Board (IRB) of the Yonsei Dental 
Hospital (IRB-2-2009-0002) (Illeperuma et al., 2015). 
HEK cells were grown in a KGM medium (#CC-3107, 
Lonza, Walkersville, MD, USA). For co-culturing with 
OSCC cells with fibroblasts, we used the transwell 
inserts containing 0.4 μm pore size filters. OSCC cell 
and fibroblasts were seeded in upper and lower chambers, 
respectively. All cells were cultured in an incubator at 
37°C containing 5% CO2, and the growth medium was 
changed every 3 days.  

RNA extraction and Real time PCR, RT-PCR
Total RNA was extracted using the RNeasy plus mini 

kit (Qiagen, Hilden, Germany), and then cDNA was 
synthesized using RT&GO-MasterMix (MP Biomedicals, 
CA, USA) according to the manufacturers’ protocols. 
The information of primer sequences is shown in Table 
1. The reaction mixture was subjected to 30 amplification 

cycles 40 s at 94°C, 58 s at 48°C and 40 s at 72°C. The 
products were loaded in 1-1.5% agarose gel using StaySafe 
Nucleic Acid Gel Stain (Real Biotech Corporation, Taipei, 
Taiwan). Real-time PCR were performed with SYBR 
Green I Master (Roche Applied Science, Mannheim, 
Germany) and analyzed with LightCycler 480 Software 
(Roche Applied Science). Both RT-PCR and real-time 
PCR results were normalized to GAPDH.

Microarray dataset analysis
Two microarray datasets were used for this study. These 

datasets were acquired from a previously published public 
database (Jung et al., 2010)(Gene Expression Omnibus, 
GEO [GSE18532]; GSM461591 and GSM461592). The 
sample types of datasets are RNA of YD10B OSCC 
cells cocultured with CAF and NOF, and monocultured 
YD10B OSCC cells. We selected 835 overlapping genes 
from the three datasets. All three datasets were tested on 
the OpArray Human 35K platform. Overlapping genes 
(n = 711) were selected for greater than a 1.5-fold increase 
(n = 708) and less than a 0.5-fold decrease (n = 3). 

Protein extraction and western blotting
The hTERT-hNOFs (3 × 106) were cultured in a P 

medium added with 0.2% FBS with or without 50 ng/mL 
and 100 ng/mL of rhANGPTL3 in 100-mm dishes. In 
brief, cells were lysated with a lysis buffer (Cell Signaling 
Technology) and then harvested. After lysing, protein 
lysates were incubated for 30 min on ice. The lysates were 
centrifuged at maximum speed (>15,000 rpm) for 10 min. 
The lysates were boiled for 5 min in a sodium dodecyl 
sulfate (SDS) sample buffer and separated in 10% SDS-
PAGE. The proteins were transferred membranes and then 
blocked in 5% milk in phosphate-buffered saline solution 
(PBS) with Tween 20 for 1 hour. The membranes were 
immunoblotted with appropriate primary antibodies at 4°C 
overnight and then applied with horseradish peroxidase-
conjugated anti-mouse (#7076S) or anti–rabbit (#7074S) 
secondary antibodies (Cell Signaling Technology). Protein 
detection was used by chemiluminescence (GenDEPOT, 
Barker, TX, USA). 

Statistical analysis
Statistical analyses were carried out using SPSS 

version 20 (SPSS Inc., Chicago, IL, USA). All experiment 
was performed more than three times. The results 
were reported as mean ± standard deviation (SD). The 
differences between control and experimental groups were 
analyzed using Mann-Whitney U tests. A value of p < 0.05 
was considered statistically significant.

Results

Screening CAF-stimulating factors released from OSCC 
cells

To understand what factors secreted from OSCC cells 
can induce surrounding fibroblasts, we did a microarray 
dataset analysis as a preliminary study. The previously 
published datasets were utilized (Jung et al., 2010). We 
extracted sample dataset types from the RNA of YD10B 
OSCC cells cocultured with CAF, and then we compared 
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in cocultured OSCC cells, compared with monocultured 
and cocultured OSCC cells with NOF (Figure 1). Among 
them, we identified the soluble factors, including growth 
factors, cytokines, and chemokines. Four soluble factors 
(ANGPTL3, WNT2B; wingless-type MMTV integration 
site family member 2B, IL-16, TGF-α; transforming 
growth factor-alpha) were identified as candidates 
(Table 2) that could induce CAFs surrounding OSCC in 
a paracrine manner.

Overexpression of ANGPTL3 and IL-16 mRNA in OSCC 
cells grown with fibroblasts

Quantitative real-time PCR was performed to identify 
good concordance with previous microarray data. 
ANGPTL3 (25.3, 31.2 fold and 23.0, 23.9 fold) and IL-16 
(3.61, 3.09 fold and 3.53, 8.23 fold) exhibit significantly 
upregulated multifold changes in monocultured and 
cocultured OSCC cells (YD10B and YD38) with hTERT-
hNOFs, compare to monocultured and cocultured HEK 
cells with hTERT-hNOFs (Figure 2). To confirm that two 
candidates were indeed derived from oral cancer cells, we 
re-performed the quantitative real-time PCR in a variety 
of oral cancer cells. ANGPTL3 was increased in all oral 
cancer cells (Figure 3A), whereas IL-16 was upregulated 
in most oral cancer cells, excepting HSC2 cells (Figure 

them to YD10B OSCC cells cocultured with NOF and 
monocultured YD10B OSCC cells. As results, 708 
overlapping genes were upregulated (≥1.5-fold increase) 

Genes Sense Antisense
IL-6 ATGAACTCCTTCTCCACAAG GAAGAGCCCTCAGGCTGGAC
IL-8 AGACAGCAGAGCACACAAGC TTGGGGTGGAAAGGTTTGGAG
α-SMA GGCCGAGATCTCACTGACTA AGTGGCCATCTCATTTTCAA
Gro-α/CXCL1 TGTGAAGGCAGGGGAATGTA TTAAGCCCCTTTGTTCTAAGCC
ANGPTL3 TCTCCAGAGCCAAAATCAAG AAGACCATGTCCCAACTGAA
IL16 GCTGTGCCTTCCATCTTCTA AGCTGAGTCTTCGTTGGATG
WNT2B TTGGAGTGGTAGCCATAAGC CTTGTTGAACGCTGACTGTG
TGF-α TTCGCTCTGGGTATTGTGTT GACCCAGAATGGCAGACAC
p16 TTCCTGGACACGCTGGT CAATCGGGGATGTCTGA
p21 GACTTTGTCACCGAGACACC GTCCACATGGTCTTCCTCTG
GAPDH GAAGGTGAAGGTCGGAGT GAAGATGGTGATGGGATTTC

Table 1. Primer Sequence Used for RT-PCR and Real-Time PCR.

Cancer with CAFs 
vs cancer with NOF

1178 711

Cancer with CAFs 
vs cancer only

124

(Log2 transformed)

Figure 1. Microarray dataset analysis in OSCC cells cocultured with CAFs. RNA profiling of YD10B OSCC cells 
cocultured with CAFs. Heat-map shows the relative RNA expression levels of 711 genes (>1.5 fold-increase and 
<0.5 fold-decrease) overlapping in microarray datasets (log2 transformation). The venn diagram shows 708 upregu-
lated genes and 3 downregulated genes out of a total of 711 genes. 
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3B). All oral cancer cells, including OSCC cells (YD9, 
YD32, HSC2) and tongue mucoepidermoid cancer cells 
(YD15) secrete ANGPTL3, which is most secreted factor. 

ANGPTL3 induces CAF-like phenotypes in stromal 
fibroblasts

To examine if ANGPTL3 can induce CAF-like 
phenotype in hTERT-hNOFs, we first identified 
tumor-promoting cytokines and general markers of 
CAFs. After treatment with 100 ng/mL rhANGPTL3, 
hTERT-hNOFs increased Gro-α/CXCL1 and IL-6, but 
there was no tendency to express IL-8 mRNA (Figure 4A). 

Furthermore, mRNA expression of α-SMA was increased 
by treatment with 100 ng/mL of ANGPTL3 (Figure 4A) 
and the CAF markers α-SMA and FAP were increased by 
treatment with rhANGPTL3 (Figure 4B). Collectively, 
ANGPTL3 released from oral cancer cells can induce a 
CAF-like phenotypes in stromal fibroblasts, as an increase 
in tumor-promoting cytokines and CAF markers. 

Discussion

A cancer cell’s interaction with its microenvironment 
significantly influences its formation and progression 

Gene symbol Updated gene name Cancer with CAFs (Intensity) 
vs Cancer with NOFs

Cancer with CAFs (Intensity) 
vs Cancer only (mono)

#1 #2

ANGPTL3 Angiopoietin-like 3 2.27 2.65 2.02

WNT2B Wingless-type MMTV integration site family, member 2B 2.51 2.23 1.78

IL16 Interleukin 16 (lymphocyte chemoattractant factor) 2.03 1.83 1.66

TGF-α Transforming growth factor, alpha 1.71 1.81 1.67

Table 2. Growth Factors, Cytokines, and Chemokines in OSCC Cells Co-Cultured with CAFs
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Figure 2. The Secreted Candidates Derived from the OSCC Cells. Candidates for microarray datasets 
analysis (4 soluble factors such as ANGPTL3, WNT2B, IL-16 and TGF-α) were confirmed by real-time PCR. 
Coculture was performed for 24 hours. ANGPTL3 and IL-16 had elevated expression in monocultured and cocultured 
OSCC cells (YD10B and YD38) with hTERT-hNOFs, compare to monocultured and cocultured OSCC cells with 
HEK.
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(Emon et al., 2018). Some of the most abundant 
components in the tumor microenvironment are the CAFs 
that are activated and reprogrammed in response to secreted 
factors and cytokines that tumor cell produce (Fozzatti and 
Cheng, 2020). These can remodel the extracellular matrix 
(ECM) structure and then guide cellular invasion (Winkler 
et al., 2020). Multiple mechanisms can contribute to CAF 
activation. Among them, TGF-β, epidermal growth factors 
(EGF), and platelet-derived growth factors (PDGF) are 
known to promote their activation. In addition, tumor 
derived extracellular vesicles and various inflammatory 
modulators, such as IL-1, IL-6 and nuclear factor-kappa B 
(NF-ĸB), can facilitate differentiation into CAFs through 
autocrine- and paracrine loops (Erez et al., 2010; Sanz-
Moreno et al., 2011; Linares et al., 2020; Bao et al., 2021). 
Direct contact between cancer cells and normal fibroblasts 

(Strell et al., 2019), as well as physical changes in the ECM 
(Calvo et al., 2013; Avery et al., 2018), also contributed in 
CAF activation. Although CAFs have been studied, more 
studies are required to clarify their interaction with OSCC. 
Therefore, this study aims to investigate OSCC-derived 
secreted factors in order to confirm whether they induce 
conversion of normal fibroblast into CAFs.

Our study used hTERT-hNOFs as a replacement for 
CAFs because they exhibit CAF-like characteristics when 
cocultured with OSCC cells (Kim et al., 2019). To assess 
what factors induce these characteristics, we analyzed 
GEO datasets. We identified ANGPTL3 as one of the 
most significantly upregulated genes in the microarray 
dataset of overlapping genes. ANGPTLs are secreted 
glycoproteins structurally similar to the angiopoietins. 
To date, ANGPTL members have been identified, from 
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Figure 3. ANGPTL3 and IL-16 were Derived from a Variety of Oral Cancer Cells. The mRNA expression of (A) 
ANGPTL3 and (B) IL-16 was confirmed in such oral cancer cells as mucoepidermoid carcinoma cell (YD15) and 
OSCC cells (HSC2, YD9 and YD32), using SYBR Green, normalized with GAPDH mRNA and compared to HEK 
cells (*p < 0.05 by Mann-Whitney U test). 
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Figure 4. ANGPTL3 Induces a Myofibroblastic Phenotype in Stromal Fibroblasts. The hTERT-hNOFs were treated 
with rhANGPTL3 (50 ng/mL, 100 ng/mL) to identify tumor promoting cytokines and CAF markers. (A) The mRNA 
expression of cytokines (CXCL1/Gro-α, IL-6, and IL-8) and CAFs marker (α-SMA) were detected with RT-PCR. (B) 
Protein expression of CAFs marker (α-SMA and FAP) was detected by western blot. Control is treatment with PBS.

ANGPTL1 to ANGPTL8 (Santulli, 2014). ANGPTLs 
are widely expressed from many tissues, including the 
livers, vascular system, and the hematopoietic system. 
They play multi-biological roles in inflammation, lipid 
metabolism, and angiogenesis. Among them, ANGPTL3 
is a main regulator of lipoprotein metabolism. ANGPTL3 
expression is upregulated in hepatocellular carcinoma (Yu 
et al., 2011; El-Shal et al., 2017) and oral cancer (Koyama 
et al., 2015). Consistent with previous findings, our results 
show that ANGPTL3 is overexpressed in OSCC cell lines. 
Furthermore, ANGPTL3 is significantly overexpressed in 
monocultured and cocultured OSCC cells (YD10B and 
YD38) with hTERT-hNOFs, compare to monocultured 
and cocultured HEK cells with hTERT-hNOFs. It has 
been reported that ANGPTL3 plays an important role in 
angiogenesis, and metastasis. According to a previous 
report (Zhu et al., 2015), cancer cells synthesize and 
secrete ANGPTL3 protein to promote angiogenesis 
and to create a suitable microenvironment for cancer 
cell growth. However, the role of ANGPTL3 in tumor 
microenvironment has remained elusive as previous 
reports have only focused on cancer. To address these 
limitation, we focused on the veiled roles of ANGPTL3 
in tumor environment, showing that it contributes to CAF 
differentiation. 

Signals derived from diverse cancer cells 
or microenvironmental conditions regulate CAF 

heterogeneity, and various internal cell populations in 
CAFs can facilitate cancer development and progression 
(Bu et al., 2019). CAFs can be phenotypically divided two 
sub-phenotypes, such as myofibroblastic and senescent 
phenotypes (Prime et al., 2017). Myofibroblasts primarily 
express the α-SMA protein and usually give rise to 
CAFs. Several different markers have been widely used 
to identify this phenotype, including α-SMA, PDGF 
receptor-β, Fibroblast-specific protein (FSP)/S100A4, and 
FAP (Prime et al., 2017). To determine whether ANGPTL3 
converts fibroblasts into CAF following rhANGPTL3 
treatment, we identified α-SMA and FAP CAF markers, 
as well as tumor-promoting cytokines Gro-α/CXCL1 
and IL-6. Treatment with rhANGPTL3 led to increased 
expressions of Gro-α/CXCL1 and IL-6, α-SMA and FAP 
in hTERT-hNOFs. These findings indicate that ANGPTL3 
can induce phenotypes such as CAFs and thereby may 
facilitate tumor progression. We further investigated 
Gro-α/CXCL1 and IL-6 secretion levels following 
rhANGPTL3 treatment, but there were no ANGPTL3-
induced trends seen in hTERT-hNOFs (data not shown). 
Given a previous study showing that OSCC can induce 
senescent phenotypes close to fibroblast (Kim et al., 
2019), we also identified mRNA expression of senescence 
marker, p16 and p21, that had not been detected (data not 
shown). These results suggest that ANGPTL3-stimulated 
fibroblasts have myofibroblastic phenotypes similar to 
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traditional phenotypes instead of senescent phenotypes. 
Taken together, ANGPTL3 released from oral cancer 

cells can induce transformation of stromal fibroblasts into 
CAF-like phenotypes. However, further detailed study 
is still needed to fully illuminate the mechanism behind 
ANGPTL3’s regulation in fibroblasts. In conclusion, our 
study reports the first evidence that ANGPTL3 plays a 
crucial role in the tumor microenvironment by inducing 
CAF. Therefore, ANGPTL3 holds promise for CAF-
targeted therapy, especially in the treating CAF-rich 
tumors. 
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