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Introduction

Chromium (Cr) is a transition metal, natural element. 
Chromium is the 21st most abundant element in Earth’s 
crust. Cr is found in soil, rocks and living organisms. It 
may have various oxidation states, from -2 to +6, but most 
of these states are too unstable to exist in any significant 
quantities. The two valence states of Cr are stable: trivalent 
chromium (Cr (III)) and hexavalent chromium (Cr (VI)) 
(Wilbur et al., 2012). Depending on the pH value of the 
solution, chromium can occur primarily as Cr (III) or 
Cr (VI) (Unceta et al., 2010). Hexavalent Cr (VI) and 
trivalent Cr (III) can be interconverted (Sharma et al., 
2008). Chromium exposure to human is widespread as it is 
used in many industries including stainless steel welding, 
chromium plating and ferrochrome manufacturing. 
Chromium is also occurred in the environment as airborne 
particles from automotive catalytic converters (Salnikow 
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and Zhitkovich, 2008). The Cr (VI) compounds have a 
wide range of applications and are used as pigments for 
textile dyes, paints, inks and plastics, corrosion inhibitors, 
leather tannins and wood preservatives (Urbano et al., 
2012). All Cr (VI) used for industrial goals produced from 
Cr (III) contained in chromite ores (Ferreira et al., 2019).

The greatest Cr (VI) exposure to human is in the 
chemical, metallurgical and chromite industries, due to 
skin contact and inhalation of chromium particles as 
dust or vapors. In addition, significant exposure occurs 
during welding, casting and cutting of stainless steel and 
other chrome metals, and alloys, as in these cases Cr 
(VI) can be distinguished as a by-product (IARC, 2012). 
The public, especially those living in close proximity 
to the chromate industry, is exposed to chromium and 
its derivatives when inhaling chromium-containing air 
or drinking contaminated water (Tumolo et al., 2020). 
In addition, Cr (VI) compounds are components of the 
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combustion exhaust gas and are contained in cigarette 
smoke (Williams et al., 2017). Building destruction is an 
additional source of environmental pollution as Cr (VI) 
compounds are present as impurities in cement (Urbano 
et al., 2012).

Cr (III) compounds are inherently harmless and widely 
used as dietary supplements (Jeejeebhoy, 1999), although 
their positive health effects have been questioned by the 
European Food Safety Agency (EFSA, 2014). Currently, 
Cr (III) is considered non-carcinogenic due to insufficient 
evidence of its carcinogenicity to humans and animals. 
According to the International Agency for Research on 
Cancer (IARC) and the United States Environmental 
Protection Agency (EPA), the compounds Cr (VI) are 
classified as human carcinogens of Group 1 and Group 
A (Chen et al., 2019a), respectively. In fact, Cr(VI) 
compounds exposure has numerous negative health 
effects, mainly on the skin and respiratory system. It 
should be noted that the International Agency for Research 
on Cancer (IARC), National Toxicology Program (NTP) 
classified Cr (VI) compounds as pulmonary carcinogens 
(IARC, 1990; IARC, 2013; Report on Carcinogens, 2014).

The different toxicity of Cr (III) and Cr (VI) can be 
explained in terms of their physico-chemical properties. 
Specifically, their ability to penetrate biological membranes 
and ultimately cause intracellular damage is determined 
by their size, structure, and charge. In physiological 
pH Cr (VI), it exists mainly as chromate anions (CrO 
4 2-). Being isostructural sulfate and phosphate anions, 
chromate anions released from Cr(VI) compounds are 
easily transported through cell membranes using an anion 
transport system (O’Brien et al., 2003; Zhitkovich, 2011). 
In contrast, the larger size and octahedral structure of the 
ions Cr (III) do not allow them to use this transport system 
(Mamenko and Portiannyk). Very little of the insoluble salt 
Cr (III) is absorbed by cells, mainly phagocytosis. Poorly 
water-soluble chromates with a particle size of less than 
5 μm can also be phagocytic and will gradually dissolve 
in an intracellular medium (IARC, 2013). Thus, Cr (VI) 
can easily pass through the cell membrane via non-specific 
anionic sulfate / phosphate carriers. Cr (III) is able to pass 
through cell membranes by diffusion or phagocytosis, 
although at much lower levels than Cr (VI) (Valko et al., 
2005; Stout et al., 2009).

The purpose of this review and meta-analysis is to 
critically assess the scientific evidence on the carcinogenic 
effects of chromium (Cr) and to determine whether there 
is currently sufficient evidence to suggest that that there is 
a link between chromium levels in hair and blood serum 
and breast cancer in women.

Materials and Methods

Research on the relationship between heavy metal 
chromium and the risk of developing breast cancer has 
been searched in PubMed, EMBASE, Web of Science, 
Scopus among papers published between January 2000 
and September 2020. The search used the following 
terms (MeSH): breast cancer, women, trace elements, 
metals, chromium, chemically-induced, hair, serum using 
additional terms in Table 1. Language barrier - a selection 

of articles written in English was made. Also, a search 
was conducted in the reference lists of found articles to 
find additional research. The inclusion criteria included 
original articles describing epidemiological studies 
that assessed chromium levels in the body’s biological 
environment. The design of the studies included in the 
review was either case control or cohort research. The 
primary result in the studies included in the meta-analysis 
was breast cancer. 

The article assesses the relevance of research using a 
hierarchical approach based on the analysis of the name, 
abstract and full-text article. The overview flowchart 
showing the search and selection of literature is shown 
in Figure 1. A total of articles was found using the search 
terms mentioned above. The titles of these articles were 
first reviewed and the articles were deleted on the basis 
of inclusion and exclusion criteria. The abstracts of the 
selected articles were then considered; the full texts of the 
articles at the selection stage were examined if the right to 
research was uncertain based on the analysis of the reports. 

The inclusion criteria were as follows: cohort or 
case-control study; chromium was considered as a 
baseline effect and breast cancer as a result; original 
work in English, which were published and indexed 
from January 2000 to September 2020. The works had 
data for meta-analysis or dose-reaction analysis. The 
exclusion criteria were as follows: there was no link 
between the «dose-reaction» between chromium and the 
risk of breast cancer; cytological studies, animal studies, 
reviews, comments, abstracts; poor quality of the article, 
transverse studies.

According to the standard data extraction form, all 
data were extracted independently by three reviewers. 
The characteristics of the identified work were extracted. 
There are author’s name, year of publication, country of 
study, design (cohort study or case-control), number of 
participants in the study (number of cohort participants 
from cohort studies and number of participants in case 
groups and control groups in case-control studies), age 
(average age of group or age interval of participants), 
special groups identified in the study (stages of breast 
cancer, groups with mutation BRCA1), source of samples 
to measure chromium level (chromium serum/plasma, 
chromium in scalp hair), chromium concentration 
represented by average with standard deviation (Table 2).

Results

Recently, hair has become a fundamental biological 
material, an alternative to normal blood and urine, and 
organ biopsy. Human hair has become an attractive 
diagnostic material due to the ease of sampling (cut from 
the back of the head in several places near the skin 3-4 
cm of hair according to widely accepted standards, that 
is, hair without chemical perms and uncrushed). Only 
0.3 g of a hair sample is required. In addition, hair is a 
neutral and stable fabric material and can provide valuable 
information on the accumulation of trace elements, which 
is significantly more concentrated in hair than in other 
biological materials. Thus, hair analysis can provide 
an indirect screening test for physiological excess or 
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this method is that it allows monitoring of changes in 
the state of microelements in the body for a long period 
of time, much longer than in the case of blood samples. 
Currently, clinical studies have shown that the levels of 
some trace elements in the hair (especially potentially 
toxic elements) are highly correlated with pathological 
disorders. A growing body of data supports the theory 
that biochemical analysis of trace elements in hair can be 
useful in determining a possible risk of cancer progression 
or progression as a simple biomarker without the need for 
an invasive biopsy.

Table 2 presents the meta-analysis data on chromium 
levels in hair and blood of breast and healthy patients.

The determination of the microelement composition 
of IDC breast cancer tissue of women from “polluted” 
areas by atomic absorption spectrophotometry established 
that the ferrum content ranges from 60.24 to 69.63 ug/g 
(average 65.23±2.42 ug/g), copper from 2.83 to 9.11 
ug/g (average 5.98±1.62 ug/g), chromium from 1.45 to 
3.66 ug/g (average 2.56±0.62 ug/g), zinc from 2.84 to 
6.4 ug/g (average 4.44±0.99 ug/g), lead from zero to 0.6 
ug/g (average 0.11±0.089 ug/g) and nickel from 0.08 to 
0.52 ug/g (average 0.3±0.06 ug/g). In the second group 
of comparisons of women from the “ecologically clean” 
districts of Sumy Region, there were significantly lower 

deficiency of elements in the body. It is very important to 
note the influence of diet, gender, age of race, individual 
nutrition of the body, socio-economic conditions, 
chemical content in drinking water, geographical location 
and pollution of the environment on the content of 
chemical elements in the hair. The main advantage of 

Database PubMed

Retrieval time from 16 March 2020 to 31 May 2020

Search area Materials published between 2000 and 2020

Strategy Search terms #1 and #2 have been combined 
with the terms #3-#7

#1 Breast cancer Breast cancer, breast neoplasms

#2 Women Women, female

#3 Metals Metals, heavy metals

#4 Trace elements Trace elements

#5 Chromium Chromium

#6 Risk factor Risk factor, risk factors

#7 Сhemically 
induced

Chemically induced, chemically induced 
disorders

#8 Hair Hair

#9 Serum Serum, Blood Serum, Plasma

Table 1. Data Inclusion in the Study

Figure 1. Overview Flowchart Showing Search and Selection of Literature  
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levels of the microelements in tumor tissue. The amount of 
Fe ranges from 38.46 to 65.39 ug/g (average 49.56±5.81 
ug/g), Cu from 2.8 to 6.69 ug/g (average 5.06±1.01 ug/g), 
Zn from 1.89 ug/g to 5.38 ug/g (average 3.88±0.89 ug/g), 
Cr from zero to 6.1 ug/g (average 2.13±1.29 ug/g), Ni 
from 0.11 to 0.42 ug/g (average 0.28±0.067 ug/g) and Pb 
from zero to 0.19 ug/g (average 0.098±0.06 ug/g).

A statistically valid difference has been established 
between the accumulation of VM in two tissue groups 
(p <0.05). The total number of VMs in the first group 
ranges from 71.36 to 84.86 ug/g (average 78.63±3.47 
ug/g), and in the second group from 51.21 to 73.2 ug/g 

(average 61.02±5.77 ug/g). As we can see, the content 
of the above elements in the comparison group is 22.4% 
less than their number in the research tissue sample. 
Comparing the average VM levels in tumor tissue 
between the two groups, it is found that the amount of 
Fe in the comparison group is less by 24% (p=0.001), 
Cu – by 15.4% (p=0.002), Cr – by 16.8% (p=0.016), 
Zn – by 13.8% (p=0.005) This confirms the fact that 
with the injection of increased amounts of VM into the 
body of women with food and water, they are deposited 
in the tissues of macro-organism, including tumor tissue 
of breast.

0

0.5

1

1.5

2

2.5

3

3.5

Kilic E 2004 Pasha Q 2009 Joo N.S. 2009 Benderli Cihan, Y. 2011

Figure 2. Chromium Content in Hair in Women with Breast Cancer and Healthy  
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In the beast, without nidi and in distant metastases, the 
number of investigated elements was lower than in the 
primary tumor site. Correlation (r=0.62, p <0.05) between 
accumulation of VM in areas of neoplasia and the degree 
of malignancy of breast cancer was established. The fact 
of increase of microelements concentration in IDC breast 
cancer tissue with progression of carcinogenesis can be 
explained by violation of mechanisms of regulation of 
VM absorption and utilization by tumor cells. Increased 
anaplasia of cancer cells leads to inhibition of enzyme 
synthesis, which is involved in the maintenance of 
intracellular homeostasis of epitheliocytes. On the other 
hand, the increased number of microelements stimulates 
this imbalance by maintaining a sinister VM influence over 
the course of the malignant process. The determination 
of the elemental composition of the tumor tissue by 
atomic absorption spectroscopy shows the total amount 
of microelements per gram of the examined tissue, but it 
does not allow the investigation of the content of these 
elements in the different structural components of the 
tumor. In order to determine the spatial features of the 
localization of accumulation of microelements in the 
cancer tissue, a study of the chemical composition of IDC 
breast cancer was carried out, which was determined by an 
energy dispersion method on a raster electron microscope.

The process of determining the chemical composition 
of the breast tissue took place in two functional modes. 
There is local scanning of the surface of the drug at 
different levels of image enlargement and focal scanning, 
taking into account the microelemental composition in 
parenchymatous on stromal components of the tumor.

Figure 2 presents data on the chromium content of hair 
in women with breast cancer (blue) and healthy.

Experimental and epidemiological studies provide 
evidence that micronutrient levels in biological substrates 
may be associated with the risk of breast cancer. However, 
the relationship between the level of chromium in the 
blood serum and other biological substrates and breast 
cancer remains relatively unknown. The results show that 
exposure to heavy metals, including chromium, may affect 
blood lipid levels and some low molecular metabolites, 
which may in turn contribute to the development of breast 
cancer. In this study, Cr levels of blood serum were found 
to be 3.24 times higher in patients with breast cancer than 
in the control group.

Figure 3 presents data on blood chromium levels in 
women with breast cancer (blue) and healthy women.

According to meta-analysis, the relationship between 
exposure to Cr (VI) and mortality from breast cancer 
was not significant. The case-control study compared the 
levels of 15 trace elements in the women’s serum with 
breast cancer and healthy control to assess whether the 
levels of trace elements in the blood serum are related to 
the risk of breast cancer. Women with breast cancer had 
borderline high levels of Cr (p = 0.052) compared to the 
control group.

Discussion

In many studies since the 1930s, the relationship 
between chromium and cancer has been documented, 

with chromium-6 being a well-known human carcinogen, 
which may lead to various health problems during 
breathing and drinking water (Stohs et al., 2000).

Penetrate with the cells, Cr (VI) undergoes a series 
of metabolic changes and forms intermediate forms of 
Cr, including Cr (V) and Cr (IV), and finally recovers 
to Cr (III) (Zhitkovich, 2011; Zhitkovich, 2005). 
Studies have shown that solubility plays a key role in 
the carcinogenicity of Cr (VI), with the most potent 
carcinogens being water insoluble or «solid» compounds. 
The genotoxic mechanism of action of these particles 
involves the extracellular release of the soluble anion Cr 
(VI), which penetrates the cells and causes DNA damage 
(Xie et al., 2004). Molecular mechanisms involving 
oxidative stress and DNA damage are considered the 
main ways in which Cr (VI) manifests its carcinogenic 
effects. Active oxygen forms (AFCs) are formed during 
Cr (VI) reduction, resulting in oxidative DNA damage. 
Intermediate products Cr (V), Cr (IV) and final product Cr 
(III) cause Cr-DNA adducts and genomic changes (Stout et 
al., 2009). The formation of AFC causes cellular damage 
caused by Cr (VI), such as DNA damage, cytotoxicity 
and tumor development (Zhitkovich, 2011; Zhitkovich, 
2005; Chen et al., 2019b). It is known that Cr (III), (IV), 
(V) and (VI) produce intracellular AFCs. Ascorbic acid 
and glutathione are capable of detecting and reducing Cr 
(VI) to Cr (III), thereby producing free radicals such as 
hydroxyl radicals, and intermediate compounds damaging 
DNA such as Cr (V) and Cr (IV) (Zhitkovich, 2011; Chen 
et al., 2019b; Arita and Costa, 2009; Jomova and Valko, 
2011). It is recognized that Cr (VI) can cause DNA damage 
after intracellular repair by interacting with proteins and 
amino acids or directly with DNA, causing single-stranded 
and double-stranded DNA breaks (Zhitkovich, 2011; 
DeLoughery et al., 2015). Ovesen et al., (2014) presented 
evidence that prolonged exposure to low concentrations 
of Cr (VI) could cause DNA damage.

Numerous studies have shown that Cr (VI) is capable 
of altering gene expression and causing malignant tumors 
to develop using multiple epigenetic mechanisms (Ferreira 
et al., 2019). Wang et al., (2018) has found that chronic Cr 
(VI) exposure is associated with epigenetic dysregulation 
by increasing the expression of related histone-lysing 
methyltransferases, which play an important role in 
Cr (VI) -induced cell transformation. Another study 
confirmed that Cr (VI) can form protein-Cr-DNA adducts 
and inhibit tumor growth suppressor genes, as well as 
disrupt CTCF binding (11-zinc protein) and nucleosome 
distance (VonHandorf et al., 2018). Some epidemiological 
studies show that the carcinogenic potential of some toxic 
metals and chromium, including, may include epigenetic 
changes such as suppression of DNA repair and tumor-
suppressing genes (Ali et al., 2011; Kondo et al., 2006; 
Takahashi et al., 2005; Martinez-Zamudio and Ha, 2011). 
Systemic toxicity associated with Cr has been documented 
for the respiratory and lung system, gastrointestinal tract, 
skin and kidneys (Wilbur et al., 2012).

The main way of exposure to Cr, unrelated to 
professional activities, is to take a person inside. In 
occupationally exposed persons, Cr ingestion is most 
likely via inhalation or dermal absorption (Wilbur et al., 
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2012). Adverse effects on the respiratory tract and lungs 
caused by exposure to Cr include asthma, bronchitis and 
respiratory tract irritation (Khan et al., 2013), as well as 
ulcers and nasal septum perforation (Gibb et al., 2000). 
The effect of chromates and bichromates can be contact 
dermatitis (Lejding et al., 2018), skin burns, blisters and 
skin sores have also been noted. Gastrointestinal effects, 
including chronic dyspepsia, gastric ulcers and gastritis, 
have been reported after occupational exposure to Cr 
(Wilbur et al., 2012; Beyersmann and Hartwig, 2008). 
Prolonged exposure to this element may cause damage 
to the liver and kidneys, blood circulation and nervous 
system (Abdulrahman et al., 2012). In addition, according 
to the results obtained by White et al., (2020) in the Sister 
Study, the level of chromium in the nails is associated with 
the later age of menopause.

However, in a study conducted by Qayyum and Shah 
(2014), in which chromium levels were determined in 
hair from head cancer lung and healthy control, higher 
chromium concentrations were obtained in control group 
subjects than in lung cancer patients. Pasha et al., (2007), 
which used the same biological material, in contrast, found 
an inverse correlation: in cancer patients of different 
localizations, the level of this metal was higher. A number 
of studies have shown an increased risk of laryngeal cancer 
in workers exposed to hexavalent chromium compounds 
(Hall et al., 2020; Wozniak et al., 2016). It has also been 
established that Cr (VI) promotes the development of 
sinus and sinus cancer in workers exposed to occupational 
exposure (d’Errico et al., 2009). Although hexavalent 
chromium has been recognized as a human respiratory 
carcinogen, there is currently insufficient data to conclude 
conclusively that Cr (VI) is a peroral carcinogen. In 
saliva, acidic environment of stomach and blood Cr (VI) 
is restored to non-toxic Cr (III) (Proctor et al., 2002).

Meta-analysis conducted by Beaumont et al. (2008), 
showed an increase in stomach cancer risk (Relative 
Risk = 1.27; 1.18-1.38) in workers exposed to Cr (VI) 
and an increase in stomach cancer mortality (Rate 
Ratio = 1.82; 1.11-2.91) in chrome-contaminated 
regions. A meta-analysis conducted by Welling et al. 
(2015) also suggested that Cr (VI) has a carcinogenic 
effect in the development of stomach cancer. However, 
the case-control study O’Rorke et al., (2012) found no 
link between chromium levels in toenails and the risk 
of esophageal development of Barrett and esophageal 
adenocarcinoma.

Hara et al., (2010) has found that exposure to Cr 
(VI) can increase the risk of developing brain cancer and 
malignant lymphoma. According to Iaia et al., (2006), 
exposure to Cr (VI) increases mortality from lung 
cancer, bladder and pancreas cancer, myeloid leukemia 
and endocrine gland tumors among skin workers. Cr 
(VI) is thought to be associated with an increased risk 
of lung, laryngeal, bladder, kidney, testicles, thyroid and 
bone cancer (Donato et al., 2016). Deng et al., (2019) 
meta-analysis has provided evidence that Cr (VI) can 
cause cancer of the respiratory system, oral cavity and 
throat, prostate and stomach in humans. In addition, the 
incidence and risk of cancer death were largely related to 
the concentration of Cr (VI) in the air and the duration 

of exposure.
Metallurgical workers exposed to Cr (VI) have been 

found to have an increased incidence of bladder cancer 
(IARC, 1990). The study Wise et al., (2016) describes an 
increase in chromosome instability after chronic exposure 
to chromates, which is believed to be the mechanism 
of chromate-induced bladder cancer. Together, these 
results suggest that Cr (VI) may act as a carcinogen after 
ingestion.

Among the various types of cancer in women, breast 
cancer is the most common malignant neoplasm and breast 
cancer incidence is increasing in many countries (Chen et 
al., 2020; Golubnitschaja et al., 2016). For women, breast 
cancer was the most common cancer in 143 countries and 
the most common cause of cancer death in 112 countries 
(Fitzmaurice et al., 2019). In 2018, the breast cancer of 
women on incidence ranked first place in the world among 
oncological diseases – 24.2%, and first in the world in 
mortality – 15.0% (Ferlay et al., 2019).

A number of factors are linked to the development of 
breast cancer, including genetic background, diet, lifestyle, 
obesity, smoking, alcohol consumption and pollution 
(Florea and Büsselberg, 2011; Jevtic et al., 2010). Factors 
such as early menstruation and late menopause, old age, 
hereditary mutations, type 2 diabetes and prolonged 
exposure to estrogens correlate with increased risk of 
breast cancer. Among these known factors, increased 
estrogen levels are considered the main risk factor (Feng 
et al., 2018; Kulkoyluoglu-Cotul et al., 2019). Several 
studies have shown that some metals, such as Cd, Cu, Fe, 
Zn, Co, Cr, Pb, Al, Hg, Sn, As and Ni, activate estrogen 
receptors and stimulate estrogen gene expression and the 
proliferation of breast cancer cells (Lappano et al., 2017; 
Florea and Büsselberg, 2011).

Revealing the imbalance of the main elements in 
patients with breast cancer compared to healthy people can 
serve as a vital biomarker for early diagnosis of malignant 
breast cancer. Experimental and epidemiological studies 
provide evidence that micronutrient levels in biological 
substrates may be associated with the risk of breast cancer. 
However, the relationship between the level of chromium 
in the blood serum and other biological substrates and 
breast cancer remains relatively unknown.

The results of Li et al., (2020) show that exposure to 
heavy metals, including chromium, can affect blood levels 
of lipids and some low-molecular metabolites, which in 
turn may contribute to the development of breast cancer. 
In this study, serum levels of Cr were found to be higher 
in patients with breast cancer compared to the control 
group by a factor of 3.24.

According to meta-analysis Deng et al. (2019) the link 
between exposure to Cr (VI) and mortality from breast 
cancer was not significant. In a study, the case-control 
of Ding et al., (2015) compared serum levels of 15 trace 
elements in women with breast cancer and healthy control 
to assess whether levels of trace elements in the blood 
serum are related to the risk of breast cancer. Women with 
breast cancer had borderline high levels of Cr (p = 0.052) 
compared to the control group.

Quantitative elemental analysis of hair from scalp 
women with stage III breast cancer and control group 



Gulnara Batyrova et al

Asian Pacific Journal of Cancer Prevention, Vol 234000

was used by Kilic et al., (2004) to detect a possible link 
between breast cancer and chromium level. A comparison 
of the mean chromium content of breast cancer patients 
with the control group showed a significant increase in 
chromium content (p <0.05) in patients with breast cancer.

In a study by Raju et al., (2006) chromium concentration 
was higher (p<0.05), Wilcoxon rank criterion) in breast 
cancer than in normal tissue. Excess micronutrient 
levels observed in breast cancer may be the cause or 
consequence of breast cancer. A possible mechanism 
for the development of breast cancer is that elevated 
levels of Cr could lead to the formation of free radicals 
or other active oxygen forms (ROS) that cause changes 
in DNA, producing genetic changes. On the other hand, 
elevated concentrations of elements in breast cancer 
tissues may also be a consequence of cancer. Tumors, due 
to uncontrolled and rapid growth, consume significant 
amounts of essential nutrients, including trace elements. 
The result is increased blood supply of tumors and 
increased concentration of elements in tumors.

Sarita et al., (2012) research has provided evidence 
that serum Cr levels have been reduced (P<0.005) in 
patients with breast cancer compared to control group. 
Most microelements exhibit a distribution different 
from normal, as evidenced by large values of dispersion, 
standard error, and asymmetry.

The Pasha et al., (2010) study found that the average 
level of Cr did not differ significantly in scalp hair 
samples in three groups: women with malignant breast 
lesions, women with benign breast tumours and healthy 
women. However, the distribution of the level of Cr by 
quartile revealed its maximum spread in the scalp hair 
of groups with malignant and benign neoplasms of the 
breast. In addition, strong correlation coefficients have 
been established between Co and Cr, Cd and Cr in the hair 
from the scalp of women with malignant breast tumors, 
while Cr and Pb showed a strong correlation in hair from 
the scalp of women with benign breast tumors.

The “case-control” study conducted by Wu et al. 
(2006), compared serum levels of 13 microelements in 3 
groups: women with breast cancer, women with benign 
breast tumors and healthy control. The level of chromium 
in the serum of women of the first two groups (with breast 
tumours) was significantly higher (p<0.01) compared to 
the group of healthy women. In a “case-control” study 
conducted by Joo et al., (2009) in Korea, the levels of Cr 
and other sixteen trace elements in the scalp hair of women 
with breast cancer and women from the control group 
were compared. There were no statistically significant 
differences in chromium concentration in the hair between 
the two groups. 

In the study Naidu et al., (2019) trace elements in the 
serum of breast cancer patients and healthy control were 
determined by the method SRXRF (Synchrotron radiation-
based X-ray fluorescence, X-ray fluorescence-based 
synchrotron radiation). The results revealed significantly 
reduced levels of Cr in serum in patients with breast cancer 
compared to healthy subjects (p <0.05). 

Choi et al., (2018) study examined the level of 
chromium and other six trace elements in the blood 
serum in Korean women with breast cancer compared to 

the control group of healthy women. The determination 
of trace elements in the serum was carried out in the 
primary and verification (validation) cohorts. There are 
no significant differences in chromium levels between 
women with breast cancer and control groups, nor between 
groups of patients with breast cancer (subgroups divided 
by breast cancer stages and subgroups of women with and 
without breast cancer). 

Olaiya et al., (2019) determined the level of trace 
elements, including chromium in the breast tissues (the 
most malignant neoplasm and normal, not affected by 
cancer of the tissue) of women with breast cancer in 
Nigeria. Chromium was found in small amounts and 
there was no discernible difference between its levels in 
malignant and normal tissues. 

In a prospective study, Benderli Cihan et al., (2011) 
compared the level of 36 elements in the hair from the 
head in patients with stage III breast cancer and healthy 
women control group. Compared to the control group, 
breast cancer patients had higher levels of chromium in 
their hair (p <0.05), and other heavy metals showed similar 
results. Thus, a statistically significant difference in the 
level of toxic trace elements in the hair was determined 
between the two groups, indicating accumulation of heavy 
metals in patients with breast cancer.

In a study conducted in Poland, the case-control 
of Kotsopoulos et al., (2012) assessed the relationship 
between the level of trace elements, including Cr, in 
plasma and breast cancer among carriers of BRCA1 
mutation. There were no significant differences in plasma 
chromium levels between women with breast cancer and 
the control group.

In conclusions, in the environment, salts of heavy 
metal in the tissue of infiltrating ductal breast cancer are 
increasing the content of heavy metal ions (p <0.05), 
which in the second group is 22.4% less than in the first 
one, which causes a more aggressive course of malignant 
process. The content of Fe in the tumor tissue in the 
“ecologically-polluted” areas is 24% more than in the 
“ecologically clean” areas (p=0.001), the content of Cu – 
by 15.4% (p=0.002), Cr – b y 16.8% (p=0.016), Zn – by 
13.8% (p=0.005), Pb – by 1.0.0.0.0. The energy-dispersion 
spectrometry results confirm the elemental composition 
of the neoplastic tissue. The heavy metal content is higher 
in the parenchyma component of the tumor than in the 
stroma (p <0.05). Increased accumulation of Fe, Zn, Cu, 
Cr, Ni and Pb in tumor tissue affects the genetic material 
of cells of infiltrating ductal breast cancer, manifesting in 
blocking receptor transcription, pathological methylation 
of DNA and progressive increase in its fragmentation 
(p <0.05), which negatively affects the course of the 
malignant process.

Heavy metals accumulate in breast tumor tissue, 
through intracellular mediators stimulate pathological 
biomineralization and vascularization processes, stabilize 
prognostically adverse proteins, destabilize the genetic 
material and block the activity of prognostic-favorable 
receptors, which leads to progression of carcinogenesis 
in the breast. Women who live or work in ecologically 
polluted areas or have problems with micronutrient 
exchange need in-depth screening and more frequent 
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screening for early detection of pre- and breast cancer. 
In their treatment, it is necessary to pay attention to the 
possibility of accumulation of heavy metal ions in the 
breast tumor tissue, which can be prolonged to stimulate 
the progression of the malignant process.

The identified pathological biomineralization and 
intensive inflammatory infiltration around the infiltrating 
ductal breast cancer during histological research consider 
prognostic-unfavorable factor of the neoplastic process. 
For correct assessment of the flow and prognosis 
of infiltrating ductal breast cancer in patients living 
in “ecologically polluted” regions, it is advisable in 
immunohistochemical research, in addition to expression 
of receptors to estrogen, progesterone, epidermal growth 
factor, p53 and Ki-67, pay attention to the need to identify 
other prognostically important receptors in breast tumor 
tissue (bcl-2, hsp90, VEGF).
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