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Introduction

In India, oral cancer is the most common malignancy 
among men and the fifth most common among women 
(Saini, 2021). Approximately 77,000 new cases are added 
annually, contributing to 26% of the global cancer burden 
(Borse et al., 2020). It has become a major health concern 
due to an alarming trend of an increase in oral cancer 
cases in <40-45 years of age in recent years (Hussein et 
al., 2017). The malignancy is also associated with high 
mortality and disfigurement. This can be attributed to 
the increased use of various tobacco-chewing products 
such as gutkha and pan masala. 60% of tobacco users in 
India use only smokeless tobacco (Sankhla et al., 2018). 
The Gujarat region (western part of India) is showing a 
serious growing trend in the use of areca nut-based tobacco 
products, according to the Global Adult Tobacco Survey 
(GATS) conducted in India (Sharma et al., 2018).
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Well-established risk factors for oral cancer include 
tobacco use in various forms, alcohol, and HPV16/18 
infection. However, all tobacco users do not acquire 
cancer, implying the role of genetic predisposition. In the 
past two decades, the role of the genomic constitution/
genetic makeup of individuals has emerged in oral cancer 
susceptibility (Damani et al., 2020), suggesting the 
existence of differences in risk between individuals and 
between populations (Xie et al., 2016). Single-nucleotide 
polymorphisms (SNPs), the most abundant variations in the 
human genome, represent individual inherited differences. 
These SNPs affect DNA stability, transcriptional factor 
binding stability, DNA processivity, and nucleosome 
assembly functions. Consequently, these SNPs in a 
number of genes affect a number of processes, including 
cell proliferation, immunological function, inflammation, 
transcription, DNA repair, and xenobiotic metabolism. 
Therefore, genetic variations represent significant risk 

Editorial Process: Submission:11/12/2022   Acceptance:04/07/2023

1Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India. 2Molecular Oncology 
Laboratory, Cancer Biology Department, The Gujarat Cancer and Research Institute, Asarwa, Ahmedabad, Gujarat, India. *For 
Correspondence: singh.ragini28@yahoo.com

Ragini D Singh1*, Kinjal A Patel2, Jayendra B Patel2, Prabhudas S Patel2



Ragini D Singh et al

Asian Pacific Journal of Cancer Prevention, Vol 241232

factors for the growth and transformation of a normal 
cell to a malignant phenotype. These SNPs may be 
synonymous or non-synonymous, directly or indirectly 
affecting gene expression and phenotype (Zeng et al., 
2019).

Oral cancer is preceded by well-established 
premalignant disorders that undergo several molecular 
changes on the path to invasive oral cancer (Speight et 
al., 2018). The interaction between an individual’s genetic 
predisposition and environmental variables (i.e., tobacco 
and alcohol use) substantially impacts these molecular 
changes (Batta et al., 2019). Accumulating published 
evidence indicates the association of several SNPs that 
involve numerous pathways with the risk and progression 
of oral cancer. However, there are inconsistencies in 
the results, even in studies that analyze similar SNPs 
and their association with this complex multifactorial 
disease. Most of these studies involve a single SNP 
analysis, which does not provide a clear picture of the 
association. Comprehensive analysis of gene-gene 
interaction is necessary to characterize multigenic and 
multifactorial diseases, as interactions between gene 
polymorphisms can show a synergistic or nonadditive 
effect on the pathogenesis of oral cancer (Ritchie et al., 
2018). Furthermore, recent meta-data have suggested that 
variants of Phase I: CYP1A1, CYP2E1; Phase II: GSTT1, 
GSTM1, p53, and MDM-2 show regional, ethnic, and 
geographical differences in distribution and can modify 
the risk of oral cancer. These studies have particularly 
emphasized the inclusion of tobacco in analyses (Tang et 
al., 2010; Guo et al., 2015; Yang et al., 2015; Zhuo et al., 
2016; Li et al., 2018; Zeng et al., 2019). 

The tobacco components undergo biotransformation 
by Phase I and Phase II xenobiotic metabolising enzymes. 
The generated metabolites lead to the formation of DNA 
adducts and cause DNA damage. These damages are 
detected by the guardian of the genome, p53, which 
in turn is regulated by its negative regulator, MDM-2. 
Each individual has inherited differences in their ability 
to metabolise these carcinogens and effectively repair 
the damage caused by them. However, it is challenging 
to create and identify the susceptibility and predictive 
biomarker panel that may be used to identify high-risk 
individuals for this complicated disease. Robust estimation 
of gene-gene and gene-environment interaction effects 
requires a large number of samples, thereby incurring a 
prohibitive expense. Additionally, large sample collection 
and analysis yield high-dimensional data. Analysing 
these high-dimensional data using parametric statistical 
methods, such as logistic regression, has limitations 
(Ritchie et al., 2018).

Taking into account this background, we investigated 
the role of SNPs in genes associated with tobacco 
metabolism (CYP1A1, CYP2E1, GSTM1 and GSTT1) 
and cell cycle regulation (p53 and MDM2) using a 
nonparametric statistical tool; Multifactor Dimensionality 
Reduction method (MDR). This tool has been effectively 
used to characterize gene-gene and gene-environment 
interactions in various other diseases in a relatively small 
sample size (Fu et al., 2017).

Materials and Methods

This study was approved by the Institutional Ethical 
Committee, (no. EC/35/2012). Written informed consent 
was obtained from all subjects (cases and controls) after a 
proper explanation of the blood collection procedure and 
the purpose of the study in the local language. 

Subjects
We included 121 cases of histopathologically 

confirmed oral squamous cell carcinoma that attended 
the outpatient department of the institute. Genetically 
unrelated healthy subjects from the same region with 
similar socioeconomic status (n=121) were also included 
as controls. Controls were blood donors who attended the 
institute’s blood bank. The inclusion criterion for controls 
was the absence of a history of cancer, precancer, or other 
significant health hazards. A standard questionnaire was 
designed to collect epidemiological data, including details 
on age, sex, occupation, ethnicity, tobacco consumption 
habits, and family history of the study population. 92.3% 
and 81.2% were males in the control and case/patient 
groups, respectively. 47.9% were tobacco users in the 
control group, while 85.1% were in the patient group. The 
mean age of the subjects was 40.2±0.62 years in controls 
and 42.6±0.42 years in cancer cases.

DNA Isolation and Genotyping
Genomic DNA was isolated from peripheral blood 

lymphocytes using commercially available DNA isolation 
kits (Qiagen, CA) according to the manufacturer’s 
instructions and stored at -20°C until analysis. Polymerase 
chain reaction-restriction fragment length polymorphism 
(PCR-RFLP) and polymerase chain reaction single-strand 
conformation polymorphism (PCR-SSCP) (Eppendorf 
master cycler gradient, Germany) to determine the 
polymorphic genotypes of the genes mentioned in Table 
1 according to the procedures previously reported by our 
laboratory (Singh et al., 2014; Patel et al., 2013). 

Multifactor-dimensionality reduction (MDR)
MDR is a statistical tool that uses a non-parametric 

approach (Fu et al., 2017) to generate the best locus model 
for gene-gene and gene-environment interactions (Moore 
et al., 2002). The entire case-control data set for the SNPs 
studied is divided into ten equal portions, or subsets, by 
default, with one subset for testing and the rest for training. 
The algorithm uses the training part for all combinations 
of factors/locus to create contingency tables based on 
cases and controls. The multilocus genotypes are then 
pooled into high- and low-risk groups. Subjects in cells 
with a case/control ratio greater than 1 are labeled high 
risk, while the other cells are labeled a low risk. Based 
on this new categorization of the training part (9/10), the 
training error is calculated. With the testing part (1/10), 
the prediction error is calculated. Therefore, with the 
algorithm, genotype predictors are effectively reduced 
from dimensions ‘n’ (high-dimensional genotype data) to 
one dimension, that is, a single character with two levels 
of risk: high and low. These steps are repeated for each 
cross-validation fold (by default, 10-fold cross-validation). 
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genes. 
This study used MDR software v.3.0.2 and MDR 

permutation testing software (version 1.0 beta 2) (www.
epistasis.org). High- and low-risk genotypic combinations 
were determined based on the threshold value of 1 
(121/121) for the present data. A statistically significant 
difference is indicated by a p<0.05.

Results

Gene-Gene Interaction
The best two-way gene-gene interaction model 

generated by the MDR algorithm involved two SNPs in 
the p53 gene, that is, rs17878362 (intron 3) and rs1042522 
(exon 4). This model exhibited a CVC of 6/10 (p=0.68) 
(Table 2). However, for the best three-way gene-gene 
interaction model, the SNP in the CYP2E1 gene (DraI), 
rs6413432, the SNPs in exon 4 (rs1042522), and intron 
3 (rs17878362) of the p53 gene had the highest balanced 
test precision (0.61) and training (0.66) and a high CVC 
(9/10) (Table 2) (Figure 2a).

For the gene-gene interaction, the network plot 
(dendrogram) revealed a significant additive interaction 
between intron 3, rs17878362, and exon 4, rs1042522 of 
the p53 gene (IG=1.46%) (indicated by the entropy values 
marked on the line, red, connecting the intron 3 and exon 
4 nodes). Additionally, an interactive/additive effect was 
observed between the nodes, CYP2E1 (DraI), and SNP 
in exon 4. The entropy values in cells (Figure 3a) show 
a significant independent effect (positive IG) of the p53 
exon 4 polymorphism (IG=2.04%) followed by the intron 
3 polymorphism (IG=0.22%) (Figure 3a).

Gene-Environment Interaction
The probable gene-environment interactions in 

patients were also analyzed using the MDR approach, 
taking tobacco as a factor/variable (Figure 2b and 
Figure 3b). Tobacco exposure showed the most significant 
univariate effect, with the highest TBA (68.2%) and CVC 
(10/10). The two-way interactions between CYP1A1*2C 
(Ile/Val) and tobacco exposure exhibited the highest TBA 
(66.9%) and CVC (7/10). The best-three-way model had 
interactions between the SNPs present in the intronic 

Cross-validation consistency (CVC) and permutation 
tests are used to assess the potential of this unique 
one-dimensional multilocus genotype to classify and 
predict the disease status. CVC is defined as the number 
of times a particular SNP combination is identified across 
the k-fold cross-validation (CV) or the number of times 
MDR found the same model when it divided the data into 
different segments. Significant models will have CVC≥9 
based on the fact that the data have been cross-validated 
10 times by MDR. Testing balanced accuracy (TBA) is 
the measure of the average of sensitivity and specificity. 
The CVC and TBA can then be used to choose the best 
SNP combination (best-model), which should have the 
highest CVC and/or TBA. If two or more models have 
similar TBA, then CVC can be used to decide on the best 
model (Figure 1).

A 1,000-fold permutation test is used to compare 
observed testing accuracies with those expected under 
the null hypothesis of no connection to determine the 
statistical significance of the best model’s testing accuracy. 
By repeating the entire analysis on 1,000 data sets that 
are compatible with the null hypothesis, the permutation 
testing corrects for multiple testing. In permutation 
testing, the case-control labels of a data set are randomly 
generated thousands of times, and the MDR method is 
repeated on each permuted data set.

The MDR algorithm also creates interaction graphs/
models/dendrograms, which can be used to visualize the 
nature of the dependencies or interactions effect between 
polymorphic genes (additive and non-additive) (Pattin et 
al., 2009). The interaction model describes the percentage 
of entropy (information gain or IG) by each factor or 
two-way interaction. In the interaction graphs, a node 
(point) represents a gene/SNP, and a line represents the 
interaction between two nodes. The percentage in the 
nodes expresses the amount of uncertainty in the label 
eliminated by the node attribute. The IG in the case-control 
status is eliminated by each variable (independent main 
effect), and each pairwise combination of characteristics 
(interaction effect) is indicated by nodes and connections, 
respectively (Moore et al., 2002). Positive entropy values 
indicate additive/synergistic interaction, while negative 
entropy values indicate redundancy between polymorphic 

Gene Function Polymorphism

Metabolic pathway

CYP1A1
(Xenobiotic metabolising enzyme)

Phase I
oxidative and reductive

CYP1A1*2A (MspI), rs1048943 
CYP1A1*2C(Ile/Val), rs4646903 

CYP2E1
(Xenobiotic metabolising enzyme)

Phase I
oxidative and reductive

CYP2E1*5B (c2) (PstI restriction, position: −1019), rs3813867
CYP2E1*5A (c1) (RsaI restriction, position: −1259), rs2031920
CYP2E1*6 (DraI restriction, intron 6), rs6413432

GSTT1(Xenobiotic metabolising enzyme) Phase II Null polymorphism

GSTM1(Xenobiotic metabolising enzyme) Phase II Null polymorphism

p53 Maintenance of genomic 
integrity, Regulation of cell 
cycle progression, apoptosis, 
autophagy, differentiation, 
senescence, DNA repair and 
oxidative metabolism

Intron 3 duplication, rs17878362
Exon 4 Pro72Arg, rs1042522
Intron 6, rs1625895

MDM2 p53 negative regulator rs2279744

Table 1. Gene Variants Included in the Present Study (MDR Model)
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regions of the p53 gene, i.e. rs 17878362 (intron 3) and 
rs1625895 (intron 6), Phase I, CYP1A1*2C (Ile/Val) 
rs4646903, and tobacco (Table 3). The interaction graph 
showed a significant independent effect of tobacco 
(IG=11.19%), less synergy between CYP1A1 * 2C and 
the intronic polymorphisms of p53. CYP1A1*2C exhibited 
an additive effect with tobacco.

Discussion

The balance in the expression and activities of 
Phase I enzymes such as CYP1A1 and CYP2E1 and 
Phase II enzymes such as GSTs play a critical role 
in the biotransformation and metabolism of tobacco 
procarcinogens. This balance, if lost, can potentially 
cause DNA damage. To deal with the damage caused by 

Figure 1. MDR Algorithm: Stepwise process to identify the best model to predict oral cancer risk for multiple genes

X5: CYP2E1 DraI; 0=DD, 1= DC genotype
X7: p53 intron 3; 0= A1/A1, 1= A1/A2, 2= A2/A2 genotype
X8: p53 exon 4; 0=Arg/Arg, 1= Arg/Pro/ 2- Pro/Pro

X7: p53 intron 3; ; 0= A1/A1, 1= A1/A2, 2= A2/A2 genotype 
X9: p53 intron 6; 0=G/G, 1=G/A, 2=A/A genotype
X11: Tobacco

Figure 2. Interaction of Attributes: the best 3-locus genotype combinations associated with oral cancer. (a) gene-gene 
interaction; (b) gene-environment interaction.  In each box, the distribution of cases (left bars) and controls (right bars) 
for each of the genotype combinations are shown. High-risk combinations are depicted as dark-shaded cells and low-
risk combinations as light-shaded cells; empty cells are left blank.
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tobacco procarcinogens, we have p53, a well-reported 
tumor suppressor gene with pleiotropic activities (Ghosh 
et al., 2022) with the negative regulator of its activity, 
MDM-2. With this as a rationale, research studies on 
polymorphic variability in xenobiotic metabolizing genes, 
CYP1A1, CYP2E1, GSTT1, and GSTM1, and the cell cycle 
regulator, p53 with its negative controller, MDM-2, were 
reported from our laboratory (Patel et al., 2013; Singh et 
al., 2014). The variability in the candidate genes studied 
with oral cancer risk was analyzed using a binary logistic 
regression model. However, no statistically significant risk 
of oral cancer was observed. For the tumor suppressor 
gene, p53, the proline allele of the SNP rs1042522 in exon 
4 conferred protection against oral cancer development 
(Patel et al., 2013). Furthermore, no association was 
observed with oral cancer risk for SNPrs2279744 in the 

MDM-2 gene (Patel et al., 2013; Singh et al., 2014,). 
Analysis of gene-gene interaction revealed that of the 
‘caretaker’ genes studied, only GSTM1 and GSTT1, in 
combination, exhibited a statistically significant higher 
odds ratio (Singh et al., 2016). In addition to this, a 
gene-tobacco interaction analysis was also performed on 
the same population of subjects. The analysis revealed that 
tobacco use, particularly tobacco chewing, is a significant 
risk modifier in subjects harboring variant genotypes of 
CYP1A1, CYP2E1, GSTM1, GSTT1, p53, and MDM-2 
(Singh et al., 2012; Patel et al., 2015). Unfortunately, due 
to the limitation of the small sample size in these studies, 
a combined gene-gene and gene-environment interaction 
analysis could not be performed (Patel et al., 2013; Singh 
et al., 2014). However, these results were successful in 
(i) providing a tentative SNP fingerprint for oral cancer 

MDR model Balanced accuracy 
CV training

Balanced accuracy 
CV testing

CV 
consistency

Permutation 
test 'p' value

p53 exon 4, rs1042522 0.5786 0.5404 10/10 0.51
p53 intron 3, rs17878362-p53 exon 4, rs1042522 0.6147 0.5214 6/10 0.68
CYP2E1 DraI, rs6413432- p53 intron 3, rs17878362 
- p53 exon 4, rs1042522 

0.6623 0.612 9/10 0.06

Table 2. MDR Interaction Analysis between SNPs (Gene-Gene Interaction)

Figure 3. Interaction Entropy Graphs (Network Plots) Highlighting the Amount of Information Gain (IG) in Cells and 
on Lines as a Percentage: a) gene-gene interaction; (b) gene-environment interaction. Entropy values marked on the 
lines connecting two SNPs represent the entropy of interaction. Positive percent entropy represents synergy or infor-
mation gain; negative percent entropy represents redundancy or lack of information gain. . Entropy values in the cells 
of individual SNPs indicate the main independent effects. Schematic coloration used in graphs represents a continuum 
from synergy to redundancy. Red represents a high degree of synergy (positive IG); Orange a lesser degree of positive 
IG; Brown a midway point between synergy and redundancy; Green and blue represent a redundancy 

MDR model Balanced 
accuracy CV training

Balanced accuracy 
CV testing

CV 
consistency

Permutation
test ‘p’ value

Tobacco 0.682 0.682  10/10 <0.001
Tobacco - CYP1A1*2C,  rs4646903 0.6835 0.6694  7/10 <0.001
Tobacco,- CYP1A1*2C, rs4646903, -p53 Intron 3 
rs17878362 - Intron 6  rs1625895

0.7047 0.6333  7/10 0.01

CVC, Cross Validation Consistency;  p-values as calculated after 1000 permutations

Table 3. MDR Interaction Analysis between SNPs and Tobacco (Gene-Environment Interaction)
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susceptibility and emphasizing the role of SNPs in these 
candidate genes in the development of oral cancer, and 
(ii) highlighting the importance of the association between 
genes and the environment in modulating susceptibility to 
oral cancer in the population of Gujarat. Interestingly, the 
results indicated a limitation, ie the inability to analyse 
gene-gene and gene-environment interactions involving 
multiple genes in the same set of patients.

Considering this limitation, MDR, an alternative 
statistical tool with a nonparametric approach, was used 
for gene-gene and gene-environment analysis in our 
case-control data set. The results of the MDR algorithm 
successfully generated the best two-way and three-
way interactive models for both gene-gene and gene-
environment predicting the risk of oral cancer. The best 
interactive model between genes included SNPs in exon 
4 (rs1042522) and intron 3 (rs17878362) of the p53 gene. 
These SNPs also exhibited an additive effect. Notably, 
strong linkage disequilibrium between intron 3 and exon 
4 of p53 has also been reported (Wu et al., 2002). 

Interestingly, exon 4 SNP, rs1042522, showed a 
significant independent effect on oral cancer risk. On 
the other hand, the results of the best gene-environment 
interactive model reinforced that tobacco use is the most 
important environmental factor that affects oral cancer 
susceptibility. The model also included both intronic 
polymorphisms of p53, ie rs17878362 and rs1625995.

The results for gene-gene and gene-environment 
interactions share an interesting finding, ie, the putative 
role of the p53 gene polymorphisms in oral cancer 
susceptibility. In the analysis of gene-gene and gene-
environment interactions, genomic variations in p53 
were a common factor. These genomic variations allow 
for the generation of p53 isoforms through alternate 
splicing. These isoforms are involved in creating an 
immunosuppressive environment, which helps to trigger 
tumour initiation and progression (Eiholzer et al., 2020). 
Furthermore, at the mechanistic level, there is some 
evidence that these polymorphisms may have an impact 
on the structure of the p53 protein. Therefore, the variants 
differ in their biochemical and biological activities, such 
as DNA repair capacity and apoptosis (Wu et al., 2002; 
Gemignani et al., 2004; Sullivan et al., 2004;  Pietsch et 
al., 2006; Marcel et al., 2011). This makes these loci a 
potent hotspot region for mutations and increases cancer 
risk (Sagne et al., 2013). The results of the current analysis 
also support the findings of our previous study on p53 
mutations and oral cancer risk. We reported that p53 exon 
4 exhibited a maximum cluster of mutations (Singh et al., 
2016), and p53 alterations play an important role in the 
risk of oral cancer.

In conclusion, the MDR application successfully 
identified a significant interaction between three 
polymorphisms of two genes, CYP1A1*2C (Ile/Val; 
rs4646903), intron 3 (rs17878362), intron 6 of p53 
(rs1625895), and gene-environment interactions between 
tobacco and p53 polymorphisms in the oral cancer case-
control data set. Such analysis becomes meaningful in 
the absence of any statistically significant independent 
main effects of the candidate genes, mainly when there is 
a limitation to performing gene-environment interactions 

owing to a low sample size. Importantly, this analysis 
assessed SNPs involving critical genes for specific 
pathways in the same case-control data set. Therefore, 
these results can be used to design and implement 
preventive tobacco consumption strategies and screen the 
‘at risk’ population.
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