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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the 
most prevalent forms of pancreatic cancer worldwide, with 
an abysmal prognosis accounting for approximately 90% 
of neoplastic diseases of the pancreas (Kleeff et al., 2016). 
Patients with the malignancy rarely present the symptoms 
resulting in a poor diagnosis and increased mortality 
rates. Despite advancements in the treatment options, 
the five-year overall survival rate is roughly around 8% 
making it the 4th common cause of cancer-related deaths 
(Siegel et al., 2018). Although lifestyle factors such as 
age, alcohol consumption, tobacco use, and obesity play 
a vital role in the disease, family history and genetic 
susceptibility also account for ~10% of pancreatic 
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cancers (Permuth-Wey and Egan, 2009; Shi et al., 2009). 
The incidence of PDAC in both males and females 
is higher in developed countries than in developing 
countries. Some studies have estimated that PDAC will 
become the second most common cause of cancer-related 
mortality by 2030 (Rahib et al., 2014). With a poorly 
understood etiology, potential treatment options for the 
management of PDAC include surgical resection (such 
as pancreaticoduodenectomy or Whipple procedure, total 
pancreatectomy), adjuvant chemotherapy, and radiation 
therapy (Alexakis et al., 2004; Neoptolemos et al., 2003).

The aggressive biology and the complicated 
tumor microenvironment often promote metastasis 
microscopically, making it challenging to treat. In addition, 
gene instability, pre-existing cancer stem cells, and 
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alterations in multiple signaling pathways result in an 
intrinsic chemoresistance that hinders the therapeutic 
drug delivery (Lee et al., 2008; Oberstein and Olive, 
2013; Samuel and Hudson, 2011). Dysregulation of 
molecular pathways such as K-Ras occurs in 75-90% of 
pancreatic carcinomas, further stimulating downstream 
signaling cascades (Almoguera et al., 1988; Malumbres 
and Barbacid, 2003). Moreover, mutations in the 
transcription factor P53 (TP53) gene can be seen in 
more than ~60% of pancreatic cancers (Rozenblum et 
al., 1997). Recent studies have shown how inflammation 
and an elevation in inflammatory cytokines often play 
a role in developing various cancers. PDAC is associated 
with significant peri and intra-tumoral inflammation and 
epithelial-mesenchymal transition (EMT) induction that 
serves as key mediators contributing to tumor initiation 
and its rapid progression. This is especially true in cases of 
chronic pancreatitis (an inflammatory pathophysiological 
disease of the pancreas), with the predisposing genes 
associated with a higher risk of developing pancreatic 
cancer. Hence, it is crucial to identify the underlying 
mechanisms, cellular processes, and inflammatory 
pathways, which can further help us design drugs targeting 
these biomarkers (Khalafalla and Khan, 2017; Zheng et 
al., 2013).

The present study analyzes the microarray data of 
PDAC and pancreatitis tissues from publicly available 
datasets to derive the biological meaning of differentially 
expressed genes (DEGs) using bioinformatics methods. 
The results of this study provide valuable biological 
insights which could be further explored to identify novel 
therapeutic targets in PDAC.

Materials and Methods

Retrieval of gene expression datasets
The microarray data for normal, PDAC, and pancreatitis 

tissues were obtained from NCBI Gene Expression 
Omnibus (GEO) and EMBL-EBI ArrayExpress. 
A total of 6 datasets (GSE15471, GSE32676, GSE46234, 
E-MTAB-1791, E-GEOD-71989, and E-MEXP-2780) 
were analyzed in this study (Athar et al., 2019; Barrett 
et al., 2013). Since data was generated using different 
platforms, all the datasets belonging to the respective 
platforms (Affymetrix GPL570 [HG-U133_Plus_2] and 
Illumina human WG6 BeadChip v3) were processed and 
analyzed independently. The results obtained were later 
pooled for a more comprehensive analysis. The detailed 
description of the methodology followed in the study is 
represented in Figure 1.

Data pre-processing and differentially expressed genes 
(DEGs) screening

The datasets were pre-processed, normalized, and 
analyzed for differential expression using BRB-Array 
tool 4.6.1 (Stable Version) (Simon et al., 2008). The 
pre-processing and normalization criteria included - (i) 
If the spot intensity is below the minimum value i.e., 10, 
then threshold the intensity at the minimum value (ii) 
Average the replicate spots within an array (iii) Exclude 
a gene if the 50th percentile of intensities < 500 or the 

percentage of data filtered/missing > 50% (iv) Each array 
was normalized using quantile normalization. The DEGs 
screened conformed to the following cutoff criteria: 
|logFC| > 2 and a high significance threshold of 0.001 of 
univariate tests. Only DEGs with a false discovery rate 
(FDR) < 0.05 were considered for further analysis. 
Overlapping DEGs between pancreatitis and the PDAC 
samples was identified using the Funrich software (Pathan 
et al., 2015).

Ontology and pathway enrichment analysis
Gene ontology (GO) terms describe non-overlapping 

information on biological process (BP), cellular 
component (CC), and molecular function (MF) of 
individual gene products (Hill et al., 2008). In contrast, 
the ontologies and comprehensive information on human 
diseases are described in the Disease Ontology (DO) 
(Schriml et al., 2019). KEGG is a database resource 
encompassing the functional meaning of a biological 
system derived mainly from high-throughput experiments 
(Kanehisa and Goto, 2000). We used the R Bioconductor 
package, clusterProfiler, which integrates the data from 
the above resources to perform ontology and enrichment 
analysis (Yu et al., 2012).

Protein-Protein Interaction (PPI) and module analysis
PPIs are crucial for several biological functions 

in the body, and any dysregulation can often indicate 
diseases (Gonzalez and Kann, 2012). In this study, we 
used the Search Tool for the Retrieval of Interacting 
Genes (STRING) database and the Cytoscape software 
(version 3.8.2) for the construction and visualization of 
interaction networks (Shannon et al., 2003; Szklarczyk 
et al., 2015). MCODE (Molecular Complex Detection) 
was used to identify the densely interconnected regions 
in the network with the following analysis parameters: 
node score cutoff = 0.2, k-score = 2, degree cutoff 
= 2, node density cutoff = 0.1, and max depth = 100 
(Bader and Hogue, 2003).

Pathway reanalysis, potential druggability, and gene 
expression analysis

The hub genes obtained were then reanalyzed to 
identify core genes. The potential druggability was 
determined using the Drug-Gene Interaction Database 
(DGIdb). DGIdb is a web-based resource providing 
information about druggable candidate genes and potential 
drug-gene interactions (Freshour et al., 2021). The 
expression of hub genes was evaluated using the GPEIA2 
tool (Tang et al., 2019). GEPIA2 performs gene expression 
analysis using the data from The Cancer Genome Atlas 
(TCGA) and Genotype-Tissue Expression (GTex), which 
helps us to validate and correlate the expression profiles 
between normal and PDAC tissues. The results of the 
KEGG pathway reanalysis were visualized using the R 
package, circlize (Gu et al., 2014).

Survival Analysis, tumor subgroup expression analysis, 
and promoter methylation

Survival analysis of the hub genes was performed 
using the Kaplan-Meier (KM) plotter (Nagy et al., 
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of these studies were then combined to identify 45 genes 
that were differentially expressed in both PDAC and 
pancreatitis.

Enrichment analysis and KEGG pathway analysis
Ontology analysis and KEGG pathway enrichment 

analysis for the 45 DEGs were conducted using the R 
Bioconductor package, clusterProfiler, with the criterion 
set at p < 0.05. Gene Ontology analysis showed that (i) 
The most enriched biological processes were extracellular 
matrix (ECM) organization, extracellular structure 
organization, ossification, cell-substrate adhesion, 
and collagen fibril organization (Figure 2a). (ii) In the 
molecular function group, the DEGs were mainly enriched 
in collagen binding, growth factor binding, EMSC 

2021). We also performed hub gene expression analysis 
based on factors such as gender, patient’s drinking habit, 
race, and pancreatitis status using the UALCAN tool 
(Chandrashekar et al., 2017). Further, the promoter 
methylation profile of individual hub genes was compared 
between normal and PDAC tissues.

Results 

Identification of differentially expressed genes 
A total of 6 datasets were retrieved that included 

172 samples of normal pancreatic tissue, 68 samples of 
pancreatitis, and 306 samples of PDAC. The microarray 
analysis was performed to identify the differentially 
expressed genes in PDAC and pancreatitis. The results 

Figure 1. Flowchart Describing the Overview of the Methodology Followed in the Present Study. This involved 
collection of raw data & preprocessing, screening and identification of overlapping DEGs, ontology and pathway 
enrichment analysis, protein-protein interaction, and analysis of hub genes.
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conferring tensile strength, and glycosaminoglycan 
binding (Figure 2b). (iii) In the cellular component 
group, the DEGs were significantly connected with 
the collagen-containing ECM, collagen trimer, and its 
complex and endoplasmic reticulum lumen (Figure 2c). As 

shown in Figure 3a, Disease Ontology analysis indicated 
that the DEGs were significantly associated with lung 
disease, cell type benign neoplasm, and pancreatic cancer. 
As for the KEGG pathway analysis, protein digestion 
and absorption pathway, PI3k-Akt signaling pathway, 

Druggable gene category Gene 
Count

Gene (s)

Druggable genome 14 COL6A3, COL1A1, FBLN1, COL8A1, THBS2, COL5A2, SPARC, COL3A1, THBS1, 
COL6A1, LUM, COL1A2, COL6A2, COL5A1

Cell surface 2 SPARC, THBS1
Clinically actionable 2 COL1A1, CDH11
Drug resistance 2 COL1A1, THBS1
External side of plasma 
membrane

1 THBS1

Protease inhibitor 1 COL6A3
Transcription factor 1 THBS1

Table 1. Of the 15 Hub Genes Analyzed for Druggability Using the DGIdb Database, a Total of 14 Were Found to be 
in the Druggable Genome Category Indicating their Use as Potential Drug Targets

Figure 2, a Dot Plot Representing GO - Biological Process, Where the DEGs Were Mainly Enriched in ECM 
Organization, Extracellular Structure Organization, Ossification, Cell-substrate Adhesion, and Collagen Fibril 
Organization. b, Dot plot representing GO - molecular function. The DEGs were mainly enriched in collagen binding, 
growth factor binding, extracellular matrix structural constituent (EMSC), EMSC conferring tensile strength, and 
glycosaminoglycan binding. c, Dot plot representing GO - cellular process, where the DEGs were significantly 
associated with the collagen-containing ECM, collagen trimer and its complex, and endoplasmic reticulum lumen.
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ECM-receptor interaction pathway, and proteoglycans in 
cancer pathways were significantly enriched (Figure 3b).

PPI network and identification of hub genes
The Protein-protein interaction network (PPI) 

constructed for the overlapping DEGs using the STRING 
database with a combined score > 0.4 (default threshold) 
showed 45 nodes with a total of 152 edges, representing 
a densely interconnected network (Figure 4a). Module 
analysis using MCODE revealed 15 hub genes (with 
92 edges), including - COL6A3, COL1A1, FBLN1, 
COL8A1, THBS2, CDH11, COL5A2, SPARC, COL3A1, 
THBS1, COL6A1, LUM, COL1A2, COL6A2, and 
COL5A1 (Figure 4b).

Pathway reanalysis, druggability, and gene expression 
analysis

The 15 hub genes identified were then reanalyzed 

for KEGG pathways, and the following five core genes 
were identified - COL1A1, THBS1, COL1A2, THBS2, 
and COL3A1 (Figure 5). Among these, COL1A1 and 
COL1A2 were associated with 11 different pathways each. 
Expression analysis between normal and PDAC tissues 
showed that all 15 hub genes were found to be significantly 
expressed (P-value < 0.001 and Log2FC > 2) (Figure 6). 
It was found that 14 out of 15 genes were in the druggable 
genome category, suggesting that they could be modulated 
and interact with small molecules. The complete list of 
genes and their corresponding druggable gene category 
is shown in Table 1.

KM Survival Analysis, tumor subgroup & promoter 
methylation 

The prognostic value associated with hub genes 
was analyzed using the KM plotter at a P-value 
threshold of < 0.05 (Figure 7). The results showed that 

Figure 3. a, Bar Plot Representing Disease Ontology Analysis for the 45 DEGs Common to Both Pancreatitis and 
PDAC. The DEGs were significantly associated with lung disease, cell type benign neoplasm, and pancreatic cancer. 
b, Bar plot representing KEGG Pathway Analysis for the 45 DEGs common to both pancreatitis and PDAC. The DEGs 
were mainly enriched in protein digestion and absorption pathway, PI3k-Akt signaling pathway, ECM-receptor 
interaction pathway, proteoglycans in cancer pathways.

Figure 4. a, Represents the Protein-protein Interaction (PPI) Network Constructed Using the STRING Database for the 
45 DEGs Common to Both Pancreatitis and PDAC. b, Represents the module analysis of the PPI network constructed 
using the Cytoscape app, MCODE showing 15 nodes (hub genes) with 92 edges.
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the genes - COL6A1, COL6A3, COL8A1, LUM & 
THBS2 caused a significant reduction in the overall 
survival rate of PDAC patients, with COL6A1 being 
the most statistically significant (log-rank P = 0.0061). 
Next, the tumor subgroup analysis of the hub genes was 
performed. The analysis based on gender did not reveal 
any notable differences in the gene expression between 
male and female PDAC patients (Suppl. Figure. 1). 
Similarly, the expression values did not vary much with or 
without the presence of chronic pancreatitis for most of the 
hub genes. However, higher transcript per million (TPM) 
values were observed for the gene - COL6A1 in patients 
with pancreatitis than in normal and non-pancreatitis 
patients (Suppl. Figure. 2). Although not statistically 
significant, samples from ‘occasional drinkers’ showed 
higher TPM values compared to other groups. But this 
can be overlooked based on the observation that the data 
from occasional drinkers cover a greater range indicating 
highly probable values making it less reliable to conclude 
(Suppl. Figure. 3). Expression analysis based on different 
races showed that African Americans exhibited higher 
median TPM values, with gene - FBLN1 being most 
statistically significant compared to Asians, Caucasians, 
and normal samples. The observations and comparisons 
between the races are biased due to differences in 
sample count and thus have low statistical significance 
(Suppl. Figure. 4). Evaluation of regulation of gene 
expression by promoter methylation revealed no significant 
change in the methylation profiles for most of the hub 
genes, except gene - COL3A1, which showed a deviation 
compared to normal samples. No methylation profile data 
was available for the gene - LUM (Suppl Figure 5).

Discussion

Cancer is one of the complex diseases resulting 
from various phenomena, including significant 
gene-environment interactions that result in disordered 
cell proliferation. Although there has been a massive 
improvement in the treatment for PDAC, mortality and 
incidence rates are still increasing at an unprecedented 
rate. Several studies have been carried out to uncover 
the molecular mechanisms involved in the onset, 
growth, and progression of PDAC. It has also been 
reported that chronic cases of pancreatitis can increase 
the risk of developing PDAC by 16-fold (Carrière et al., 
2009; Kirkegård et al., 2017). The present study aims to 
identify dysregulated genes, pathways, and biochemical 
processes shared between pancreatitis and PDAC. 
Analysis of six different datasets obtained from publicly 
available databases revealed a total of 45 overlapping 
DEGs between pancreatitis and PDAC. These DEGs were 
mainly enriched in collagen and growth factor binding, 
extracellular environment, and cell adhesion. Collagen is 
a crucial component of the extracellular matrix (ECM), 
and specific orientation and arrangements of ECM in a 
microscopic environment are thought to play essential 
roles in tumor progression (Cox and Erler, 2011; Friedl and 
Wolf, 2008). This disruption in the ECM homeostasis can 
be caused by degradation and even deposition of collagen. 
Since tumor cells continuously interact with ECM, an 
increased disruption can accelerate tumor progression 
by negatively interfering with cell adhesion (Fang et al., 
2014; Paszek et al., 2005; Xu et al., 2019).

KEGG pathway analysis showed that the protein 

Figure 5. Chord Diagram Representing the KEGG Pathway Reanalysis for the 15 Hub Genes. A total of five core 
genes were identified - COL1A1, THBS1, COL1A2, THBS2 and COL3A1. Among these, the genes COL1A1, and 
COL1A2 alone were significantly associated with 11 different pathways each.
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Figure 6. Box Plots Comparing the Gene Expression Levels of PDAC and Normal Tissues for 15 Hub Genes P-value < 
0.001 and Log2FC > 2. The samples from normal tissues are shown in grey and PDAC tissues in red. Gene expression 
changes between groups in all hub genes were found to be significant (marked with an *).

digestion and absorption pathway, ECM-receptor 
interaction pathway, PI3k-Akt signaling pathway, and 
proteoglycans in cancer pathways might play essential 
roles in the progression of PDAC. Aberration of the 
PI3k-Akt signaling pathway can be seen in many different 
cancers. Moreover, an increase in Akt activity is regularly 
seen in PDAC (~60% of cases) due to the loss of key 
regulators or mutations. K-Ras is an essential gene of 

the RAS/MAPK pathway (required for proliferation and 
maturation of cells), and activating mutations in this gene 
can be seen in ~95% of pancreatic cancers, which further 
activates PI3K signaling (Baer et al., 2014; Eser et al., 
2013; Kennedy et al., 2011). These are the major reasons 
why targeting the PI3k-Akt pathway has been a significant 
interest in cancer drug discovery. Proteoglycans are 
another important biomolecule of interest, having multiple 
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functions in angiogenesis and cancer. They often influence 
cell growth through their interaction with growth factors 
and can sometimes cause deregulation of cell proliferation 
(Knelson et al., 2014; Wang et al., 2011). Thus, their 
integration in tumor cell diagnostics can facilitate early 
diagnosis, as demonstrated in a few studies (Effenberger 
et al., 2018; Kurihara et al., 2008).

We further constructed a protein-protein interaction 
network and performed a module analysis. The module 
consisted of 15 nodes with 92 edges. Expression 
analysis using the GEPIA2 tool revealed all 15 
hub genes to be significantly expressed in PDAC. 
Interestingly, the expression of most of the hub genes 
was independent of factors such as gender, drinking 

habits, race, and pancreatitis status, which suggests that 
these genes can be used as biomarkers on a global scale 
for advancing PDAC treatment. Potential druggability 
determined using the DGIdb database showed that 14 
out of 15 genes were in the druggable genome category 
and thus have a potential value for developing targeted 
drugs. Next, to understand which genes were significantly 
involved in the pathways analyzed before, we performed 
KEGG pathway reanalysis for the 15 hub genes. Based on 
this, we identified five core genes - COL1A1, COL1A2, 
THBS1, THBS2, and COL3A1. Among these, three were 
protein-coding collagen genes. Recently, a few studies 
have demonstrated how various collagen genes can play 
a role in tumorigenesis leading to poor clinical outcomes 

Figure 7. Kaplan-Meier Plots Representing the Survival Analysis for 15 Hub Genes with Respect to Low Expression 
(black color) and High Expression (red) in PDAC Tissue Samples. Among these, genes - COL6A1, COL6A3, CO-
L8A1, LUM, and THBS2 (marked with an *) are statistically significant P-Value < 0.05.
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(Kita et al., 2009; Wu et al., 2013). Further, differential 
expression of genes COL1A1, COL1A2, and THBS1 
has been reported in several cancers, including colorectal 
cancer, hepatocellular carcinoma, and melanoma (Bonazzi 
et al., 2011; Hayashi et al., 2014; Zhang et al., 2018). 
Researchers have also demonstrated the utilization of 
Thrombospondin-2 (THBS2) as a biomarker for risk 
prediction and early detection of PDAC and as a robust 
prognostic indicator in colorectal cancer (Kim et al., 2017; 
Tian et al., 2018).

Taken together, this study analyzed a total of six 
different datasets by comprehensive bioinformatics 
analysis to identify critical genes and various biochemical 
processes thought to play crucial roles in certain events 
leading to carcinogenesis and its progression in PDAC.  
There were a few limitations to this study - Firstly, this 
study compared pancreatitis and PDAC samples but did 
not consider the stage of individual samples. Secondly, 
the clinical data of samples was not analyzed due to 
inaccessibility. Despite these drawbacks, the integrative 
approach used in the present study offers more precise 
findings compared to other studies that analyzed only 
a single dataset. Majorly, we identified 45 DEGs shared 
between PDAC and Pancreatitis, including 15 hub 
genes, namely, COL6A3, COL1A1, FBLN1, COL8A1, 
THBS2, CDH11, COL5A2, SPARC, COL3A1, THBS1, 
COL6A1, LUM, COL1A2, COL6A2, and COL5A1. 
In-depth experimental research is needed to elucidate 
the role and exact molecular mechanisms of these genes. 
This can further help identify novel therapeutic targets to 
improve PDAC treatment. Such personalized therapies can 
significantly reduce the sequelae of cancer treatment while 
improving patients’ quality of life and overall survival rate.
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