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Introduction

Molecular targeted therapy is a new, highly efficient 
strategy that has recently attracted more attention from 
researchers. The term “molecular targeted therapy” refers 
to drugs or other substances that target specific molecules 
(Ehrlich, 1906). A successful molecular targeted therapy 
requires the identification of ideal targets with the aim of 
reducing the burden of common diseases, such as cancer, 
obesity, and metabolic syndrome. Cancer, the second 
leading cause of death, is a multifactorial disease and 
current treatments such as chemotherapy, radiotherapy, 
and surgery have shown many side effects due to their 
non-specific approach. Another global health threat is 
obesity; according to the World Health Organization, 
the total number of overweight adults 18 years and older 
was more than 1.9 billion in 2016. More than 650 million 
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of these people were obese (Jafari-Gharabaghlou et al., 
2023; West et al., 2018). Obesity, high blood pressure, 
high blood sugar, and abnormal cholesterol levels are 
known collectively as metabolic syndrome (Cho et al., 
2010). Lifestyle changes are the major way to reduce 
metabolic risk factors; treatment with medicinal products 
is also an important therapeutic measure for MetS. 
The implementation of lifestyle modifications is often 
challenging for patients, and the sustainability of weight 
loss outcomes is typically limited, leading to a gradual 
decline in the efficacy of this clinical approach over time. 
It has been observed that lifestyle modifications may not 
be sufficient to rectify pre-existing medical conditions in 
a considerable portion of the population. Additionally, 
with advancing age, the intensity of potential risk factors 
tends to increase, necessitating a heightened reliance on 
pharmacological interventions. On the other hand, no 
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current drugs lower all metabolic risk factors long-term, 
so treatment may focus on correcting each risk factor 
individually with various medications. Also, as the disease 
worsens, one drug is insufficient, and multiple drugs 
are needed. This becomes complex when multiple risk 
factors need to be managed with different medications 
(Fahed et al., 2022; HanLean, 2015; RAZHABOVA et al., 
2020). It has shown different targets for diseases such as 
cancer, obesity, and metabolic syndrome. It is important 
to understand how environmental factors interact with 
specific molecular pathways in order to prevent these 
diseases (Obici, 2009). Tumor immunology is becoming 
better understood, resulting in the progression of effective 
targeted therapies (González-Cao et al., 2015). Targeted 
therapy aims to deliver drugs directly to certain genes 
or molecules that have a crucial role in tumor growth. 
Small-molecule inhibitors and antibody-conjugated 
nanoparticles are examples of targeted therapy (Ghasemali 
et al., 2013; Joo et al., 2013; Mohammadian et al., 
2016; Nejati et al., 2022; Salmani Javan et al., 2022). 
Due to the increased specificity and decreased toxicity 
of targeted therapies, researchers are focusing on new 
molecular targets (Eatemadi et al., 2016; Nejati et al., 
2021). The largest family of membrane receptor proteins 
in mammals are G-protein coupled receptors (GPCRs), 
which are involved in a wide variety of physiological and 
pathological functions. A large variety of extracellular 
ligands, such as hormones, chemokines, neurotransmitters, 
autacoids, and enzymes, bind to GPCRs and lead to many 
cellular physiological functions through interaction with 
heterotrimeric G proteins (Kawasawa et al., 2003).Seven 
hydrophobic transmembrane (™) segments, with an 
extracellular amino-terminal and intracellular carboxyl-
terminal, are a typical structure of the GPCR superfamily. 
The TM section of GPCRs shows numerous homologies 
to each other. The main diversity of the GPCRs structure 
is due to the amino-terminal, carboxyl-terminal, and loop 
of TM5 and TM6. The extreme variety is observed in the 
amino-terminal region (Kobilka, 2007). A majority of the 
membrane receptors in humans are GPCRs; approximately 
800 members of this family have been identified so far, 
and more than half of them are olfactory receptors. Based 
on the similarity of the 7TM sequence, GPCRs can be 
divided into five families: the rhodopsin family, the 
adhesion family, the frizzled/taste family, the glutamate 
family, and the secretin family (Fredriksson et al., 2003). 
Studies have discovered new models of GPCR activation, 
including “biased activation,” “intracellular activation,” 

“dimerization activation,” “transactivation,” and “biphasic 
activation” (Wang et al., 2018). In biased activation, the 
ligand can either cause G-protein or β-arrestin activation 
(Rakesh et al., 2010). β-Arrestin has the ability to regulate 
the signaling of many GPCRs (Lefkowitz, 2013). Most 
GPCRs are located and activated on the cell surface, but 
recent studies have shown that some GPCRs are activated 
intracellularly and trigger their signaling pathways 
(Luttrell et al., 1999; Schiaffino et al., 1999). There are 
two pathways for this approach: First, GPCRs continue to 
signal after entering the cell with their agonists; second, 
intracellular GPCRs are located in different organelles and 
start their signaling pathways from inside the cell (Wang 
et al., 2018). Some GPCRs are activated individually, but 
some of them interact with each other and modulate their 
function through dimerization, referred to as “dimerization 
activation” (Gomes et al., 2001). In the transactivation 
model, GPCR ligands can transactivate and activate other 
receptors, such as the tyrosine kinase receptor (Daub et 
al., 1996). GPCRs have two stages of activation: an early 
phase and a late phase. Each of these stages has its own 
effects and regulates a specific downstream protein, which 
is referred to as biphasic activation (Schorb et al., 1995). 
So far, the roles of various GPRs have been identified, 
such as GPR120, GPR40, GPR35, etc (Table 1). In recent 
years, GPR75, a unique member of the GPCR family, 
has attracted a great deal of attention from researchers. 
GPR75, first identified by Tarttelin et al. in 1999, is a 
540-amino-acid protein with only two exons located 
on human chromosome 2p16. The first exon of GPR75 
contains an untranslated sequence, while the second and 
final exon of GPR75 contains GPR75’s entire translated 
region, which is not similar to any other gene or transcript 
(Akbari et al., 2021). The highest expression level of the 
GPR75 gene is in the brain; however, several recent studies 
have indicated that the GPR75 receptor is expressed 
throughout most human tissues, including the brain, 
heart, kidney, and prostate (Figure 1). A study by Garcia 
et al. (2017a) demonstrated that 20-HETE binds with 
high affinity in human endothelial cells and activates the 
GPR75. Other studies have shown that the GPR75 (Gq) 
and its ligand 20-HETE activate pro-inflammatory and 
hypertensive signaling pathways, contributing to diabetes, 
obesity, endothelial dysfunction, cell proliferation, 
hypertension, and cardiovascular disease (Pascale et al., 
2021). In addition, reports show the important role of 20-
HETE in cell growth and development of cancer (Cárdenas 
et al., 2020). An overview of GPR75 is provided in this 

Type Role Ref.

GPR120 The free fatty acid receptors/Potential Target for Obesity Treatment (65, 66)

GPR55 Important targets in pain and cancer, and additional diseases as well (67)

GPR35 Risk gene for inflammatory bowel diseases (IBD) / important targets in pain and cancer, and additional diseases as well (68)

GPR40 The free fatty acid receptors/Agonists for the Treatment of Type 2 Diabetes Mellitus (65)

GPR41 Cloned and demonstrated to be receptors for SCFAs/Short chain fatty acids (SCFAs) (69)

GPR43 Cloned and demonstrated to be receptors for SCFAs/Short chain fatty acids (SCFAs) (69)

GPR119 GPR119 agonists: prevention and/or treatment of diabetes, obesity, dyslipidemia, or related disorders. (70)

GPR75 New target in metabolic syndrome and cancer (20)

Table 1. Various GPRs' and Their Functions
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S is closely related to cardiovascular disease and type 2 
diabetes, but the connection between Met S and visceral 
obesity is even more significant, as it has also been linked 
to other chronic diseases such as brain cancer and some 
types of cancer (Avgerinos et al., 2019; Yates et al., 2012). 
20-HETE, an arachidonic acid metabolite and a vasoactive 
lipid whose formation is catalyzed by enzymes of the 
cytochrome P450 (CYP) 4A/F family, plays a critical 
role in the progression of insulin resistance, obesity, and 
metabolic syndrome (Issan et al., 2013; Peterson et al., 
2016; Tsai et al., 2009; Ward et al., 2006). Furthermore, 
animal studies have shown that obesity and Met S are 
linked by 20-HETE levels (Gilani et al., 2018; Joseph et 
al., 2017; Soler et al., 2018; Theken et al., 2012). Elevated 
ranges of 20-HETE are associated with excessive blood 

review, which will discuss its biological role, mode of 
action, and role in metabolic syndrome, obesity, and 
cancer development.

GPR75 and Metabolic Syndrome
Several risk factors, including abnormal cholesterol 

levels, high blood sugar levels, high blood pressure, 
and abdominal obesity, are associated with metabolic 
syndrome (Met S) (Cho et al., 2010). According 
to lifestyle, region, cultural factors, and degree of 
urbanization, the prevalence of Met S varies, which is 
difficult to measure. However, since Met S is about three 
times more common than diabetes, the global incidence 
can be estimated to be about one-quarter of the world 
population (Saklayen, 2018). It has been shown that Met 

Figure 1. GPR75 Tissue Expression based on RPKM (reads per kilo-base per million reads placed)

Figure 2. Binding 20HETE to GPR75 Leads to Dissociation of Gαq11 from GPR75. Gαq11 activates PLC, convertor 
of PIP2 to IP3 and DAG. IP3 increases cytoplasm Ca2+ through the releasing ERK Ca2+. DAG cooperates with Ca2+ 
to activate PKC and eventually PI3K/AKT is activated. Another pathway activates NF-KB via MAPK and initiate 
downstream cascade.
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pressure in lots of experimental models (Sacerdoti et al., 
1989; Wang et al., 2006; Wang et al., 1999; Wang et al., 
2001). 

There is additional evidence that 20-HETE is a very 
important regulator of sodium homeostasis in animal 
models (Hoagland et al., 2003; Roman et al., 2006) and 
humans (Laffer et al., 2003). Regulation of vascular 
tone (Alonso-Galicia et al., 1997; Garcia et al., 2015; 
Kauser et al., 1991) and renal function (Escalante et al., 
1994; Sánchez-Mendoza et al., 2000; Zou et al., 1994) is 
also affected by the 20-HETE level. On the other hand, 
there is an association between 20-HETE and increased 
triglycerides and decreased HDL in Met S patients (Fava 
et al., 2012).

20-HETE phosphorylates the epidermal growth factor 
receptor (EGFR), leading to the release of endothelial 
nitric oxide synthase (NO), producing inflammatory 
cytokines, and promoting the activity and expression of 
angiotensin-converting enzyme (ACE). To evaluate G1T1 
and GPR75 in the phosphorylation of EGFR by 20HETE, 
small interfering RNAs (SiRNA) against GPR75 and 
G1T1 were used, and it was found that the effects induced 
by 20HETE were completely inhibited in this case (Cheng 
et al., 2014; Cheng et al., 2012; Cheng et al., 2008; Garcia 
et al., 2016; Khodadadi et al., 2022).

As a result of blocking GPR75 in humans, energy 
intake and body fat storage are reduced. In a study, two 

groups of mice were used: first, Cyp4a12 transgenic mice 
whose blood 20HETE was increased by doxycycline, 
and second, mice whose GPR75 was inhibited by a bolus 
of GPR75-targeted shRNA. Cyp4a12 transgenic mice 
treated with doxycycline resulted in their blood pressure, 
ACE expression, and activity being increased, while the 
other group, which was given a bolus of GPR75-targeted 
shRNA at the same time, did not show any increase in 
blood pressure and ACE expression had not changed 
(Garcia et al., 2017). 20HETE activates GPCR-EGFR 
by a c-Src kinase that starts Raf / MEK / ERK signal 
pathway cascade (Alonso-Galicia et al., 1999; Cheng 
et al., 2012). 20-HETE binding to GPR75 triggers 
signaling pathways in endothelial and vascular smooth 
muscle cells, which cause vascular ACE expression, 
hypertension, endothelial dysfunction, remodeling, and 
contractility (Garcia et al., 2017). 20-HETE binding to 
GPR75 results in cleavage of Gαq/11 from GPR75 and 
associated GPCR-kinase interacting protein1 (G1T1) to 
GPR75, eventually causing phosphorylation of the large 
conductance voltage and calcium-activated potassium 
subunit β subunit of the Ca2+-activated K+ channels 
(Bkca), which is ultimately responsible for inactivating it 
and causing vasoconstriction (Alioua et al., 2002).

GPR75 and Cancer
Until now, three ligands have been dedicated to 

Figure 3. CCL5 has Two Receptors Including CCR5 and GPR75. Binding of CCL5 to GPR75 initiate cascade signal 
pathway which AKT-ERK act as upstream regulator. AKT-ERK triggers MDM2, IKKα, and mTOR resulting in 
proliferation and differentiation.
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GPR75, including RANTES, CCL5, and 20HETE; each 
of them triggers a variety of signaling pathways (Cárdenas 
et al., 2020). As a result of 20HETE bonding with GPR75, 
PKC/PLC, C-src, MAPK, NF-κB, and AKT signaling 
pathways are activated, leading to pro-inflammation, 
diabetes, vascular dysfunction remodeling, hypertension, 
and malignant cellular transformation (Cárdenas et al., 
2020; Pascale et al., 2021). 20HETE increases the invasive 
nature of non-small lung cancer cells and the metastasis 
potential in prostate cancer cells. It has been shown that 
blocking the 20-HETE pathway can reduce the risk of 
brain, breast, and kidney cancer, as well as the migration 
and invasiveness of triple-negative breast cancer cells. By 
incubating Pc-3 cells with 20HETE, the PKC& signaling 
pathway switched from the cytoplasm to the plasma 
membrane. In addition, E-cadherin expression slowed 
down, but the expression of mesenchymal, vimentin 
markers, and MMP-2 activity increased. Generally, 
20HETE via GPR75 may enhance the metastatic 
properties of cancer cells. Furthermore, 20HETE regulates 
the polymerization of actin by increasing the expression 
of stress fibers and focal adhesion kinase, which in turn 
affects cell adhesion and polarization, thus affecting cell 
migration and invasion (Cárdenas et al., 2020).

Another ligand of GPR75 is CCL5, which causes 
phosphorylation and activation of AKT, glycogen synthase 
kinase B, and extracellular signal-regulated kinase 
(ERK1/2), without changing the amount of these proteins. 
It has been reported that, by knocking down GPR75 via 
Crisper-Cas9, CCL5’s potential to activate ERK has been 
blocked. (Dedoni et al., 2018) (Figure2).

ERK is a member of the mitogen-activated protein 
kinase (MAPK) family that regulates proliferation and 
differentiation processes. ERK transmits extracellular 
signals to intracellular targets. It has been determined that 
dysregulation of the ERK pathway is one of the causes 
of cancer spread. In addition, high expression of MAPK/
ERK could promote epithelial-mesenchymal transition 
(EMT) and the expression of matrix metalloproteinases 
(MMPs) (Jadid et al., 2023; Maik-Rachline et al., 2019; 
Song et al., 2018). 20HETE competes CCL5 for binding 
to the GPR75. 20HETE through GPR75 increases ica2+, 
the inositol phosphate (IP-1), and B-arrestin, while CCL5, 
via GPR75, prevents 20HETE binding to this receptor so 
the mentioned pathways will be inhibited (Pascale et al., 
2021). B-arrestin is a family of proteins that regulate the 
signal pathway of various GPCR. β-arrestin is a family 
of proteins that regulate the signal pathway of various 
GPCRs. β-arrestin adjusts cell proliferation, migration, 
invasion, anti-apoptotic, and drug resistance pathways 
(Song et al., 2018). Binding 20HETE to GPR75 in human 
endothelial cells leads to the dissociation of subunit Gαq11 
and C-src from G1T1, which is bound to GPR75. Then, 
Gαq11 activates PLC, which is a converter of PIP 2 to 
IP3 and diacylglycerol. These events cause PKC to be 
phosphorylated and activated, resulting in the activation of 
nuclear factor K-B (NF-κB) (FanRoman, 2017) (Figure3).

It has been shown that tumors that continuously activate 
NF-κB result in resistance to chemotherapy. On the other 
hand, some cancers that are treated with chemotherapy 
or radiotherapy increase the activity of NF-κB, PI3K/

AKT, and RAS/MAPK signaling pathways, which 
activate NF-κB and are substantial in various pathways 
of cancer development such as proliferation, migration, 
and apoptosis (BonizziKarin, 2004). Another activity of 
NF-κB has been detected in several malignancies. NF-κB 
regulates apoptosis by activating several genes which 
suppress cell death via both mitochondrial pathways 
(intrinsic) and death receptors (extrinsic). It also has a role 
in the expression of several members of the anti-apoptosis 
family, such as BCL2. NF-κB also regulates several cell 
cycle genes, such as cyclins D1, D2, D3, cyclin E, C-myc, 
and C-mycb, which contribute to the proliferation and 
invasion of cancer cells (Dolcet et al., 2005; Sahabi et al., 
2022). RANTES is another ligand of GPR75 that activates 
MAPK through the PLC/PI3K/AKT signal pathway. 
Phosphorylation and activation of AKT and MAPK result 
in proliferation and cell survival (Ignatov et al., 2006). 
The PI3K/AKT/mTOR signaling pathway plays a critical 
role in maintaining cellular function. PI3K initiates this 
pathway by activating AKT, which subsequently regulates 
many downstream proteins, playing an important role 
in cell survival, proliferation, migration, metabolism, 
angiogenesis, and inhibiting apoptosis. Furthermore, 
increasing Ica2+ can cause the formation of a Ca2+/
calmodulin complex and activate calcium/calmodulin-
dependent kinase-kinase (CAMKK). CAMKK causes 
phosphorylation and activation of AKT. One of the 
pathways that AKT inhibits apoptosis is phosphorylation 
of Bad in serine 112 and phosphorylation of caspase 9. On 
the other hand, Bad can be phosphorylated and inhibited 
by other kinases such as PKA, Ca/CAMKII, and Ca2+/
CAMKIV in serine 136. Generally, the PI3K/AKT/mTOR 
signaling pathway and MAPK-ERK pathway have been 
observed in many cancer types, including neuroendocrine 
neoplasms (RevathideviMunirajan, 2019). 

GPR75 and Obesity
Obesity is a multi-factorial disease that is a serious 

public health problem, associated with a large proportion 
of disorders, including type 2 diabetes, hypertension, 
cardiovascular disease, and some particular cancers  
(LoosYeo, 2022). 

Recent studies have shown that GPR75 is associated 
with obesity. In a study, the genomes of 645,626 people 
from different countries were sequenced and a significant 
relationship between the GPR75 number and body mass 
index (BMI) was observed. The lower the expression of 
GPR75, the more balanced the weight. The case with the 
protein-truncating variant in GPR75 led to a lower BMI, 
more appropriate weight, and reduced risk of obesity. It 
has been shown that knocking out GPR75 in mice causes 
resistance to weight gain. In an experiment, three groups of 
mice with GPR75-/- and GPR75 +/- genotypes and a wild 
type were fed a high-fat diet (HFD), and after 14 weeks it 
was observed that the GPR 75 -/- had about 44% and the 
GPR 75 +/- had about 25% less weight gain than the wild 
type group and also had more suitable blood sugar, insulin 
sensitivity, and a lower ratio of leptin to adiponectin 
(Akbari et al., 2021; Alagheband et al., 2022; Powell et 
al., 2022). Mice whose GPR75 had been knocked out 
were fed less than wild-type (WT) mice, and their oxygen 
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consumption and energy expenditure varied from that of 
the WT group. This evidence suggests that the energy 
consumption of mice whose GPR75 was knocked out was 
higher than the energy that they received. These mice were 
also thinner, more sensitive to insulin, had lower blood 
insulin levels, and improved glucose tolerance. GPR75 
could be a potential target for drug-targeting treatment, 
the inhibition of which could result in a reduction of body 
fat as well as improvements in other metabolic processes 
(Powell et al., 2022). 20-HETE is one of the GPR75 
ligands that triggers a variety of signaling pathways. 
According to numerous studies, 20-HETE is linked to 
the progression of obesity, insulin resistance, and Met 
S. Clinical observations have shown that a value of 20-
HETE in plasma and urine may be associated with BMI. In 
vitro studies have demonstrated that 20-HETE stimulates 
adipogenesis and also inhibits insulin activity. Bonding of 
20-HETE with GPR75 stimulates the IP3/DAG signaling 
pathway and results in increased intracellular Ca2+ 
and activation of PKCα. Afterwards, PKCα activates 
phosphatase, which is responsible for dephosphorylating 
the insulin receptor, so the insulin receptor is not activated 
(Gilani et al., 2021). A study observed that 20HETE 
expression is at a high level in cyp4a14-/- mice. In this 
study, two groups of mice were inducted. one group was 
fed by normal diet and the other group was fed by HFD. 
HFD-fed mice gained much more weight than mice fed 
a normal diet. In the HFD group, applied 20-SLA, as 
a 20HETE antagonist, was given to mice. While HFD 
developed hyperglycemia and hyperinsulinemia, 20-SLA 
decreases the effect of HFD on gain weight and normalized 
blood sugar and insulin levels. This information suggests 
that 20HETE is associated with, obesity due to HFD and 
insulin resistance, and impaired insulin signaling pathway.

A study revealed that 20-HETE expression is at a 
high level in cyp4a14-/- mice. In this study, two groups 
of mice were induced; one group was fed a normal diet 
and the other group was fed a HFD. HFD-fed mice gained 
much more weight than mice fed a normal diet. In the 
HFD group, the 20-SLA, as a 20-HETE antagonist, was 
given to mice. While HFD developed hyperglycemia and 
hyperinsulinemia, 20-SLA decreased the effect of HFD on 
weight gain and normalized blood sugar and insulin levels. 
This information suggests that 20-HETE is associated with 
obesity due to HFD and insulin resistance, and impaired 
insulin signaling pathway (Gilani et al., 2018).

In conclusion, targeted therapy has attracted a great 
deal of attention from researchers in recent years due to 
its specificity in the treatment of diseases such as obesity, 
metabolic syndrome, and cancer. Therefore, there are 
many attempts to find effective targets. GPR75 is a new 
member of the GPCR family with an important role in 
obesity, metabolic syndrome, and cancer. According to 
recent studies, knocking down GPR75 leads to a reduced 
range of energy intake and body fat stores. In addition, 
GPR75, through signaling pathways including PI3K/
Akt, RAS/MAPK, and PKC/PLC, has an effect on pro-
inflammation, proliferation, and malignant transformation. 
Since 20-HETE is one of the GPR75 ligands and it 
stimulates adipogenesis and also inhibits insulin activity, 
it can be said that GPR75 plays a critical role in this 

process. Based on these findings, GPR75 could be a 
potential molecular target that needs more research for 
the development of existing treatments.

Non-standard Abbreviations and Acronyms
20-HETE: 20-hydroxy-5,8,11,14-eicosatetraenoic acid
ACE: angiotensin-converting enzyme 
AKT: protein kinas B
BCL2: B-cell lymphoma 2
Camkk: calcium/calmodulin dependent protein kinase 

kinase
C-src: Cellular proto-oncogene tyrosine-protein kinase
CYP: Cytochrome P450
DAG: Diacylglycerol 
EGFR: epidermal growth factor receptor
ERK: extra cellular signal-regulated kinase
G1T1: G-protein-coupled receptor kinase interactor-1
GPCR: G-protein Coupled Receptor
GPR75: G protein coupled receptor75
iCa2+: Intracellular Ca2+
IP-1: Inositol Phosphate
IP-3: Inositol 3 phosphate
MAPK: Mitogen-activated protein kinase
MDR: Multi-Drug Resistance
Met S: Metabolic Syndrome
NO: nitric oxide synthase
PI3K: phosphoinositol 3kinase
PKC: Protein kinas C
PLC: phospholipase C
shRNA: Short hairpin RNA
SiRNA: small interfering RNAs 
TM: transmembrane 
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