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Introduction

Medicinal plants have been proven to be an alternative 
approach for treating various health conditions. Although 
synthetic drugs have taken traditional healing to some 
degree, the revival and attention of herbal medicines are 
very important (Mirzaeian et al., 2021). Medicinal plants 
are affordable and eco-friendly, with fewer side effects 
than synthetic drugs. In fact, among the modern medicines 
currently in use, approximately 40% come from nature, 
while 60% of anticancer and 75% of infectious diseases 
drugs are natural or derivatives. Furthermore, some of these 
plants have attracted scientists’ interest in investigating 
cancer treatment. Additionally, phytoconstituents have 
been essential in developing clinically valuable prospects 
for treating neoplasms (Gupta et al., 2021). 

Cleome rutidospermae is an annual herbaceous plant 
known as the Fringed Spider Flower. Besides being a 
weed, it is also an important medicinal plant widely found 
in the tropics. Furthermore, it is ayurvedically, Greek, 
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and local Kabiraj used to manufacture bread. Its roots or 
seeds are used as a stimulant, antiscorbutic, anthelminthic, 
rubefacient, vesicant, and carminative. The plant is also 
an analgesic, antipyretic, anti-inflammatory, antimicrobial, 
antioxidant, anti-seizure, anti-diabetic, and diuretic, with 
wound healing and laxative activity (Ghosh et al., 2019). 
Its herb contains water (81.0 g), energy (239 kJ/57 kcal), 
protein (5.5 g), fat (0.9 g), carbohydrate (10.1 g), Fiber 
(1.7 g), Ca (454 mg), Mg (38 mg), P (59 mg), and Fe (2.7 
mg) per 100 g of edible portion, tannins, lipids, amino 
acids, flavonoids, cardiac glycosides, alkaloids, steroids, 
saponins, terpenoids, polyphenols, and phlorotannin 
pentose and reducing sugars (Ghosh et al., 2019). 

Natural ingredients are considered an essential 
source of discovery for anticancer treatments, and many 
cytotoxic drugs in clinics and hospitals today are derived 
from plants and other natural sources (Sammar et al., 
2019). Phytochemicals from plant extracts are included 
in important sources of natural products that have 
shown excellent cytotoxic activity. However, plants of 
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different origins show diverse chemical compositions 
and bioactivity. Therefore, discovering new plant-based 
anticancer agents from other parts is always challenging 
(Khan et al., 2022). 

In this study, two compounds were isolated, namely 
(1) Stigmasta-5,22-dien-3-ol (STML) and (2) 1,2-Benzene 
dicarboxylic acid, 1,2-bis (2-Ethylhexyl) esters (DEHP) 
using 1D, 2D NMR, and mass spectrometry. Meanwhile, 
the activity of CRH was tested against several cancer cell 
pathways using the SRB method. These compounds have 
never been reported or isolated from this plant.

Materials and Methods

Plant material
The CRH was obtained from Makassar City, 

Tamalanrea Sub-District, South Sulawesi Province, 
Indonesia. The plant identification was conducted at 
the Botanical Laboratory in the Department of Biology, 
Mathematics, and Natural Sciences, Universitas Negeri 
Makassar. Furthermore, the plant samples were washed 
with running water, wet sorted, cut into small pieces, dried 
in a 40-50 oC oven for three days, dry sorted, and stored 
in containers tightly sealed with silica gel.

Extraction and isolation
The extraction of Cleome rutidospermae herb (2 kg) 

with hexane solvent (1:10 ml) was conducted using the 
maceration method at room temperature for three days 
(Tiwari et al., 2011; Yasir et al., 2022). It was stirred once 
daily and filtered using a vacuum pump with whatmanTM 
no 42-filter paper. Subsequently, the liquid extract was 
evaporated to obtain a 35 g viscous extract using rotavapor 
and a water bath. The extract was partitioned using 
petroleum ether and methanol (1:1) three times as much 
as 250 ml. The petroleum ether and methanol extracts 
obtained were 29.2 g and 5.74 g, respectively.

The methanol extract was partitioned with hexane 
and methanol-water comparison (1:1) 3 times as much as 
300 ml to obtain methanol-water and hexane partitioned 
extract of 0.4753 g and 5.3247 g, respectively. The hexane 
partitioned extract was isolated using a normal phase (NP) 
silica chromatography column, with hexane and ethyl 
acetate mobile phase (3:1) 3 times as much as 300 ml. 
The partitioned using 200 ml ethyl acetate and 200 ml 
methanol to give 1-5 sub-fraction, sub-fraction (2) 0.0514 
g washed with hexane, and insoluble hexane (b) 0.0230 g. 
Subsequently, the soluble hexane (a) 0.0284 g was isolated 
using an NP silica chromatography column with hexane 
mobile phase and ethyl acetate (4:1). This aims to obtain 
(1) STML 0.0202 g amorphous powder. Sub-fraction 
(3) 0.0644 g was washed with acetone to obtain soluble 
and insoluble acetone of (b) 0.0086 g and (a) 0.0438 g, 
respectively. The insoluble acetone was isolated using 
PTLC, NP silica with hexane mobile phase, and ethyl 
acetate (5:1) to obtain (2) DEHP 0.0335 g yellowish oil 
compound.

Cytotoxicity activity
The samples of CRH weighed as much as 1 mg 

with a 20 μg/ml concentration. The test used five lines 

of human tumor cells, namely A549 (lung carcinoma), 
MDA-MB-231 (estrogen receptor-negative, progesterone 
receptor-negative, and HER2-negative breast cancer), 
MCF-7 (estrogen receptor-positive, HER2-negative 
breast cancer), KB (isolated initially from epidermoid 
carcinoma of the nasopharynx), and KB-VIN (vincristine 
(VIN)-resistant KB subline showing MDR phenotype by 
overexpressing P-gp). All the cell lines were obtained from 
Lineberger Comprehensive Cancer Center (UNC-CH) or 
ATCC. Furthermore, 4,000−12,000 cells were seeded in 
the microtiter plate of 96 wells, with each test sample 
in DMSO (negative control). Subsequently, 10% 
trichloroacetic acid was added after 72 hours, followed by 
the 0.04% sulforhodamine B method. DMSO substances 
with 0.1% v/v concentration showed no inhibitory 
effect on cancer cells (Rahim et al., 2018). The growth 
(%) was calculated on a plate-by-plate basis for tested 
wells compared to the control. It was also articulated 
using the following formula, Average absorbance of 
test wells × 100 / Average absorbance of control wells 
(Houghton et al., 2007; Lamkanfi et al., 2008).

Results

Isolation compound
The CRH was checked profile using 1H NMR 

(Figure 1) and contained unsaturated fatty acids, saturated 
fatty acids, lipids, glycerol, ω-3 fatty acids, cholesterol, 
and position of functional groups in Table 1. It was 
partitioned using petroleum ether, and MeOH with the 
ratio of (1:1). The soluble layer of MeOH was evaporated 
and further partitioned into a combination of hexane, 
MeOH-H2O (1:1) as much as 300 ml. A combination 
of various chromatography techniques was also used to 
separate the hexane layer from obtaining the following 
compounds (1) STML and (2) DEHP with reported 1D 
spectroscopic, 2D NMR, and mass spectrometry data. 
The STML (1) is a white amorphous powder and steroid 
group compound based on ESI+ MS m/z 413.18 [M + 
H]+ spectrometry mass data with the molecular formula 
C29H48O Figure 3. According to the 1H NMR spectroscopy 
in Table 2 showing the presence of 5 methyl group signals, 
the proton methine, which appeared at position δH 5.35 
(1H, br d, J=5.50 Hz), δH 5.17 (1H, dd, J=8.24 Hz), δH 
4.99 (1H, dd, J=8.70 Hz), and δH 3.52 (1H, septet) were 
emerging hydroxyl group signal positions or methylene 
protons. That is observed in carbon positions using 
DEPT 135 data. Furthermore, the 13C NMR  showed 
the compound had 29 carbons, and DEPT 135 data 
indicated the function of carbon with 5 protons methyl 
and methylene group. Meanwhile, the carbon position of 
methine was δC 71.82, which binds to hydroxyl groups, 
δC 121.72, δC 138.32, δC 129.27 as a double bond, and 
carbon without protons at position δC 140.75, δC 36.51, 
and δC 42.21. 

NMR’s 2-dimensional data, including HMQC and 
HMBC, showed the correlation between hydrogen and 
carbon in Figure 2, blue line, i.e., methyl proton δH 1.02 
(3H, d, J = 7.79 Hz) correlated with carbon δC 36.51 
(C-10), δC 37.25 (C-1), δC 50.15 (C-15 9), and δC 140.75 
(C-5). Proton methyl δH 1.03 (3H, s) correlated with δC 
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Figure 1. 1H NMR Spectra of Cleome Rutidospermae Herb Hexane Extract (CRH). Assignments (A) 1 to 17 are 
reported in table 1 (400 MHz, CDCl3). (A) = Major signal; (B) = (A) An expanded 

Figure 2. Structure of Compound (1) Stigmasta-5,22-dien-3-ol (STML) and (2) 1,2-Benzene dicarboxylic acid, 
1,2-bis (2-Ethylhexyl) ester (DEHP)  

40.51 (C-20), δC 55.94 (C-17), and δC 138.32 (C-22). 
Furthermore, δH 0.68 (3H, m) correlated with δC 55.94 
(C-17), δC 42.21 (C-13), and δC 39.77 (C-12), while δH 
0.80, δC 11.87 (3H, m) correlated with carbon δC 18.98 
(C-28) and δC 51.24 (C-24). In addition, δH 0.80, δC 
12.05 (3H, m) correlated with δC 39.68 (C-25) and δC 
51.24 (C-24).

The correlation data with protons using 1H-1H Cosy 
in figure 2, the thick red line showed proton H3 δH 3.52 
(1H, septet) correlated with H2 and H4, H6 δH 5.35 (1H, 
br d, J=5.50 Hz) with H7, H22 δH 5.17 (1H, dd, J=8.24 
Hz) correlated with H20 and H23 δH 4.99 (1H, dd, J=8.70 
Hz) and proton H24. Furthermore, 1D and 2D NMR data 

indicated that this compound first reported in the plant 
was steroid (1) STML. 

The DEHP (2) is a yellow oil and phthalate group 
compound. According to spectrometry, mass data gave a 
molecular weight of ESI+ MS m/z 391.20 [M + H]+ with 
the C24H38O4 formula Figure 3. The same compound was 
previously isolated from Aloe vera plants and discovered 
to have antileukemic as well as antimutagenic effects 
(Lee et al., 2010). The 1H NMR spectroscopy data in 
Table 2 showed the presence of 4 methyl group signals, 
ten methylene protons, and four methines observed at 
the proton position using DEPT 135 and HMBC data. 
According to 13C NMR , this compound has 24 carbons, 
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Peak (A) δ (ppm) Multiplicity Compound/proton References δ (ppm)

1 8.1 s Trans olefinic 8.1, d (Hasan et al., 2007)

2 7.24 s Chloroform (solvent)/(CHCl3) 7.26 (de Combarieu et al., 2015; Gottlieb et 
al., 1997)

3 5.37-5.30 m All unsaturated fatty acids/(CH = CH)
Methylene protons/(CH2)

5.36 (de Combarieu et al., 2015)
5.37 – 5.30, m 2H (Shirey et al., 2018)

4 5.12-5.07 m Glycerol (triacylglycerols)/CHOCOR, 
Glycerol (sn-1,2-diacylglycerols)/CHOCOR

Methynic (CH), Aliphatic/(CH2)

5.27; 5.08 (de Combarieu et al., 2015)
5.12; 5.07 (Que et al., 2000; Sivakumar et 

al., 2013)

5 4.57 d, J=6.9 Hz Glycerol (all acylglycerols)/CH2OCOR 4.30 (de Combarieu et al., 2015)

6 4.28 dd, J=11.9, 4.3 
Hz

Vinyl protons
Glycerol (all acylglycerols)/CH2OCOR

4.28 (d, J = 3.2 Hz) (Breen et al., 2005)
4.15 (de Combarieu et al., 2015)

7 4.13 q, J=6.0 Hz Glycerol (sn-1,3-diacylglycerols)/CHOH 
Methylene group/(CH2O)

4.07 (de Combarieu et al., 2015)
4.13; q, J = 6 Hz (Reheim & Tolba, 2016)

8 3.64 s Fatty alcohols/(CH2OH)
Polyethylene glycol/(OCH2CH2)

3.64 (de Combarieu et al., 2015)
3.64, s (Fang et al., 2014)

9 2.78 t Linoleyl and linolenyl/(CH=CHCH2CH = CH)
Methylene/(CH2)

2.81 (de Combarieu et al., 2015)
2.78, t (Flores et al., 2013)

10 2.74-2.79 t, m ω-3 fatty acids, 
Ethylene (CH2CH2)

2.74, t; 2.80−2.73, m (Li et al., 2018; Vi-
cente et al., 2015)

11 2.25 m Methylenic/(CH2) 2.25 (Durand et al., 2020)

12 1.94-2.09 m Allylic (CHCHCH2) 1.94–2.15 (Hwang et al., 2017)

13 1.65 s All acyl chains/(CH2CH2COOH)
Methylene/(CH2)

1.64 (de Combarieu et al., 2015)
1.65 (Tshilanda et al., 2014)

14 1.57-1.58 s-m Lipids/(CH2CCO) 1.58 (Righi et al., 2014)

15 1.2-1.4 m Saturated fatty acids/(CH)n 1.2-1.4, m (Knothe & Kenar, 2004)

16 1.83-0.66 m Cholesterol and methyl groups/(CH3) 0.66; 1.83 (Park et al., 2011; J. Zhao et al., 
2011)

17 0 s Tetramethylsilane/(TMS) 0.02, s (Hoffman, 2006)

Table 1. 1H NMR Spectra Signal from Cleome Rutidospermae Herb Hexane Extract (CRH) Assignments (A) 1 to 17

413.18

(1)

391.20

(2)

Figure 3. Data Mass Spectra of (1) Stigmasta-5,22-dien-3-ol (STML) ESI+ m/z 413.18 [M + H]+ and (2) 1,2-Benzene 
dicarboxylic acid, 1,2-bis (2-Ethylhexyl) ester (DEHP) m/z 391.20 [M + H]+ using Electrospray Ionization (ESI) 
mass spectrometry. 

while DEPT 135 data showed a carbon position with two 
methyl protons at δC 14.13 and δC 11.04, respectively, 
with methylene carbon at δC 23.06, δC 29.00, δC 39.43, 

δC 23.81. Each of the four methylene protons can be 
observed at HMQC and HMBC positions, and the 2 proton 
acetolactone position δC 68.23 (CH2OCO). Furthermore, 



Asian Pacific Journal of Cancer Prevention, Vol 24 3349

DOI:10.31557/APJCP.2023.24.10.3345
Cytotoxic Activities from the Crude Extract of Cleome Rutidospermae

STML (1) DEHP (2)
Position DEPT 13C (ppm) 1H (ppm) Position DEPT 13C (ppm) 1H (ppm)
1 CH2 37.25 br d, 5.35 (1H) J=5.50 Hz 1 C 132.53 septet, 3.51 (1H)
2 CH2 31.66 dd, 5.17 (1H) J=8,24 Hz 2 C 132.53 br d, 5.33 (1H)
3 CH 71.82 dd, 4.99 (1H) J=8,70 Hz 3 CH 128.88 dd, 5.22 (1H)
4 CH2 42.30 septet, 3.52 (1H) 4 CH 130.95 dd, 5.16 (1H)
5 C 140.75 m, 0.82 (3H) 5 CH 130.95 br q, 2.42 (1H)
6 CH 121.72 m, 0.82 (3H) 6 CH 128.88 br s, 4.68 (2H)
7 CH2 25.41 d, 1.02 (3H) J=7,79 7 C 167.83
8 CH 31S.90 s, 1.03 (3H) 8 CH2 68.23
9 CH 50.15 m, 0.80 (3H) 9 CH 38.8
10 C 36.51 m, 0.68 (3H) 10 CH2 23.81
11 CH2 21.09 11 CH3 11.04
12 CH2 39.77 12 CH2 30.43
13 C 42.21 13 CH2 29
14 CH 56.87 14 CH2 23.06
15 CH2 24.37 15 CH3 14.13
16 CH2 28.93
17 CH 55.94
18 CH3 12.26
19 CH3 19.41
20 CH 40.51
21 CH3 21.26
22 CH 138.32
23 CH 129.27
24 CH 51.24
25 CH2 39.68
27 CH 56.76
28 CH3 18.98
26 CH3 12.05
29 CH3 11.87

 Table 2. Data 1H NMR, 13C NMR, and DEPT 135 of (1) Stigmasta-5,22-dien-3-ol (STML) and (2) 1,2-Benzene 
dicarboxylic acid, 1,2-bis (2-Ethylhexyl) ester (DEHP) 

the part of two carbon methines on the benzene framework 
is located at δC 128.88 and δC 130.95 and had a proton 
correlation with carbon at δC 130.95. 

NMR’s 2-dimensional data including HMQC and 
HMBC showed the correlation between hydrogen and 
carbon at (Figure 2, blue line) i.e. 2 methyl protons δH 
0.90 (3H, m) (C-15, C-15’) correlated with carbon δC 
23.06 (C-14, C-14’), and δC 29.00 (C-13, C-13’). Also, 
0.92 (3H, s) (C-11, C-11’) correlated with δC 23.81 (C-10, 
C-10’), and δC 38.80 (C-9, C-9’), δH 4.22 (2H, n) (C-8) 
with carbon carbonyl position δC 167.83 (C-7, C-7’). 
Furthermore, two protons methine δH 1.42 (1H, m) (C-9, 
C-9’) correlated with carbon (C-11, C-11’, C-10, C-10’, 
C-12, C-12’), methylene protons δH 1.32 (2H, m) (C-
10, C-10’) correlated with carbon δC 38.80 (C-9, C-9’) 
and δC 23.81 (C-10, C-10’). δH 1.33 (2H, m) (C-13, 
C-13’) correlated with δC 30.41 (C-12, C-12’), and two 
methylene protons 1.30 (2H, m) (C-14, C-14’) correlated 
with δC 29.00 (C-13, C-13’) and δC 14.13 (C-15, C-15’). 
In addition, the proton methine H-3 δH 7.70 (1H, m) 

correlated with carbon δC 130.95 (C-4), δC 132.53 (C-2), 
and methine H-6 δH 7.70 (1H, m) with carbon δC 130.95 
(C-5), and δC 132.53 (C-1).  

The correlation data with protons using 1H-1H Cosy 
(Figure 2, thick red line) showed that proton methyl 
H-15, H-15’ δH 0.90 (3H, m) correlated with H-14, 
H-14’. Furthermore, H-11, H-11’ 0.92 (3H, s) correlated 
with H-10, H-10’ δH 1.32 (2H, m), while H-10, H-10’ 
correlated with methine H-9, H-9’ δH 1.42 (1H, m), and 
proton H-9, H-9’ with H-8, H-8’ δH 4.22 (2H, n). 

Also, 1D and 2D NMR data indicated that this 
compound was a group of phthalate acid (2) DEHP 
and was first reported in this plant. In addition, it was 
isolated from Streptomyces bangladeshensis sp. Nov 
(Al-Bari et al., 2005), Aspergillus awamori (Lotfy et al., 
2018), Aloe vera (Lee et al., 2010), Calotropis gigantea 
flower (Linn.) (Habib and Karim, 2009), Penicillium 
janthinellum (El-sayed et al., 2015), Acinetobacter sp. 
SN13 (Xu et al., 2017), and Benincasa hispida flower 
(Du et al., 2006).
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cancer, liver cancer, cervical cancer, and colon cancer 
(Lotfy et al., 2018). Compound Bisphenol A combination 
with DEHP mainly induced the expression of HDAC6, 
inhibited tumor suppressor gene PTEN upregulated the 
expression of oncogene c-MYC. Eventually, it elevated 
the susceptibility to thyroid tumors (Zhang et al., 2022).
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development one example was the paclitaxel compound 
isolated from Taxus brevifolia for chemotherapy use 
(Liebmann et al., 1993). This STML (1) was first reported 
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known as stigmasterol once isolated from the Cleome 
gynandra (Ranjitha et al., 2009), Cleome paradoxa 
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