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Introduction

Bladder cancer is a type of cancer that develops in the 
tissues of the bladder, the organ responsible for storing 
urine. It is particularly prevalent among older adults 
and ranks as one of the most common forms of cancer. 
Several causes and risk factors have been identified, 
including smoking, which poses the most significant 
risk. The probability of developing bladder cancer is at 
least three times higher in smokers than in non-smokers. 
Occupational exposure to certain chemicals like aromatic 
amines found in dyes, paints, and solvents also increases 
the risk. Bladder cancer is more commonly observed in 
older adults and affects men more frequently than women. 
Chronic bladder inflammation resulting from urinary 
tract infections or irritation may elevate the risk, as does 
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previous cancer treatment involving radiation or specific 
chemotherapy drugs.

Although the absence of a functional National Cancer 
Registry in Sudan makes it challenging to provide precise 
cancer burden data, GLOBOCAN’s estimate suggests 
that cancer ranks as the second most common cause of 
mortality among the Sudanese population. In 2020, there 
were 598 newly diagnosed bladder cancer cases and 
409 fatalities attributed to bladder cancer (International 
Agency for Research on Cancer, 2020).

Based on the projections of the American Cancer 
Society (2023), it is expected that, in the United States, 
there is an estimated number of 82,290 newly diagnosed 
cases of bladder cancer. Of these cases, around 62,420 
will affect men, while about 19,870 will occur in women. 
Additionally, it is estimated that there will be around 
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16,710 deaths from bladder cancer, with approximately 
12,160 occurring in male and the remaining in female. It is 
worth noting that both the incidence of new bladder cancer 
cases and the mortality rates associated with the disease 
have been declining in recent years. While bladder cancer 
ranks as the fourth most common cancer in men, it is less 
prevalent among women (National Cancer Institute, 2023).  

Treatment options for bladder cancer vary depending 
on the stage and severity of the disease. Surgery is a 
common approach and may involve transurethral resection 
of bladder tumour (TURBT), partial cystectomy (removing 
a portion of the bladder), or radical cystectomy (removing 
the entire bladder). Intravesical therapy is another option, 
which entails administering medications directly into the 
bladder. High-energy radiation is employed in radiation 
therapy to eradicate cancer cells, while chemotherapy 
employs drugs to kill cancer cells or impede their growth. 
Immunotherapy is an emerging treatment modality that 
stimulates the immune system to identify and combat 
cancer cells, offering a promising approach for bladder 
cancer patients. 

It is crucial to understand that treatment approaches 
may vary, and individualized treatment plans are 
developed by a team of healthcare experts who consider 
the unique circumstances of each patient’s case.

In the field of survival analysis, it is common 
for researchers to utilize Kaplan-Meier estimates or 
the log-rank test, as well as semi-parametric models 
like the Cox proportional hazards model. Alternatively, 
analysts may also consider parametric models based on 
well-known distributions, taking into account covariates 
(Cox, 1972). In the realm of cancer research, the utilization 
of the Weibull distribution is widespread for its flexibility 
in modelling survival data (Bradburn et al., 2003b). 
It offers several benefits, including the ability to capture 
various hazard rate patterns such as decreasing, constant, 
and increasing hazards over time. This flexibility is 
particularly useful when analysing cancer survival data, 
as the hazard rates can exhibit different trends throughout 
the disease progression. Researchers rely on the Weibull 
distribution to estimate survival probabilities, evaluate 
the influence of covariates on survival outcomes, and 
compare survival rates among different patient groups 
or treatments. The Weibull distribution’s versatility and 
capacity to accommodate diverse hazard rate patterns 
make it a valuable tool in cancer research. However, 
medical research datasets often require more sophisticated 
parametric models. Consequently, to address this 
challenge, numerous authors in the existing literature 
have introduced novel classes of parametric distributions 
that build upon the Weibull distribution. These include 
the exponentiated Weibull distribution proposed by 
Mudholkar and Srivastava (1993), the generalized 
modified Weibull distribution introduced by Carrasco et 
al., (2008), the log-beta Weibull distribution presented by 
(Ortega et al., 2013), the EWE distribution suggested by 
Elgarhy et al., (2017), and the X-Gamma inverse Weibull 
distribution proposed by Ibrahim and Almetwally (2021). 
These new distributions have been developed to better 
capture the characteristics of medical data and provide 
improved modelling approaches. 

Survival data analysis, including studies focused 
on cancer, often involves scenarios where a subset of 
the population does not encounter the specific event of 
interest. In these instances, patients are commonly split 
into two categories: those who encountered the event 
under examination and thus faced potential risks, and 
those who did not encounter it and therefore were not 
vulnerable. These individuals are categorized as either 
healed or protected through immunization, indicating that 
they have a reduced probability of experiencing the event 
compared to the exposed group. In such circumstances, 
when the survival time distribution for susceptible 
patients is defined, researchers typically favour cure 
fraction models over parametric models. Cure fraction 
models have a significant role in analysing survival data 
involving long-term survivors, and they are considered 
an expanded version of conventional survival models. 
These models have been a subject of research since 
the 1940s. There are two primary categories of cure 
fraction models: mixture cure models and non-mixture 
cure models. In the case of the mixture cure model, the 
assumption is that the population can be divided into 
two groups: the cured (unsusceptible) and the uncured 
(susceptible). The concept of the mixture cure model 
was initially proposed by Boag (1949) and it was further 
developed by Berkson and Gag (1952) after three years. 
Numerous researchers have extensively investigated the 
mixture cure model, including (Farewell, 1982; Goldman, 
1984; Kuk and Chen, 1992; Maller and Zhou, 1996; 
Peng and Dear, 2000), and (Patilea and Van Keilegom, 
2017), among others. Chen et al., (1999) argued that the 
mixture cure model does not validate the proportional 
hazard property for the entire population. In contrast, 
the non-mixture cure model was proposed to uphold 
this property for all observations while allowing direct 
inference of the predictors influencing the probability 
of being cured (Klebanov et al., 1993; Tsodikov, 1998). 
Tsodikov et al., (2003) in their analysis of the previous 
study on the bounded cumulative hazard model using 
statistical inference, highlighted the simplicity of 
computations, meaningful biological interpretation, 
and flexible structure of the bounded cumulative hazard 
model for the survival function, which could provide 
technical advantages in designing maximum likelihood 
estimation procedures. The literature has proposed various 
approaches to model the non-mixture cure model, as 
documented in (Uddin et al., 2006; Liu and Shen, 2009; 
Bremhorst and lambert, 2016; Kutal and Qian, 2018).

The presence of individuals who are considered 
cured within a sample dataset is often illustrated by a 
Kaplan-Meier curve, which exhibits a plateau with dense 
censoring at the right end (Corbière et al., 2009). Various 
statistical methods have been proposed by several authors 
to model the proportion of cured individuals. For further 
exploration, interested readers can refer to works such as 
those by (Maller and Zhou, 1992; Lu, 2010; López-Cheda 
et al., 2017; Omer et al., 2021). Additionally, some authors 
have suggested the use of maximum likelihood estimation 
techniques, as seen in works by (Farewell, 1982; Ghitany 
and Maller, 1992; Sy and Taylor, 2000), and others.  

The objective of this research was to select a 
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developed under the assumption that the distribution of 
the remaining active cancer cells following treatment has 
a Poisson distribution. Yakovlev et al., (1993) made the 
initial proposal for this model, which was subsequently 
elaborated upon by Chen et al., (1999). Tsodikov et 
al., (2003) studied the non-mixture cure model and 
accentuated its advantages, including its proportional 
hazard model structure, meaningful interpretation of 
results from a biological perspective, and simplified 
computational procedures enabled by its straightforward 
survival function structure in maximum likelihood 
estimation techniques. The research conducted by Herring 
and Ibrahim (2002) focused on the parametric estimation 
of random effects within a non-mixture cure model, 
specifically addressing the presence of non-ignorable 
missing covariates. Uddin et al., (2006) investigated 
both non-parametric and parametric approaches within 
a non-mixture model to analyse uncensored data.

Let Τ represents the time at which the event occurs and 
let 0 ˂ π˂ 1 be a portion of cured patients. Moreover, for 
uncured individuals, presume that Ѕuⅽ(t) and fuⅽ (t) denote 
survival and probability density functions, respectively. 
Therefore, the population survival function of the BCH 
model is 

                                                                                  (1)

where= Fuⅽ(t)=1-Ѕuⅽ(t) is the cumulative distribution 
function for susceptible subjects. 

Assuming a random sample (tj, δj) of size n, j=1, ..., n,  
the jth individual’s contribution to the likelihood function 
can be expressed as follows: 

where in this context, the censoring indicator variable  
δj, is defined as follows:

The Exponentiated Weibull Exponential (EWE) 
Distribution 

Consider the bladder cancer data, and let the susceptible 
individuals’ survival times follow the EWE distribution, 
which was introduced by Elgarhy et al., (2017). The basis 
for this distribution lies in the exponentiated Weibull-G 
family, as proposed by Hassan and Elgarhy (2016) and is 
referred to as X~EWE (ε, α, β, λ). 

The probability density function (pdf) of the EWE 
distribution for a random variable Τ can be expressed as 
follows:

                                                                                  (2)

parametric distribution that best fit the survival times of 
uncured patients considering the bladder cancer dataset.

Materials and Methods

Bladder cancer data
In this article, we considered a bladder cancer dataset 

obtained from the Veterans Administration Cooperative 
Urological Research Group. The dataset includes 85 
patients who initially had superficial bladder tumors when 
they enrolled in the trial. These tumors were surgically 
removed via transurethral procedures, and the patients 
were randomly assigned to two groups: the placebo or 
control group (Group 1), which comprised 47 patients, 
and the thiotepa group, which included 38 patients. 
The primary focus of the analysis was the time to cancer 
recurrence, serving as the event of interest. Notably, about 
67% of the data were censored observations.

Thiotepa is a type of anticancer medication known as 
an alkylating agent. It works by impeding the proliferation 
and division of cancerous cells. When used intravesical, 
meaning it is directly administered into the bladder, it 
can effectively treat superficial bladder tumors. Due 
to limited data beyond the fourth recurrence, only the 
first four recurrence times are included in the analysis. 
Each recurrence time is measured from the start of the 
patient’s treatment. Byar (1980) suggests that one of 
the methods to assess the effectiveness of thiotepa is 
to analyze the tumor recurrence times of patients from 
both treatment groups. The dataset is structured in 
the competing risks format, following the description 
provided in the paper by Wei et al., (1989). This dataset 
is available in the ‘survival’ package of the R software 
(Terry M Therneau, 2023).

Non-mixture cure model
Non-mixture cure models, also referred to as bounded 

cumulative hazard (BCH) models and promotion time 
cure models, are statistical tools employed in survival 
analysis to accommodate the possibility of a cure or 
long-term survival for all individuals in a population. 
Unlike mixture cure models that assume two distinct 
groups (susceptible and cured), non-mixture cure 
models treat the entire population as potentially curable. 
Various methods have been proposed to formulate 
non-mixture cure models, including parametric and 
nonparametric approaches. Parametric models assume 
a specific distribution for the non-cured fraction, such 
as the exponential or Weibull distribution, and estimate 
the parameters through maximum likelihood estimation. 
Nonparametric methods, on the other hand, do not rely 
on strong distributional assumptions and estimate the 
survival function using the Kaplan-Meier approach. 

Non-mixture cure models have found applications 
in diverse research domains, including cancer studies, 
where the objective is to estimate the probability of 
long-term survival or cure for patients. These models 
provide insights into the factors associated with cure and 
facilitate understanding the effectiveness of treatments 
and predicting long-term outcomes.

In this paper, we assumed BCH model, which was 
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where the shape parameters ε and β are positive values, 
while the scale parameters α and λ are also positive 
quantities. 

The survival and hazard functions of EWE distribution 
take respectively the following forms    

and

The EWE distribution is a generalized form that 
encompasses several special cases, which are outlined 
below (Elgarhy et al., 2017).

- Exponentiated Exponential Exponential (EEE) 
distribution: in the case where β=1, Equation (2) takes 
the form

which is the pdf of EEE distribution. Moreover, if we 
substitute β=2 in the same equation, we have

which represents the pdf of Exponentiated Rayleigh 
Exponential (ERE) distribution.

- Weibull Exponential (WE) distribution: for ε =1, 
the density function of the EWE distribution reduces to

                                                                                (3)

Equation (3) represents the pdf of WE distribution, 
which was proposed by Oguntunde et al., (2015).

- Exponential Exponential (EE) distribution: if we 
let ε =1 and β=1 in Equation (2), we obtain the density 
function

which is the pdf of EE distribution. If β=2 , in addition 
to ε =1, this case aligns with Rayleigh Exponential (RE) 
distribution. The pdf of the RE distribution takes the form 

The log - likelihood function
Consider the non-mixture cure model in Equation 

(1), and let θ= (π, ε, α, β, λ) then the likelihood function 
for θ is given by

and the Log-likelihood function can be expressed as

                                                                                    (4)

where fewe (t) and Fewe (t) are probability and cumulative 
density functions for EWE distribution, respectively. 

Predictors Influence
For the BCH model (1), we presume that the cure 

fraction π, and the scale parameter α, can be connected 
to a vector of predictors ν= (ν1,..., νm) by replacing π and 
α in the Equation (4) by:

                                                                                 (5)

and

                                                                               (6)

where, (ɳ0, ɳ1,..., ɳm) and (γ0, γ1, ..., γm) are two sets of 
coefficients to be determined.

For the bladder data, we use the variable (rx: 
Treatment) as a covariate. In order to assess the influence 
of the kind of therapy on the probability of being cured, 
we adopt the subsequent model:

where rxj represents the treatment, a value of 1 
corresponds to the placebo treatment and 2 corresponds 
to the thiotepa treatment. The parameter ɳ1 is associated 
with the impact of the treatment on the cure fraction. If 
the 95% confidence intervals for ɳ1 include zero, it can be 
inferred that there is no evidence to support the notion that 
the therapy has any influence. Moreover, we can establish 
a connection between the type of treatment and the 
predictor within the scale control parameter α by replacing 
α by αj= exp (γ0+γ1rxj) in the Equation (4). Therefore, the 
parameter γ1 is related to the effect of the treatment on the 
appearance and location of the survival curve.  

Model selection
In order to assess the comparison of BCH model 

based on different distributions, three information criteria 
were employed: the Akaike Information Criteria (AIC) 
introduced by Akaike (1974), the Bayesian Information 
Criteria (BIC) suggested by Schwarz (1978), and the 
Hannan-Quinn Information Criteria (HQIC) proposed 
by Hannan and Quinn (1979). A lower value of these 
information criteria indicates a more favourable fit for 
the model.

The definitions of AIC, BIC, and HQIC are provided 
below:

AIC= -2 ln [L(θ)]+2h
BIC=-2 ln [L(θ)]+hln (m)
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HQIC= -2 ln [L(θ)]+2hln [ln (m)]

In the given context, The AIC, BIC, and HQIC are 
calculated using the likelihood function L(θ), as their 
foundation, where the model’s number of free parameters 
is denoted by h, while m represents the total number of 
observations. 

Results

Figure 1 (a) displays the survival function estimates 
using the Kaplan-Meier method, specifically analysing 
data related to bladder cancer. The curve shows a plateau 
on the right side, indicating a relatively stable survival 
rate. The height of this plateau is approximately 0.537. 
Figure 1 (b) displays the estimated survival curves for 
the placebo and thiotepa groups. These curves show that 
both groups reach steady plateaus after a certain period 
of follow-up. For the placebo group, this occurs around 
51 months, while for the thiotepa group, it happens at 
approximately 47 months. These plateaus indicate a 
relatively constant survival rate for each group beyond 
those time points.

The estimated parameters of the BCH model are 
presented in Table 1 obtained by using maximum 
likelihood estimation method, considering the assumption 
of the EWE distribution and its specific cases. This table 
also provides information such as the standard error (SE) 
for each estimated parameter, as well as the AIC, BIC, 
and HQIC values. From Table 1, it becomes evident that 
the AIC values associated with the EE distribution are the 
smallest among all the cases considered, with a value of 
1195.791. Furthermore, upon comparing these models, it 
is notable that the EEE and EE distributions provide the 
smallest BIC and HQIC values. Figure 2 presents a more 
illustrative representation of the model fitting procedure 
using various probability distributions for the bladder 
cancer data. It displays the Kaplan-Meier estimators for 
the survival function alongside the corresponding expected 
values obtained from the BCH models for each suggested 
distribution. This visualization aims to provide a clearer 
understanding of the model fitting process, building upon 
the findings presented in Table 1. Figure 3 presents the 

survival functions and corresponding hazard functions 
obtained from fitting the BCH model using the EWE 
distribution and its sub-models, as specified in Table 1. 
Panel (a) of Figure 3 displays the survival functions, while 
panel (b) showcases the risk functions. Interestingly, in 
panel (b) of Figure 3, it can be observed that the survival 
curves generated by the models using the EE and EEE 
distributions closely resemble the curves estimated by the 
Kaplan-Meier method. This suggests that these models 
provide the best fit to the data when compared to the other 
distributions considered. 

Table 2 exhibits the results obtained from the models 
utilizing the EWE distribution and its sub-models, 
excluding the probability of being cured π. It is evident 
from this table that models excluding the cure fraction 
yield higher values for AIC, BIC, and HQIC compared 
to models that incorporate the cure fraction (as observed 
in Tables 1 and 2).

Using the data in hand, with the covariate (type of 
therapy) included in the probability of surviving, we 
compare the non-mixture models with EE, Fréchet (FR), 
and Generailized Modified Weibull (GMW) susceptible 
distributions using the maximum likelihood method. The 
density function of Fréchet distribution is defined by,

where α > 0 is the shape parameter and β > 0 is 
the scale parameter; and the density function of GMW 
distribution is defined by

where α > 0, γ ≥ 0, λ ≥ 0, β > 0.

The maximum likelihood estimations of the parameters, 
95% confidence intervals and the values of the three 
information criteria for the above three susceptible 
distributions with a non-mixture model for the bladder 
dataset are shown in Table 3. In these models, the predictor 
is connected to the cure fraction. Table 3 indicates that EE 
distribution is the best distribution in comparison with FR 

Figure 1. (a) Overall Survival Function Obtained by Kaplan-Meier Technique for the Bladder Cancer Data. (b) Curves of 
survival functions for each type of treatments.
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Model Parameter Estimate SE AIC BIC HQIC
EWE ε 47.7624 5.1572 1197.211 1209.424 1202.123

α 3.1579 0.26332

β 0.1209 0.02299

λ 0.1084 0.04843
π 0.5145 0.05764

EEE ε 1.1159 0.21992 1197.489 1207.26 1201.42
α 0.8033 0.89527
λ 0.0301 0.02301
π 0.5282 0.05442

ERE ε 0.5444 0.054 1197.514 1207.284 1201.444
α 4.6669 1.5589
λ 0.0106 0.0023
π 0.5311 0.047

WE ε 0.8686 0.9674 1197.541 1212.857 1201.471

β 1.1062 0.16265

λ 0.0265 0.02102
π 0.5273 0.05318

EE α 0.495 0.22361 1195.791 1203.119 1198.738
λ 0.0395 0.01297
π 0.5344 0.04505

RE α 205.1849 0.0002 1226.276 1233.604 1229.224
λ 0.0027 2.985
π 0.55 0.0356

Table 1. Results of Maximum Likelihood Estimation for Non-mixture Cure Model with EWE Distribution and 
Sub-Distributions, excluding Predictors for Bladder Tumor Data.

SE, Standard error; AIC, Akaike Information Criteria; BIC, Bayesian Information Criteria; HQIC, Hannan-Quinn Information Criteria 

Figure 2. A Comparison between Kaplan-Meier Estimates of the Survival Function and the Corresponding Anticipated 
Values Obtained from the Non-mixture Models for Various Probability Distributions (as indicated in Table 1, results). 
The diagonal red lines in the graph indicate a complete agreement between the product-limit estimates and the 
anticipated values.
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Table 2. Results of Maximum Likelihood Estimation for Non-mixture Cure Model with EWE Distribution and 
Sub-distributions, excluding both Cure Fraction and Predictors for Bladder Tumor Data
Model Parameter Estimate SE AIC BIC HQIC
EWE ε 72.29727 4.45773 1197.356 1207.127 1201.286

α 4.76487 1.23364

β 0.1254 0.01764

λ 0.01028 0.01664
EEE ε 1.002 0.1045 1200.579 1207.907 1203.526

α 0.1907 2.621
λ 0.00068 0.00015

ERE ε 0.435 0.0394 1204.275 1211.603 1207.222
α 26.327 0.7506
λ 0.0017 0 0.0002

WE ε 40.951 3.846 1200.389 1207.717 1203.336

β 0.9827 0.0858

λ 0.000242 0.00011
EE α 20.807 3.434 1198.502 1203.387 1200.467

λ 0.00046 0.00007
RE α 228.0904 2.9939 1300.96 1305.845 1302.925

λ 0.0012 0.0001
SE, Standard error; AIC, Akaike Information Criteria; BIC, Bayesian Information Criteria; HQIC, Hannan-Quinn Information Criteria

Figure 3. Panels (a) and (b) Display the Fitted Survival Curves Derived from the BCH Model Using the EWE 
Distribution and Its Sub-distributions for Bladder Cancer Data. The corresponding hazard functions are depicted in 
panels (c) and (d). In order to enable easy comparisons, all plots present curves based on the EWE distribution

and GMW distributions. The values of π0 and π1, included 
in Table 3, were calculated using the formulas π0=1/
{1+exp [- (ɳ0 + ɳ1)]} and π1= 1/ {1+ exp [- (ɳ0 + 2ɳ1)]}. 
These values represent the cure fractions for patients 
who received placebo treatment and thiotepa therapy, 
respectively. Table 4 presents the outcomes obtained 
from the BCH model utilizing the EE distribution, where 
a covariate is included in both the cure rate π and α. 

According to Table 4, the estimated cure rates for the 
placebo and thiotepa patient groups are 0.46675 and 
0.61720, respectively.

Figure 4 illustrates the death risk functions derived 
from the EE non-mixture cure model, where a covariate 
related to the type of treatment is incorporated into both 
the cure fraction π and the scale parameter α (as presented 
in Table 3). The graph in Figure 4 demonstrates that the 
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Model Parameter Estimate 95% Confidence interval AIC BIC HQIC
EE α 0.47932 (0.05423, 0.90440) 1191.921 1201.692 1195.851

λ 0.03948 (0.01374, 0.06523)

ɳ0
-0.78307 (-1.63424, 0.06811)

ɳ1
0.63038 (0.11562, 1.14514)

π0
0.4619 (0.03667, 0.77087)

π1
0.6172 (0.19733, 0.91360)

FR α 0.37055 (0.33982, 0.40129) 1193.983 1203.754 1197.913

β 169.6564 (163.6185, 175.6943)

ɳ0
-4.50417 (-6.37051, -2.63783)

ɳ1
1.24731 (0.13213, 2.36248)

π0
0.037081 (0.000003, 0.4316)

π1
0.1182 (0.00222, 0.88965)

GMW α 2.22249 (1.47529, 2.96970) 1194.323 1217.864 1200.218

β 40.8064 (6.58439, 75.02841)

γ 0.12658 (0.067864, 0.18530)

λ 0.00694 (-0.00257, 0.01645)

ɳ0
-1.0944 (-2.61451, 0.42571)

ɳ1
0.66673 (0.01252, 1.32094)

π0
0.39468 (0.06901, 0.85153)

π0
0.55948 (0.06982, 0.95554)

Table 3. Maximum Likelihood Estimates, Considering the Non-Mixture Model with the EE, FR, and GMW 
Distributions where the Covariate is Including in Cure Fraction π for the Bladder Cancer data.

Parameter Estimate 95% Confidence interval AIC BIC HQIC

γ0
-0.65711 (-1.9885, 0.67426) 1193.894 1206.107 1198.806

γ1
-0.06024 (-0.78640, 0.66591)

λ 0.03971 (0.01395, 0.06548)

ɳ0
-0.72674 (-1.79997, 0.34649)

ɳ1
0.59355 (-0.08498, 1.27209)

π0
0.46675 (0.13182, 0.83460)

π1
0.6131 (0.12240, 0.94738)

π0/ π1
0.7613 (0.13914, 6.81863)

AIC, Akaike Information Criteria; BIC, Bayesian Information Criteria; HQIC, Hannan-Quinn Information Criteria

Table 4. Results of Maximum Likelihood Estimation for Non-mixture Cure Model Based on the EE Distribution with 
a Covariate Including in both the Cure Fraction π and Scale Parameter α for Bladder Tumor Data.

AIC, Akaike Information Criteria; BIC, Bayesian Information Criteria; HQIC, Hannan-Quinn Information Criteria

hazard functions exhibit a continuous decline over time, 
starting from approximately 20 months after the initiation 
of treatment.

Discussion

The main objective of this research is to choose an 
appropriate probability distribution for the survival times 
of individuals with bladder cancer who are susceptible 
to the disease. In order to accomplish this objective, 
we suggested a BCH model that is based on an EWE 
distribution and its sub-distributions. This model enhances 
the range of distributions commonly employed in the 
analysis of survival data. The EWE distribution offers 
flexibility in accommodating different types of hazard 

rate functions, including cases where failure rates follow 
a bathtub-shaped pattern.

Cure fraction models are developed with the purpose 
of estimating the probability of an individual being cured. 
When there are no individuals who have been cured, cure 
models can be simplified into traditional survival models. 
There are two primary types of cure models, the first 
being the mixture cure model, which is commonly used 
when analysing data that involves long-term survivors. 
In this model, the population is seen as a combination 
of individuals who have been cured and those who have 
not. The advantage of the mixture cure model is that 
it allows for covariates to have different effects on the 
cured individuals and the survival times of individuals 
who are susceptible to the disease. This means that 
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various covariates can be considered in the two parts of 
the model (incidence and latency), and the impact of the 
same covariate (s) on both components can be evaluated. 
This characteristic sets the mixture cure model apart from 
other cure models.

In contrast, the mixture cure model lacks the ability 
to validate the proportional hazard functions property. 
Additionally, it lacks a clear biological interpretation, 
particularly when considering cancer recurrence. 
The other type of cure model, often referred to as the 
promotion time cure model or non-mixture cure model, 
assumes that following the initial cancer treatment, there 
may be residual cancer cells within the patient’s body 
that can gradually develop over time and eventually lead 
to a detectable cancer relapse. In certain cases, there may 
be mathematical relationships between the mixture cure 
model and the promotion time cure model.

The Kaplan-Meier survival curves depicted in this 
study suggest that using survival models that do not 
account for the rate of cured individuals π would not be 
suitable for analysing the bladder dataset. Furthermore, 
the graph demonstrates that the probability of being cured 
for the thiotepa group is higher compared to the survival 
probability in the placebo group. Additionally, the curves 
exhibit consistent plateaus at the later stages, indicating 
the presence of individuals who are not susceptible to the 
disease in both treatment groups.

The bladder data analysis in this study revealed that 
BCH models utilizing the EE and ERE distributions 
exhibit a better fit, as they closely match the observed 
values. Furthermore, the findings indicate that the 
estimated cure proportion π obtained from cure models 
based on the EWE, EEE, and WE distributions is lower 
than the value of π shown in Figure 1 (a), whereas the 
RE distribution overestimates this value. By employing 
models based on the ERE and EE distributions, more 
precise estimates for the parameter π can be obtained, 
providing additional evidence of a good fit when assuming 
the BCH model based on the EE distribution. Moreover, 

the values of π0 and π1 obtained by the non-mixture cure 
model based on EE distribution (results of Table 3) are the 
closest values to the cure proportions for the placebo and 
thiotepa groups as shown in Figure 1 (b), and this means 
that we have an extra proof of a best fit  when assuming 
EE distribution.

The hazard function curves derived from the BCH 
model based on the EE and ERE distributions exhibit a 
remarkable similarity. These curves suggest that there 
is a significant risk of death immediately following 
the transplant period. Subsequently, this risk gradually 
decreases until the end of the observation period.

In this study, when comparing Table 1 and Table 2, it 
is observed that the AIC, BIC, and HQIC values obtained 
from models that do not exclude the cure rate π are lower 
than the values obtained from models that exclude π. This 
finding aligns with expectations and further confirms that 
the BCH model is highly convenient for analysing the 
data under the study.

The findings of this study indicate that patients who 
received thiotepa treatment have a higher cure rate 
compared to those who received a placebo treatment. 
This suggests that thiotepa has a significant impact 
on the cure fraction across all models and improves 
the probability of being cured. These results align with 
previous studies conducted by Wei et al., (1989), Lin et 
al., (1998), and Sun and Wei (2000).

Furthermore, in different approaches to the present 
study, Zhao and Sun (2011) and Baetschmann and 
Winkelmann (2013) found significant variations in the 
recurrence rates of bladder tumours among the three 
treatment groups (placebo, pyridoxine, and thiotepa). 
Notably, the thiotepa treatment demonstrated a tumour 
reducing effect. These findings align with the results 
obtained in the current study, providing further support 
and consistent.

An intriguing observation is that the 95% confidence 
intervals for π0/π1 (0.13914, 6.81863) encompass the 
value of 1, indicating a lack of evidence for differences 

Figure 4. Hazards Functions Derived from the Non-mixture Cure Model with the EE Distribution where a covariate 
(specifically, the type of treatment) is connected both to the probability of being cured, π, and the scale parameter α.
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in population cure rates between patients treated with 
placebo and thiotepa. Additionally, the 95% confidence 
intervals for ɳ1 (-0.08498, 1.27209) contain zero.

It is important to highlight that the 95% confidence 
intervals for γ1 (-0.78640, 0.66591) in Table 3 include 
zero, suggesting a lack of substantial evidence for any 
significant alteration in the appearance or location of 
population survival functions.

The results of the current study reveal that the risk 
of mortality is higher in the time around 18 months after 
treatment for patients who received placebo therapy. 
In contrast, for patients treated with thiotepa therapy, 
the hazard of death is higher around 19.16 months after 
treatment. Following these peak points, the risk of death 
gradually decreases until the conclusion of the study 
period.

In conclusion, our analysis of bladder cancer 
patients data indicates that the EE and ERE distributions 
outperform the EWE, EEE, WE, and RE distributions. 
Among them, the EE distribution exhibits a slightly better 
fit compared to the ERE distribution. Additionally, the 
thiotepa treatment significantly improves the proportion 
of patients who are considered immune. Hence, using 
parametric models that include a cure fraction and 
specify a distribution for the survival time of susceptible 
individuals is a suitable approach for analysing survival 
data involving long-term survivors. These models enable 
the estimation of meaningful measures, such as the 
fractions of immune individuals and the mean survival 
time, which can be easily interpreted by practitioners and 
healthcare professionals.

The conducted study has brought attention to topic 
that would benefit from further research, specifically the 
analysis of bladder cancer data. It could be worthwhile 
to explore alternative generalized distributions using 
Bayesian inference techniques. By incorporating an 
oncologist’s expertise and prior knowledge about 
the expected fraction of cured patients into the prior 
distribution of the cure rate parameter, π, more precise 
inferences can be obtained.
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