RESEARCH ARTICLE

Evaluation of HHLA2 and CD8 Immunohistochemical Expression in Colorectal Carcinoma and Their Prognostic Significance

Zeinab Mohammed Gawesh^{1*}, Eman Mohamad Ibrahim¹, Hend Mohamed Hamdey Rashed ElKalla², Azmy Abdel Hamid Awad¹, Mie Ali Mohamed¹

Abstract

Background: Colorectal carcinoma (CRC) is the third most common malignancy worldwide. Human endogenous retrovirus H long terminal repeat-associating protein 2 (*HHLA2*) is a novel immune checkpoint molecule. The association between *HHLA2* expression and clinicopathological features and its prognostic significance in CRC patients are still controversial. The aim of this study is to evaluate the prognostic value of immunohistochemical (IHC) expression of *HHLA2* and *CD8* in CRC. **Material and methods:** This retrospective study included 134 cases diagnosed with primary CRC at the Gastrointestinal Surgery Center (GISC) department, Mansoura Faculty of Medicine, during the period from December 2014 to December 2018. Clinicopathological and survival data were collected. IHC for *HHLA2* and *CD8* was performed, and they were correlated with clinicopathological parameters and patient prognosis. **Results:** Among 134 CRC cases, high *HHLA2* expression was detected in 73 (54.5%). High *HHLA2* expression was significantly related to the depth of invasion (P = 0.005*), lymph node metastasis (P = 0.01*), tumor stage)P = 0.002*), and distant recurrence)P = 0.012*). Multivariate analysis spotted *HHLA2* high expression as an independent prognostic predictor for OS in CRC (P = 0.03*) and DFS (P = 0.008*). *CD8* shows a significant correlation with tumor infiltrating lymphocytes (TILs) (P ≤ 0.001*), absence of metastasis (P = 0.029*), absence of tumor deposits (P=0.014*). However, *CD8* shows no significant association with survival or *HHLA2*. **Conclusion:** *HHLA2* is an independent prognostic factor for the overall survival and disease free survival of CRC patients and can predict poor prognosis in CRC patients.

Keywords: HHLA2- CD8- Colorectal carcinoma- Immunotherapy

Asian Pac J Cancer Prev, 24,

Introduction

Colorectal carcinoma is the third most common cancer globally. Despite improvements in CRC prevention, diagnosis, and therapy, the disease still has a poor prognosis, and a large majority of CRC patients experience both local recurrence and distant metastasis (Sung et al., 2021). Immunotherapy, in particular immune checkpoint inhibitors, is seen as a very promising treatment approach. Its objective is to stimulate and enhance the anticancer immune response. The major effectors of antitumor immunity are cytotoxic CD8+ TILs. Immuno-checkpoints, especially the B7/CD28 immuno-checkpoint family, are significant molecules that either stimulate or inhibit the function of T cells. Targeting inhibitory receptors on immune effector cells, immune checkpoint inhibitors (ICIs) reactivate the immunological response (Golshani and Zhang, 2020).

HHLA2 has been considered a newly discovered ligand

of the B7 family. It is expressed on some normal tissue, such as the epithelial cells of the stomach, kidney, gall bladder, and placenta, as well as on antigen-presenting cells like macrophages and activated dendritic cells. It is widely expressed in many types of malignant tumors, including pancreas, esophagus, stomach, colon, ovary, bladder, and lung cancers. Also, it is expressed in triplenegative breast cancer, glioma, cholangiocarcinoma, osteosarcoma, renal cell carcinoma (RCC), prostate cancer, and melanoma (Li et al., 2022).

HHLA2 has a dual role in the immune response in various tumors, as it can act as co-stimulatory or co-inhibitory according to the receptors to which it binds. Overall, the studies demonstrate that *HHLA2* predominantly functions as a T-cell co-inhibitory molecule with negative effects on TCR-mediated CD4+ and *CD8*+ T cell proliferation. Also, it suppresses their cytokine production. So *HHLA2* is participating in tumor immune escape (Niu et al., 2022).

¹Department of Pathology, Mansoura Faculty of Medicine, Mansoura, Egypt. ²Deptartment of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Mansoura University, Egypt. *For Correspondence: zeinab_zma@yahoo.com

Zeinab Mohammed Gawesh et al

Some studies demonstrated a significant association between *HHLA2* expression and *CD8*+ T cell infiltration in tumor microenvironments (Zhu and Dong, 2018; Yan et al., 2020). The value of *HHLA2* expression in CRC remains indefinite and needs more investigation. Furthermore, the reports on *HHLA2* are often conflicting. The current study assesses the IHC expression of *HHLA2* and *CD8* in CRC and evaluates their correlation with the patient's prognosis.

Materials and Methods

This is a retrospective study carried out on formalinfixed, paraffin-embedded (FFPE) tissue blocks for primary CRC obtained from resection specimens of 134 CRC cases. Patients were diagnosed and operated at GISC at our institute during the period from December 2014 to December 2018. Two hundred and fifty cases were diagnosed as CRC (116 cases were excluded, including 26 cases received pre-operative adjuvant therapy, 30 cases with unavailable blocks in the archive, 11 cases with repetitive tissue loss during the antigen retrieval procedure and 49 cases had lost follow up). So the final included cases were 134 cases.

The demographic and clinicopathological data of the enrolled cases were retrospectively retrieved from the electronic medical records of the patients in Clinical Oncology and Nuclear medicine department, Mansoura university hospital and the pathology database of the Surgical Pathology Laboratory at the GISC. In addition, the clinical outcomes of the patients were followed up in terms of overall survival and disease-free survival. The follow-up period started on the date of diagnosis and ended in March 2023. DFS was considered the period from the date of primary radical surgery to the date of the first treatment failure. Overall survival (OS) was measured from the diagnosis date to the end of the follow-up period or death. PFS is the time from the end of first-line treatment until disease recurrence or progression.

The tumors were classified histopathologically basing on the most recent WHO classification of colorectal carcinoma tumors (Nagtegaal et al., 2019). Each tumor was assigned a stage according to the latest American Joint Committee on Cancer (AJCC) TNM staging criteria, 8th edition. As regards TILs, the density of TILs was estimated based on the recommendations of the International TILs Working Group (ITWG). TILs are described as the mean percentage of the invasive tumor area occupied by lymphocytes and plasma cells. So, the tumors comprised in the current study were divided into 3 grades: low TILs (0–10%), intermediate TILs (20–40%), and high TILs (50–90%). Areas with necrosis, hemorrhage, or crush artifacts were ruled out during the TIL assessment (Fuchs et al., 2020).

The tissue microarray blocks (TMA) were designed by utilizing a fully manual-validated approach (Foda, 2013). Three tissue cores were extracted from three different sites from each donor block of resected colorectal carcinoma.

Immunohistochemical Staining

Sections from FFPE tissue blocks were deparaffinized

and hydrated by standard approaches. We used *HHLA2* antibodies (rabbit polyclonal, 1:100 dilutions, IgG; Abclonal, Inc. catalog number A13262) and anti-*CD8* antibodies (mouse monoclonal primary antibody, clone C8/144B, ready to use; catalogue number IR623) according to the manufacturer's instructions with proper positive and negative controls.

Immunohistochemical evaluation

slides were scored in an independent manner by two pathologists who were blinded to the patients' data. HHLA2 is expressed in cytoplasmic and membranous reactions. Based on the ratio of positively stained cells and staining intensity, HHLA2 staining was quantified. According to the following metrics, the percentage of positive cells is graded: score 0 (0%), score 1 (1%-5%), score 2 (6%–30%), score 3 (31%–60%), and score 4 (61%-100%). The intensity of HHLA2 staining was recorded as negative (0), mild (1), moderate (2), and strong (3). The final H-score was calculated by the equation: H-score = percentage \times intensity. The median score was utilized to detect the cut off value of high or low HHLA2 expression (Klua et al., 2023). The interpretation of CD8 staining reaction was based on the study of Zhu et al 2018 by counting the number of CD8 positive cells in each core of TMA. The cutoff point of high or low expression could be detected on the median of total scores (Zhu and Dong, 2018),

Statistical analysis

SPSS software version 25 (SPSS Inc., PASW statistics for Windows version 25) carried out the data analysis. Chicago: SPSS Inc. Qualitative data were described using numbers and percentages. For non-normally distributed data, the median (the middle number between the lowest and highest values) was used to define the data. For normally distributed data, the mean±SD was used after the Kolmogorov-Smirnov test was used to check for normality. The significance of the obtained results was judged at the (≤ 0.05) level. Chi-Square, Fischer exact test, and Monte Carlo tests were used to compare qualitative data between groups as appropriate. Mann-Whitney U and Kruskal-Wallis tests were utilized to compare between two studied groups and more than two groups, respectively, for non-normally distributed data. • Kaplan-Meier test: utilized to calculate OS and disease-free survival by utilizing log-rank tests to detect the effect of predisposing factors affecting survival. Cox regression was used to assess predictors of survival with the calculation of the hazard ratio.

Results

Patients' clinicopathological characteristics are described in Table 1. According to the aforementioned criteria for *HHLA2* and *CD8* IHC evaluation, The H-score of *HHLA2* ranged from 0 to 12, with a median of 6. H score ≥ 6 was defined as a high *HHLA2* expression, and an H-score <6 indicated a low *HHLA2* expression. In 134 CRC tissues, 45.5% (61/134) cases of low *HHLA2* expression (Figure 1 A, B) and 54.5% (73/134) cases of

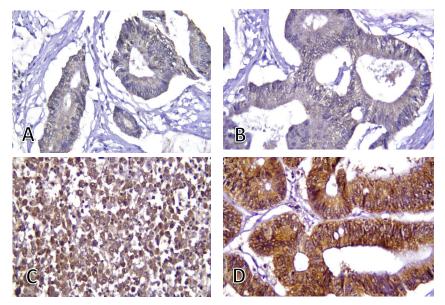


Figure 1. Immunohistochemical Staining of *HHLA2* in Various Cases of CRC: Low cytoplasmic expression (A, B). High cytoplasmic expression (C, D). Original magnification: 400X).

high HHLA2 expression (Figure 1 C, D) were found.

As regards *CD8*, the median value of *CD8* was 60. Sixty-seven cases (50%) had a high *CD8* T-cell count (\geq 60) (Figure 2 A, B), and 67 cases (50%) were low (<60) (Figure 2 C, D).

As demonstrated in Table 2, there was a statistically significant association between higher *HHLA2* expression and depth of invasion ($P = 0.005^*$), advanced N stage ($P = 0.01^*$), higher tumor stage $P = 0.002^*$), and distant recurrence $P = 0.012^*$). There were no observed associations between *HHLA2* expression and other clinicopathological parameters. *CD8* expression showed a statistically significant positive association between *CD8* and TILs ($P \le 0.001^*$), M stage ($P = 0.029^*$), absence of tumor deposits ($P = 0.014^*$), and margin status ($P = 0.016^*$). There was no association between *CD8* and other clinicopathological parameters and *HHLA2*.

The median OS was 49.32 months (44.05-54.58).

It is demonstrated that high *HHLA2* expression has low OS in patients with CRC (Figure 3A, $P = <0.001^*$). The median DFS was 45.80 months (40.96–50.65). High *HHLA2* expression had a lower DFS (Figure 4A, $P = <0.0001^*$). The median PFS was 44.25 months (39.17–49.33). The high *HHLA2* expression had a lower PFS (Figure 5A, $P = 0.003^*$). *CD8* shows no significant association with survival (Figures 3B, 4B, and 5B).

Univariate and multivariate analyses on OS and DFS were conducted to detect the prognostic value of *HHLA2* expression and other clinicopathological variables (Table 3). In the univariate analysis, *HHLA2* expression demonstrated a significant correlation to the OS of cases with CRC (p = 0.039*). Meanwhile, histological grade (p = 0.03*), TILS (P = 0.009*), depth of invasion (P = 0.025*), lymph node (LN) metastasis (P = 0.02*), and tumor stage (P = 0.04*) were also found to be associated with OS. *HHLA2* expression demonstrated a significant

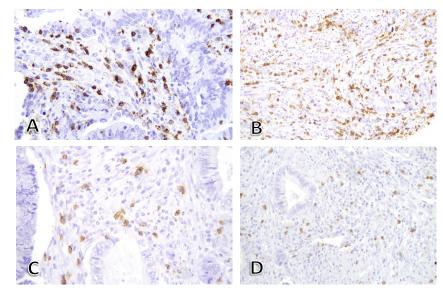


Figure 2. *CD8* IHC of *CD8* in Different Cases of CRC. High CD8 expression (A, B). Low CD8 expression (C, D). (Original magnification: A, C 400×; B, D 200×).

Table 1. Clinicopathologic Characteristics of Studied Patients

characteristicsNumber (%)Age classes<60 y88 (65.7%) ≥ 60 y46 (34.3%)SexMale75 (56.0%)Female59 (44.0%)SiteRight49 (36.6%)Left85 (63.4%)SizeMean \pm SD6.23 \pm 2.73Min-Max1.50-19.00Histological typeAdenocarcinoma NOS110 (82%)Mucinous adenocarcinoma18 (13.4%)Signet ring carcinoma6 (4.5%)Adenocarcinoma gradeLow107 (97.27%)High3 (2.7)TILs
<60 y $88 (65.7\%)$ $≥60$ y $46 (34.3\%)$ Sex $Male$ Male $75 (56.0\%)$ Female $59 (44.0\%)$ Site $Female$ Right $49 (36.6\%)$ Left $85 (63.4\%)$ Size $Kean \pm SD$ Mean $\pm SD$ 6.23 ± 2.73 Min-Max $1.50-19.00$ Histological type $Adenocarcinoma NOS$ Adenocarcinoma NOS $110 (82\%)$ Mucinous adenocarcinoma $18 (13.4\%)$ Signet ring carcinoma $6 (4.5\%)$ Adenocarcinoma grade Low Low $107 (97.27\%)$ High $3 (2.7)$
≥ 60 y 46 (34.3%) Sex Male 75 (56.0%) Female 59 (44.0%) Site Right 49 (36.6%) Left 85 (63.4%) Size Mean ± SD 6.23±2.73 Min-Max 1.50-19.00 Histological type Adenocarcinoma NOS 110 (82%) Mucinous adenocarcinoma 18 (13.4%) Signet ring carcinoma 6 (4.5%) Adenocarcinoma grade Low 107 (97.27%) High 3 (2.7)
Sex Male 75 (56.0%) Female 59 (44.0%) Site 59 (44.0%) Right 49 (36.6%) Left 85 (63.4%) Size Mean \pm SD 6.23 \pm 2.73 Min-Max 1.50-19.00 Histological type 4denocarcinoma NOS 110 (82%) Mucinous adenocarcinoma 18 (13.4%) Signet ring carcinoma Signet ring carcinoma grade 6 (4.5%) Adenocarcinoma grade Low 107 (97.27%) High 3 (2.7)
Male $75 (56.0\%)$ Female $59 (44.0\%)$ Site $49 (36.6\%)$ Right $49 (36.6\%)$ Left $85 (63.4\%)$ Size 6.23 ± 2.73 Mean \pm SD 6.23 ± 2.73 Min-Max $1.50-19.00$ Histological type $110 (82\%)$ Adenocarcinoma NOS $110 (82\%)$ Mucinous adenocarcinoma $18 (13.4\%)$ Signet ring carcinoma $6 (4.5\%)$ Adenocarcinoma grade $107 (97.27\%)$ High $3 (2.7)$
Female $59 (44.0\%)$ Site Right $49 (36.6\%)$ Left $85 (63.4\%)$ Size Mean \pm SD 6.23 ± 2.73 Min-Max $1.50 - 19.00$ Histological type 4denocarcinoma NOS Adenocarcinoma NOS $110 (82\%)$ Mucinous adenocarcinoma $18 (13.4\%)$ Signet ring carcinoma $6 (4.5\%)$ Adenocarcinoma grade Low Low $107 (97.27\%)$ High $3 (2.7)$
Site Right 49 (36.6%) Left 85 (63.4%) Size Mean \pm SD 6.23 \pm 2.73 Min-Max 1.50-19.00 Histological type Adenocarcinoma NOS 110 (82%) Mucinous adenocarcinoma 18 (13.4%) Signet ring carcinoma 6 (4.5%) Adenocarcinoma grade Low Low 107 (97.27%) High 3 (2.7)
Right $49 (36.6\%)$ Left $85 (63.4\%)$ Size 6.23 ± 2.73 Mean \pm SD 6.23 ± 2.73 Min-Max $1.50-19.00$ Histological type 4 denocarcinoma NOSAdenocarcinoma NOS $110 (82\%)$ Mucinous adenocarcinoma $18 (13.4\%)$ Signet ring carcinoma $6 (4.5\%)$ Adenocarcinoma grade $6 (4.5\%)$ Low $107 (97.27\%)$ High $3 (2.7)$
Left $85 (63.4\%)$ SizeMean \pm SD 6.23 ± 2.73 Min-Max $1.50-19.00$ Histological typeAdenocarcinoma NOS $110 (82\%)$ Mucinous adenocarcinoma $18 (13.4\%)$ Signet ring carcinoma $6 (4.5\%)$ Adenocarcinoma gradeLow $107 (97.27\%)$ High $3 (2.7)$
Size 6.23 ± 2.73 Mean \pm SD 6.23 ± 2.73 Min-Max $1.50-19.00$ Histological type 4 denocarcinoma NOSAdenocarcinoma NOS $110 (82\%)$ Mucinous adenocarcinoma $18 (13.4\%)$ Signet ring carcinoma $6 (4.5\%)$ Adenocarcinoma grade $107 (97.27\%)$ High $3 (2.7)$
Mean \pm SD 6.23 ± 2.73 Min-Max $1.50-19.00$ Histological type 4 denocarcinoma NOS 110 (82%) Mucinous adenocarcinoma 18 (13.4%) 5 ignet ring carcinoma 6 (4.5%) Adenocarcinoma grade 107 (97.27%) 107 (97.27%) High 3 (2.7)
Min-Max1.50-19.00Histological typeAdenocarcinoma NOS110 (82%)Mucinous adenocarcinoma18 (13.4%)Signet ring carcinoma6 (4.5%)Adenocarcinoma grade107 (97.27%)High3 (2.7)
Histological typeAdenocarcinoma NOS110 (82%)Mucinous adenocarcinoma18 (13.4%)Signet ring carcinoma6 (4.5%)Adenocarcinoma grade107 (97.27%)High3 (2.7)
Adenocarcinoma NOS110 (82%)Mucinous adenocarcinoma18 (13.4%)Signet ring carcinoma6 (4.5%)Adenocarcinoma grade107 (97.27%)High3 (2.7)
Mucinous adenocarcinoma18 (13.4%)Signet ring carcinoma6 (4.5%)Adenocarcinoma grade107 (97.27%)High3 (2.7)
Signet ring carcinoma6 (4.5%)Adenocarcinoma grade107 (97.27%)High3 (2.7)
Adenocarcinoma grade Low 107 (97.27%) High 3 (2.7)
Low 107 (97.27%) High 3 (2.7)
High 3 (2.7)
-
TILs
111/3
Low 50 (37.3%)
Moderate 51 (38.1%)
High 33 (24.6%)
Tumor budding
Low 90 (67.2%)
Moderate 24 (17.9%)
High 20 (14.9%)
Tumor deposits
Present 15 (11.2%)
Absent 119 (88.8%)
Lympho-vascular emboli (LVI)
Present 79 (59.0%)
Absent 55 (41.0%)
Perineural invasion (PNI)
Present 37 (27.6%)
Absent 97 (72.4%)
Tumor depth of invasion
T2 17 (12.7%)
T3 102 (76.1%)
T4 15 (11.2%)
Distant metastasis
M 0 126 (94.0%)
M 1 8 (6.0%)
AJCC stage
Stage I 12 (9.0%)
Stage II 63 (47.0%)
Stage III 51 (38.1%)
Stage IV 8 (6.0%)

4312 Asian Pacific Journal of Cancer Prevention, Vol 24

Table 1. Continued	
Clinicopathologic characteristics	The studied group (n=134) Number (%)
Local recurrence	
Yes	31 (23.1%)
No	103 (76.9%)
Distant recurrence	
Yes	31 (23.1%)
No	103 (76.9%)
Patient fate	
Survived	38 (28.4%)
Died	96 (71.6%)

correlation with the DFS of patients with CRC ($p=0.005^*$). Histological grade ($P=0.026^*$) and tumor budding ($P=0.04^*$) were also associated with DFS.

The independent prognostic value was detected by multivariate analysis. *HHLA2* was independent prognostic factors with OS ($P=0.03^*$) and DFS ($P=0.008^*$).

Discussion

The B7 family immune checkpoint molecule *HHLA2* is very important in the tumor microenvironment and could be a good target for human cancer therapy. The high *HHLA2* expression is associated with worse prognosis in various malignancies. These include prostate cancer, lung cancer, osteosarcoma, hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma, bladder urothelial carcinoma, stomach cancer, breast carcinoma, colorectal cancer, and esophageal cancer. On the other hand, it is associated with a better prognosis for cervical adenocarcinoma, ampullary tumors, and pancreatic cancer (Bhatt et al., 2021).

There has been debate in the few studies that have been done on *HHLA2* expression in CRC. In our study, 54% of cases had high *HHLA2* expression. This result was slightly higher than Zhu et al., (2018) (47%). In contrast, two more investigations indicated that the *HHLA2* gene was downregulated in colorectal cancer (Ying et al., 2022). This variation can result from the use of different monoclonal antibodies, a different study population, or a different scoring system.

In the current study, *HHLA2* expression level was significantly associated with depth of invasion, LN metastasis, distant metastasis, and advanced tumor stage, which was consistent with *HHLA2* expression in many cancers. According to Zhu and Dong (2018), *HHLA2* was substantially associated with the invasion depth in CRC cases. According to Janakiram et al., (2015), elevated expression of *HHLA2* was substantially correlated with local LN metastases and advanced stage at diagnosis in triple-negative breast cancer. Furthermore, advanced clinical stage, tumor invasion, lymph node metastasis, and distant metastasis were all positively linked with increased *HHLA2* expression in gastric cancer tissues (Wei et al., 2019), bladder urothelial carcinoma (Lin et al., 2019), and intrahepatic cholangiocarcinoma (Jing et al.,

Total	HE	ILA2	χ^2	C	D8	χ^2
	Low (n=61)	High (n= 73)	(p value)	<60 (n = 67)	≥60 (n= 67)	(p value)
88	41 (46.6%)	47 (53.4%)	$\chi^2 = 0.118$	44 (50%)	44 (50.0%)	$\chi^{2} = 0.0$
46	20 (43.5%)	26 (56.5)	p=0.731	23 (50 %)	23 (50 %)	P=1.0
75	33 (44.0%)	42 (56.0%)	$\chi^2 = 0.159$	44 (58.7%)	31 (41.3%)	$\chi^2 = 5.12$
59	28 (47.5%)	31 (52.5%)	p=0.690	23 (39.0%)	36 (61.0%)	P=0.024*
49	23 (46.9%)	26 (53.1%)	$\chi^2 = 0.062$	29 (59.2%)	20 (40.8%)	$\chi^2 = 2.61$
85	38 (44.7%)	47 (55.3%)	p=0.803	38 (44.7%)	47 (55.3%)	P=0.106
79	37 (46.8%)	42 (53.2%)	$\chi^2 = 0.134$	38 (48.1%)	41 (51.9%)	$\chi^2 = 0.278$
55	24 (43.6%)	31 (56.4%)	P=0.715	29 (52.7%)	26 (47.3%)	P=0.598
110	50 (45.5%)	60 (54.5%)	MC=0.057	50 (45.5%)	60 (54.5%)	MC
18	8 (44.4%)	10 (55.6%)	P=0.972	11 (61.1%)	7 (38.9%)	P=0.015
6	3 (50%)	3 (50%)		6 (100%)	0(0%)	
= 110)						
107	50 (46.7%)	57 (53.3%)	FET=2.57	49 (45.79%)	58 (54.2%)	FET
3		3 (100%)	P=0.249	1 (33.3%)		P=1.0
50	19 (38%)	31 (62%)	$\chi^2 = 2.27$	35 (70.0%)	15 (30.0%)	$\chi^2 = 21.38$
						P≤0.001
		,				_
	- ()					
90	44 (48.9%)	46 (51.1%)	$\gamma^2 = 1.28$	40 (44.4%)	50 (55.6%)	$\chi^2 = 3.58$
24	· /					P=0.167
	- (-)					
15	6 (40%)	9 (60%)	$\gamma^2 = 0.208$	12 (80.0%)	3 (20.0%)	$\chi^2 = 6.08$
				,		P=0.014
	, , ,	()			- ()	
79	31(39.2%)	48 (60.8%)	$\gamma^2 = 3.06$	45 (57.0%)	34 (43.0%)	$\chi^2 = 3.73$
						P=0.053
		(.0.0.00)		(()	- 0.000
37	19 (51.4%)	18 (48.6%)	$\gamma^2 = 0.700$	20 (54.1%)	17 (45.9%)	$\chi^2 = 0.336$
						P=0.562
<i>,</i> ,	12 (15.570)	22 (20.770)	1 0.105	17 (10.570)	55 (51.570)	1 0.502
17	13 (76 5%)	4 (23, 5%)	$\gamma^2 MC = 10.58$	10 (58.8%)	7 (41 2%)	$\chi^2 = 0.633$
						γ =0.03. P=0.728
			1 0.005			1 0.720
1.J	5 (2070)	12 (00/0)		/ (+0.//0)	0 (33.370)	
77	43 (55 8%)	34 (41 2%)	$v^2 = 0.17$	33 (42 0%)	44 (57 1%)	χ ² =5.45
			r-0.01*			P=0.066
20	0 (23.1%)	20 (70.9%)		10 (09.2%)	0 (30.070)	
126	60 (47 (0/)	66 (50 40/)	2-2 74	60 (52 40/)	66 (50 40/)	w ² = 4 70
120	00(4/.0%)	00(32.4%)	$\gamma^{-} = 3./4$	00(52.4%)	00(32.4%)	$\chi^2 = 4.78$
	$ \begin{array}{c} 88\\ 46\\ 75\\ 59\\ 49\\ 85\\ 79\\ 55\\ 110\\ 18\\ 6\\ =110)\\ 107\\ 3\\ 50\\ 51\\ 33\\ \end{array} $	Low (n=61)8841 (46.6%) 20 (43.5%)7533 (44.0%) 28 (47.5%)4923 (46.9%) 38 (44.7%)7937 (46.8%) 24 (43.6%)10050 (45.5%) 	Low (n=61)High (n= 73)8841 (46.6%)47 (53.4%)4620 (43.5%)26 (56.5)7533 (44.0%)42 (56.0%)5928 (47.5%)31 (52.5%)4923 (46.9%)26 (53.1%)8538 (44.7%)47 (55.3%)7937 (46.8%)42 (53.2%)5524 (43.6%)31 (56.4%)11050 (45.5%)60 (54.5%)188 (44.4%)10 (55.6%)63 (50%)3 (50%)=110)10750 (46.7%)57 (53.3%)30 (0%)3 (100%)5019 (38%)31 (62%)5127 (52.9%)24 (47.1%)3315 (45.5%)18 (54.5%)9044 (48.9%)46 (51.1%)249 (37.5%)15 (62.5%)208 (40%)12 (60%)11955 (46.2%)64 (53.8%)7931 (39.2%)48 (60.8%)5530 (54.5%)25 (45.5%)3719 (51.4%)18 (48.6%)9742 (43.3%)55 (56.7%)10245 (44.1%)57 (55.9%)153 (20%)12 (80%)7743 (55.8%)34 (44.2%)3112 (38.7%)19 (61.3%)266 (23.1%)20 (76.9%)	Low (n=61)High (n= 73)(p value)8841 (46.6%)47 (53.4%) χ^2 =0.1184620 (43.5%)26 (56.5)p=0.7317533 (44.0%)42 (56.0%) χ^2 =0.1595928 (47.5%)31 (52.5%)p=0.6904923 (46.9%)26 (53.1%) χ^2 =0.0628538 (44.7%)47 (55.3%)p=0.8037937 (46.8%)42 (53.2%) χ^2 =0.1345524 (43.6%)31 (56.4%)P=0.71511050 (45.5%)60 (54.5%)MC=0.057188 (44.4%)10 (55.6%)P=0.97263 (50%)3 (100%)P=0.2495019 (38%)31 (62%) χ^2 =2.275127 (52.9%)24 (47.1%)P=0.3213315 (45.5%)18 (54.5%)P=0.527208 (40%)12 (60%) χ^2 =0.20811955 (46.2%)64 (53.8%)P=0.6497931 (39.2%)48 (60.8%) χ^2 =3.065530 (54.5%)25 (45.5%)P=0.083719 (51.4%)18 (48.6%) χ^2 =0.7009742 (43.3%)55 (56.7%)P=0.005*3112 (38.7%)12 (80%) χ^2 =9.173112 (38.7%)19 (61.3%)P=0.01*266 (23.1%)20 (76.9%)P=0.01*	Low (n=61)High (n= 73)(p value)<60 (n = 67)8841 (46.6%)47 (53.4%) χ^2 =0.11844 (50%)4620 (43.5%)26 (56.5)p=0.73123 (50 %)5928 (47.5%)31 (52.5%)p=0.69023 (39.0%)4923 (46.9%)26 (53.1%) χ^2 =0.06229 (59.2%)8538 (44.7%)47 (55.3%)p=0.80338 (44.7%)7937 (46.8%)42 (53.2%) χ^2 =0.13438 (48.1%)5524 (43.6%)31 (56.4%)P=0.71529 (52.7%)11050 (45.5%)60 (54.5%)MC=0.05750 (45.5%)188 (44.4%)10 (55.6%)P=0.97211 (61.1%)63 (50%)3 (100%)P=0.2491 (33.3%)5019 (38%)31 (62%) χ^2 =2.2735 (70.0%)5127 (52.9%)24 (47.1%)P=0.32126 (51.0%)6 (18.2%)13 (62.5%)P=0.32126 (51.0%)3315 (45.5%)18 (54.5%)P=0.52714 (58.3%)208 (40%)12 (60%) χ^2 =0.20812 (80.0%)11955 (46.2%)64 (53.8%)P=0.64955 (46.2%)7931 (39.2%)48 (60.8%) χ^2 =3.0645 (57.0%)9742 (43.3%)55 (56.7%)P=0.40347 (48.5%)1713 (76.5%)4 (23.5%) χ^2 =0.70020 (54.1%)1914 (44.1%)57 (55.9%)P=0.40347 (48.5%)10245 (44.1%)57 (55.9%)P=0.005*50 (49.0%) <td>Low (n=61) High (n=73) (p value) <60 (n = 67) ≥60 (n = 67) 88 41 (46.6%) 47 (53.4%) χ^2=0.118 44 (50%) 44 (50.0%) 75 33 (44.0%) 42 (56.0%) χ^2=0.159 44 (58.7%) 31 (41.3%) 99 23 (46.9%) 26 (55.1%) p=0.690 23 (39.0%) 36 (61.0%) 85 38 (44.7%) 47 (55.3%) p=0.690 28 (47.5%) 20 (40.8%) 91 37 (46.8%) 42 (53.2%) χ^2=0.062 29 (59.2%) 20 (40.8%) 79 37 (46.8%) 42 (53.2%) χ^2=0.134 38 (48.1%) 41 (51.9%) 110 50 (45.5%) 60 (54.5%) MC=0.057 50 (45.5%) 60 (54.5%) 110 50 (46.7%) 3 (50%) 3 (50%) 2 (47.1%) P=0.219 11 (61.1%) 7 (38.9%) 110 50 (45.7%) 31 (62%) χ^2=2.27 35 (70.0%) 15 (30.0%) 21 9 (38%) 31 (62%) χ^2=2.27 13 (51.0%) 27 (81.8%) 20 9 (38.6%)<</td>	Low (n=61) High (n=73) (p value) <60 (n = 67) ≥60 (n = 67) 88 41 (46.6%) 47 (53.4%) χ^2 =0.118 44 (50%) 44 (50.0%) 75 33 (44.0%) 42 (56.0%) χ^2 =0.159 44 (58.7%) 31 (41.3%) 99 23 (46.9%) 26 (55.1%) p =0.690 23 (39.0%) 36 (61.0%) 85 38 (44.7%) 47 (55.3%) p =0.690 28 (47.5%) 20 (40.8%) 91 37 (46.8%) 42 (53.2%) χ^2 =0.062 29 (59.2%) 20 (40.8%) 79 37 (46.8%) 42 (53.2%) χ^2 =0.134 38 (48.1%) 41 (51.9%) 110 50 (45.5%) 60 (54.5%) MC=0.057 50 (45.5%) 60 (54.5%) 110 50 (46.7%) 3 (50%) 3 (50%) 2 (47.1%) P=0.219 11 (61.1%) 7 (38.9%) 110 50 (45.7%) 31 (62%) χ^2 =2.27 35 (70.0%) 15 (30.0%) 21 9 (38%) 31 (62%) χ^2 =2.27 13 (51.0%) 27 (81.8%) 20 9 (38.6%)<

Table 2. Association between HHLA2, CD8 and Clinicopathologic Parameters

Zeinab Mohammed G	awesh et al
-------------------	-------------

Table 2. Cor	ntinued
--------------	---------

Clinicopathologic	Total	HE	HLA2	χ2	Cl	D8	χ2
parameters		Low (n=61)	High $(n=73)$	(p value)	<60 (n = 67)	≥60 (n= 67)	(p value)
AJCC stage							
Stage I	12	10 (83.3%)	2 (16.7%)	$\chi^2 MC = 14.69$	5 (41.7%)	7 (58.3%)	MC
stage II	63	33 (52.4%)	30 (47.6%)	P=0.002*	27 (42.9%)	36 (57.1%)	P=0.086
Stage III	51	17 (33.3%)	34 (66.7%)		28 (54.9%)	23 (45.1%)	
Stage IV	8	1 (12.5%)	7 (87.5%)		7 (87.5%)	1 (12.5%)	
Local recurrence							
Yes	31	15 (48.4%)	57 (55.3%)	$\chi^2 = 0.133$	14 (45.2%)	17 (54.8%)	$\chi^2 = 0.378$
No	103	46 (44.7%)	16 (51.6%)	P=0.837	53 (51.5%)	50 (48.5%)	P=0.539
Distant recurrence							
Yes	31	8 (25.8%)	23 (74.2%)	$\chi^2 = 6.32$	20 (64.5%)	11 (35.5%)	$\chi^2 = 3.39$
No	103	53 (51.5%)	50 (48.5%)	P=0.012*	47 (45.6%)	56 (54.4%)	P=0.065
Fate of patient							$\chi^2 = 0.588$
Died	96	38 (39.6%)	58 (60.4%)	$\chi^2 = 4.82$	46 (47.9%)	50 (52.1%)	P=0.443
Survived	38	23 (60.5%)	15 (39.5%)	P=0.028*	21 (55.3%)	17 (44.7%)	
CD8							
<60	67	33(49.3%)	34 (50.7 %)	$\chi^2 = 0.752$			
≥60	67	28(41.8%)	39 (58.2%)	P=0.386			

χ2, Chi-Square test; FET, Fisher's Exact Test; MC, Monte carlo test P, Probability value; *, statistically significant (P<0.05).

2019). Additionally, in cases with clear cell RCC, *HHLA2* overexpression in tumor tissues exhibited a positive link with a number of clinicopathological parameters like tumor size, clinical stage, and histologic grade (Chen et al. 2019; Zhou et al., 2020). Furthermore, Ding et al., (2022) observed that high *HHLA2* was associated with a higher grade and stage of hepatocellular carcinoma.

In contrast, other studies demonstrate that *HHLA2* has no significant correlation with clinico-pathologic parameters in CRC cases (Kula et al., 2023) and in pancreatic adenocarcinoma cases (Yan et al., 2019). In cervical adenocarcinoma (AC), Byun et al., (2021) observed that *HHLA2* expression demonstrated a significant negative link with lymph node metastases but did not demonstrate a significant correlation with stage, tumor grade, LVI, tumor size, or invasion depth.

In our study, patients with CRCs who had a high HHLA2 expression had the worst OS and DFS. HHLA2 was found by multivariate analysis to be an independent predictor of OS and DFS in CRC patients. This finding supports a prior study by Zhu and Dong (2018) that found HHLA2 to be an independent predictive factor of the OS in CRC patients. Also, it was in agreement with preceding research in stomach cancer (Wei et al., 2019), lung adenocarcinoma (Chen et al., 2020; Farrag et al., 2021), osteosarcoma (Koirala et al., 2016), bladder cancer (Lin et al., 2019), intrahepatic cholangiocarcinoma (Jing et al., 2019), clear cell RCC (Chen et al., 2019; Zhou et al., 2020), hepatocellular carcinoma (Ding et al., 2022), spinal chordoma (Xia et al., 2022), and medullary thyroid carcinoma (Niu et al., 2022). On the other hand, some research suggested that HHLA2 was associated with better

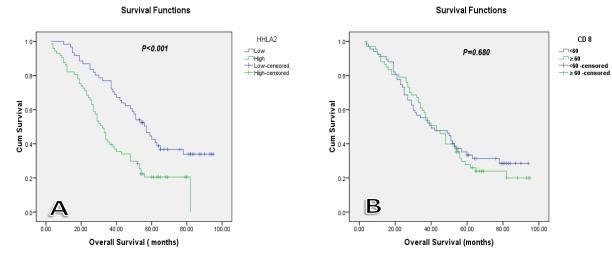


Figure 3. Kaplan-Meir Survival Curves for *HHLA2*, *CD8* with OS of Colorectal Carcinoma Cases. Significantly lower OS in patients with high HHLA2 expression (A). No statistically significant association between CD8 and OS(B).

	Variables		Age classes	<60 y (R)	≥60 y	Sex	Male (R)	Female	Site	Right (R)	Left	Size	<6 (R)	9<	Histological type	Adenocarcinoma NOS	Mucinous adenocarci- noma	Signet ring carcinoma (R)	Adenocarcinoma grade	Low	High(R)	TILs	Low (R)	Moderate	High	Tumor budding	Low (R)	Moderate	High
		Median OS		38	45		43	38		45	40		37	51		43	34	27		43	12		29	53	53		48	34	30
Ove	Univariate analysis	Hazard ratio (95% CI)		1	0.943 (0.615-1.45)		1	1.095 (0.729-1.64)		1	0.893 (0.582-1.37)		1	0.756 (0.497-1.152)		1.007 (0.548-1.85)	1.48 (0.599-3.67)			0.265 (0.078-0.901)	1		1	0.517 (0.315-0.849)	0.598 (0.340-1.05)		1	0.742 (0.418-1.318)	1.35 (0.705-2.55)
Overall survival		P value			0.787			0.662			0.603			0.193		0.981	0.394			0.03*				0.009*	0.074			0.309	0.364
	Multivariate analysis	Hazard ratio (95% CI)																		0.333 (0.095-1.17)	1		1	1.24 (0.703-2.2)	0.825 (0.428-1.59)				
	/Sis	P value																		0.086				0.454	0.565				
		Median DFS		48	51		52	48		40	48		42	53		51	55	22		51	12		33	54	54		51	34	38
Disease	Univariate analysis	Hazard ratio (95% CI)		1	1.24 (0.683-2.25)		1	1.27 (0.587-2.75)		1	0.723(0.369-1.41)		1	0.900 (0.497-1.63)		1.29 (0.681-2.47)	2.13 (0.764-5.95)			0.171 (0.036 - 0.809)	1		1	0.834 (0.325-2.14)	0.654 (0.256-1.67		1	2.37 (1.04-5.43)	0.708 (0.188-2.66)
Disease free survival		P value			0.478			0.544			0.343			0.727		0.429	0.148			0.026*				0.706	0.374			0.04*	0.609
val	Multivariate analysis	Hazard ratio (95% CI) P value																		0.451 (0.117-1.73)	1						1	1.79 (0.911-3.54)	0.945 (0.391-2.29
	sis	P value																		0.246								0.091	0.9

DOI:10.31557/APJCP.2023.24.12.4309 HHLA2 and CD8 in Colorectal Carcinoma

Variables		Ov	Overall survival	al			Disease	Disease free survival	val
		Univariate analysis		Multivariate analysis	ysis		Univariate analysis		Multivariate analysis
	Median	Hazard ratio (95% CI)	P value	Hazard ratio (95% CI) P value	P value	Median DFS	Hazard ratio (95% CI)	P value	P value Hazard ratio (95% CI) P value
LVI									
Absent (R)	54	1				54	1		
Present	34	1.04 (0.565-1.91)	0.903			43	$0.986\ (0.496-1.96)$	0.968	
PNI									
Absent (R)	48	1				50	1		
Present	34	0.946 (0.580-1.54)	0.823			48	1.18 (0.576-2.43)	0.646	
T (depth of invasion)									
T2	59	1.93(0.809-4.60)	0.078	1.71 (0.418-7.02)	0.457	55	0.796 (0.134-4.72)	0.805	
T3	39	4.43 (1.20-16.35)	0.025*	0.895 (0.416-1.93)	0.778	48	0.455 (0.161-1.29)	0.139	
T4(R)	49	1		1		53	1		
N (lymph node stage)									
N0	54	1.815 (0.171-19.23)	0.799			54	0.14 (0.08-7.2)	0.99	
N1	27	1.41 (0.460-4.32)	0.621			37	4.56 (0.850-24.51)	0.08	
N2(R)	32	1					1		
M (Metastasis stage)									
M 0	45	0.427 (0.144-1.27)	0.125			50	7.90 (3.1-9.8)	0.99	
M 1(R)	24	1				50	1		
AJCC stage									
stage I	52	2.9 (0.28-13.7)	0.067	7.9 (0.25-12.69)	0.881	56	0.897 (0.059-13.52)	0.937	
stage II	53	$0.069\ (0.005-0.893)$	0.04*	8.2 (0.15-10.44)	0.876	53	0.962 (0.087-10.60)	0.975	
Stage III	34	0.302 (0.03-2.75)	0.288	9.1 (0.14-13.19)	0.867	34	1		
Stage IV ®	24	1		1					
CD8									
<60	40	0.769 (0.470-1.26)	0.298			51	0.643 (0.316-1.31)	0.222	
>60 (R)	43	1				48	1		
HHLA2									
Low (R)	57	1		1		55	1		1
TT: _1.	32	1.74 (1.03-2.96)	0.039*	1.81 (1.06-3.07)	0.03*	29	2.06 (1.24-3.42)	0.005*	1.90 (1.18-3.06) 0.008*

Zeinab Mohammed Gawesh et al

4316 Asian Pacific Journal of Cancer Prevention, Vol 24

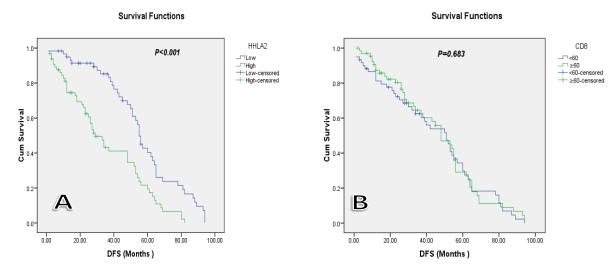


Figure 4. Kaplan-Meir Survival Curves for *HHLA2*, *CD8* with DFS of Colorectal Carcinoma Cases. Significantly lower DFS in patients with high *HHLA2* expression (A). No statistically significant association between *CD8* DFS (B)

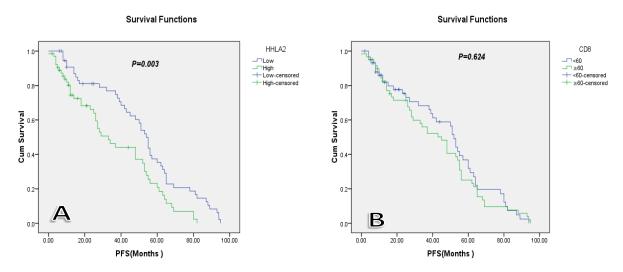


Figure 5. Kaplan-Meir Survival Curves for *HHLA2*, *CD8* with PFS of Colorectal Carcinoma Cases. Significantly lower PFS in patients with high *HHLA2* expression (A). No statistically significant association between CD8 and PFS (B)

outcomes in various malignancies such as CRCs (Khan et al., 2021), cervical AC (Byun et al., 2021), ovarian cancer (Xu et al., 2021), gastric cancer (Shimonosono et al., 2018), and hepatocellular carcinoma (Liao and Zhang, 2022). Additionally, elevated *HHLA2* expression was also associated with an improved post-surgical prognosis in pancreatic and ampullary cancers (Boor et al., 2020).

In our study, the relationship between HHLA2 and TILs and CD8+ T cells is not statistically significant. This is in line with the findings of a study by Kula et al. (2023), which found no relation between HHLA2 and CD8. According to Chen et al.'s (2019) research, there was no statistically significant correlation between HHLA2 overexpression and the quantity of CD8+ T cells in RCC.

In CRCs, on the other hand, the *HHLA2* high-expression group had a lot fewer CD8+ cells than the *HHLA2* low-expression group (Zhu and Dong, 2018). On the other hand, positive *HHLA2* expression had higher levels of CD8+ T cells in pancreatic cancer (Yan et al., 2020) and in RCC (Zhou et al., 2020). The current study demonstrated that there is a statistically significant correlation between CD8 expression and gender and certain favorable prognostic factors such as absence of tumor deposits, TILs, lack of metastasis, and histological type. However, CD8 does not significantly correlate with other clinicopathologic parameters or survival. These findings concur with those of Ko and Pyo (2019), who found a substantial correlation between CD8 and the absence of metastasis. However, a significant association was reported between CD8 and depth of invasion, lymph node stage, LVI, PNI, and histological grade.

According to Zhu and Dong (2018) and Barbosa et al. (2023), there is no correlation between *CD8* and tumor site and OS, but Barbosa et al., (22,023 recorded a significant association between *CD8* and lymph node status and depth of invasion. Furthermore, Yin et al., (2022) discovered

Zeinab Mohammed Gawesh et al

that there was a strong link between CD8 and survival but not between CD8 and tumor site, histological grade, or depth of invasion.

Our study had some limitations as factors influencing *HHLA2* expression, which include other T-cell subsets, and the expression of other co-inhibitory molecules, such as PD-L1, were not assessed. Additional research is needed to determine the biological significance, detect mechanisms of high *HHLA2* expression in CRC, and explain its contributions to tumor immune escape.

In conclusion, this study suggests that *HHLA2* is an independent prognostic predictor for the survival of CRC patients, associating with higher stage, advanced depth, and nodal stage. Therefore, *HHLA2* could be considered a promising prognostic and therapeutic target in the CRC.

Author Contribution Statement

All authors contribute equally; all authors share in the writing, data processing, and collecting of data, and they reviewed the whole work and approved the final version of the manuscript.

Acknowledgements

Compliance with Ethical Standards

The present study was carried out after obtaining approval from the committed Institutional Research Board (IRB) at the Faculty of Medicine, Mansoura University, Egypt (Code Number: MDP/20.06.41). The study was processed under the ethical standards of the Helsinki Declaration.

Availability of data and material

All the clinical, radiological, and pathological data used in this manuscript is available on No scientific organization had approved this research, and it was not a component of any accepted student thesis. Mansoura University medical system (Ibn Sina Hospital management system) http://srv137.mans.edu.eg/mus/ newSystem/.

Conflict of interest statement

The authors declare no relevant financial affiliations or conflicts of interest.

References

- Barbosa AM, Martinho O, Nogueira R, et al (2021). Increased CD3+, CD8+, or FoxP3+ T lymphocyte infiltrations are associated with the pathogenesis of colorectal cancer but not with the overall survival of patients. *Biology*, **10**, 808.
- Bhatt RS, Berjis A, Konge JC, et al (2021). KIR3DL3 is an inhibitory receptor for *HHLA2* that mediates an alternative immunoinhibitory pathway to PD1. *Cancer Immunol Res*, 9, 156-69]
- Boor PP, Sideras K, Biermann K, et al (2020). *HHLA2* is expressed in pancreatic and ampullary cancers and increased expression is associated with better post-surgical prognosis. *Br J Cancer*, **122**, 1211–8.
- Byun JM, Cho HJ, Park HY, et al (2021). The clinical significance of HERV-H LTR-associating 2 expressions in

cervical adenocarcinoma. Medicine, 100.

- Chen D, Chen W, Xu Y, et al (2019). Upregulated immune checkpoint *HHLA2* in clear cell renal cell carcinoma: a novel prognostic biomarker and potential therapeutic target. *J Med Genet*, **56**, 43–9.
- Chen Y, Hu R, Li X, et al (2020). B7-H4 and *HHLA2*, members of B7 family, are aberrantly expressed in EGFR mutated lung adenocarcinoma. *Pathol Res Pract*, **216**, 153134.
- Ding L, Yu Q, Yang S, et al (2022). Comprehensive analysis of *HHLA2* as a prognostic biomarker and its association with immune infiltrates in hepatocellular carcinoma. *Front Immuno*, **13**, 831101.
- Farrag MS, Ibrahim EM, El-Hadidy TA, et al (2021). Human endogenous retrovirus-H long terminal repeat-associating protein 2 (*HHLA2*) is a novel immune checkpoint protein in lung cancer which predicts survival. *Asian Pac J Cancer Prev*, 22, 1883.
- Foda AA (2013). No-cost manual method for preparation of tissue microarrays having high quality comparable to semiautomated methods. *Appl Immunohistochem Mol Morphol*, 21, 271-4.
- Fuchs TL, Sioson L, Sheen A, et al (2020). Assessment of Tumor-infiltrating Lymphocytes Using International TILs Working Group (ITWG) System Is a Strong Predictor of Overall Survival in Colorectal Carcinoma: A Study of 1034 Patients. Am J Clin Pathol, 44, 536–44.
- Golshani G, Zhang Y (2020). Advances in immunotherapy for colorectal cancer: a review. *Therap Adv Gastroenterol*, 13, 1756284820917527.
- Janakiram M, Chinai JM, Fineberg S, et al (2015). Expression, clinical significance, and receptor identification of the newest B7 family member *HHLA2* protein. *Clin Cancer Res*, 21, 2359-66.
- Jing CY, Fu YP, Yi Y, et al (2019). *HHLA2* in intrahepatic cholangiocarcinoma: An immune checkpoint with prognostic significance and wider expression compared with PD-L1. *J Immunother Cancer*, 7, 1-11.
- Ko YS, Pyo JS (2019). Clinicopathological significance and prognostic role of tumor-infiltrating lymphocytes in colorectal cancer. *Int J Biol Markers*, **34**, 132-8.
- Koirala P, Roth ME, Gill J, et al (2016). *HHLA2*, a member of the B7 family, is expressed in human osteosarcoma and is associated with metastases and worse survival. *Sci Rep*, **6**, 31154.
- Kula A, Dawidowicz M, Mielcarska S, et al (2023). Overexpression and Role of *HHLA2*, a Novel Immune Checkpoint, in Colorectal Cancer. *Int J Mol Sci*, 24, 5876.
- Li Y, Lv C, Yu, Y, et al (2023). KIR3DL3-HHLA2 and TMIGD2-HHLA2 pathways: the dual role of HHLA2 in immune responses and its potential therapeutic approach for cancer immunotherapy. J Adv Res, 47, 137-50.
- Liao X, Zhang D (2022). *HHLA2* Immune Checkpoint Is a Novel Prognostic Predictor in Hepatocellular Carcinoma. *Am J Clin Pathol*, **158**, 62-9.
- Lin G, Ye H, Wang J, et al (2019). Immune checkpoint human endogenous retrovirus-H long terminal repeat-associating protein 2 is upregulated and independently predicts unfavorable prognosis in bladder urothelial carcinoma. *Nephron*, **141**, 256-64.
- Nagtegaal ID, Arends MJ, Odze RD, Lam AK (2019). Tumours of the colon and rectum. WHO Classification of Tumours. Digestive system tumours. 5th edition, IARC Lyon, France, pp 156-91.
- Niu Y, Wang W, Jiang X, et al (2022). High expression of *HHLA2* predicts poor prognosis in medullary thyroid carcinoma. *Jpn J Clin Oncol*, **52**, 759-65.
- Shimonosono M, Arigami T, Yanagita S, et al (2018). The

DOI:10.31557/APJCP.2023.24.12.4309 HHLA2 and CD8 in Colorectal Carcinoma

association of human endogenous retrovirus-H long terminal repeat-associating protein 2 (*HHLA2*) expression with gastric cancer prognosis. *Oncotarget*, **9**, 22069–78.

- Sung H, Ferlay J, Siegel RL, et al (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin*, **71**, 209-49.
- Wei L, Tang L, Chang H, Huo S, Li Y (2020). *HHLA2* overexpression is a novel biomarker of malignant status and poor prognosis in gastric cancer. *Hum Cell*, **33**, 116-22.
- Xia C, Huang W, Chen YL, et al (2022). Coexpression of *HHLA2* and PD-L1 on tumor cells independently predicts the survival of spinal chordoma patients. *Front Immunol*, **12**, 797407.
- Xu G, Shi Y, Ling X, et al (2021). *HHLA2* predicts better survival and exhibits inhibited proliferation in epithelial ovarian cancer. *Cancer Cell Int*, **21**, 1-14.
- Yan H, Qiu W, De Gonzalez AK, et al (2019). *HHLA2* is a novel immune checkpoint protein in pancreatic ductal adenocarcinoma and predicts post-surgical survival. *Cancer Lett*, 442, 333-40.
- Yin C, Okugawa Y, Yamamoto A (2022). Prognostic significance of CD8+ tumor infiltrating lymphocytes and CD66b+ tumor associated neutrophils in the invasive margins of stages I III colorectal cancer. Oncol Lett, 24, 1-10.
- Ying H, Xu J, Zhang X, Liang T, Bai X (2022). Human endogenous retrovirus-H long terminal repeat-associating 2: The next immune checkpoint for antitumour therapy. *EBioMedicine*, **79**, 103987.
- Zhou QH, Li KW, Chen X, et al (2020). *HHLA2* and PD-L1 co-expression predicts poor prognosis in patients with clear cell renal cell carcinoma. *J Immunother Cancer*, **8**.
- Zhu Z, Dong W (2018). Overexpression of *HHLA2*, a member of the B7 family, is associated with worse survival in human colorectal carcinoma. *Onco Targets Ther*, **11**, 1563.

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.