SUPPLEMENTARY

In vitro antimicrobial activity Microbial strains

Staphylococcus aureus ATCC6538, *Escherichia coli* ATCC25922 and *Candida albicans* ATCC10231 were obtained from American Type Culture Collection.

Qualitative assessment for antimicrobial activity (McFarland 1907; Al-Hiari et al., 2007) **Antimicrobial Susceptibility Test (AST)**

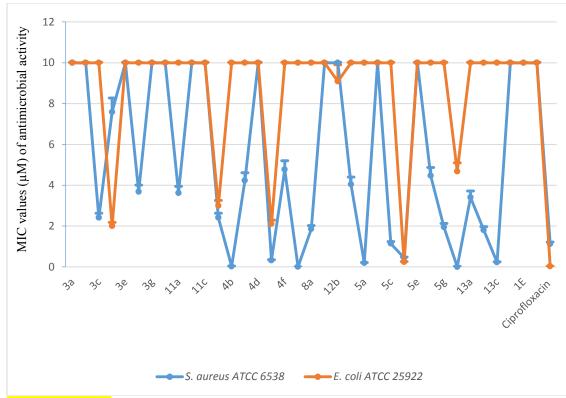
Agar well diffusion test was used to determine antimicrobial susceptibility test. In this test, the compound diffuses into the agar medium where the tested microorganism is grown to provide a qualitative assessment for the antimicrobial activity. The compounds were dissolved in DMSO to obtain a final concentration of 10 mg/mL (e.g. A1 6.1 mg dissolved in 0.610 mL DMSO) and so on. An isolated single bacterial colony of an overnight culture grown on TSA was transferred to TSB tube and vortexed to obtain a homogenous suspension. The turbidity was adjusted to 0.5 McFarland standard 1.5×10^8 CFU/mL (McFarland 1907;Al-Hiari et al. 2007). A sterile swab was dipped in the tube and squeezed on the wall of the tube to remove excess fluid. Then the swab was streaked on TSA plate in parallel overlapping lines to make a lawn. The plate was left to dry for few minutes. Sterile cork borer was used to punch holes in the agar with a diameter of (0.5 cm). An 80 µL of each compound was added separately to the wells. The plate was incubated at 35 ± 2 °C for 18-24 hrs. For *C. albicans*, the same procedure was used except that the medium used was SDA. DMSO alone checked for its antimicrobial activity.

Quantitative assessment for antimicrobial activity

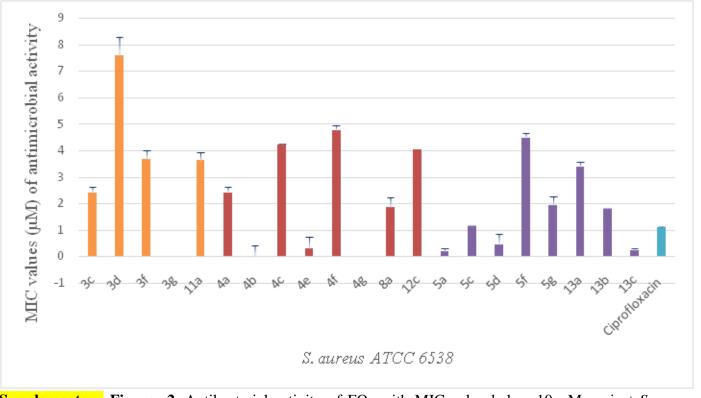
Determination of the minimum inhibitory concentration (MIC) of the tested compounds

The compounds that showed antimicrobial activity were further studied to evaluate their MIC against the selected microorganisms.

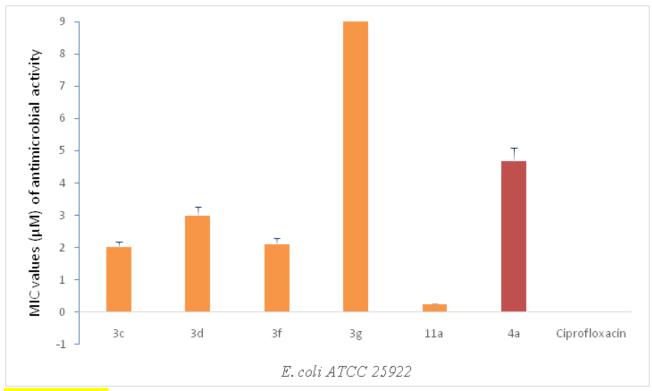
Preparation of inoculums


A pure culture of each type of microorganism was inoculated onto TSA, and incubated overnight at 35 ± 2 °C. A loop full of bacterial culture was aseptically transferred to a sterile tube containing TSB and standardized to 0.5 McFarland, 1.5 x 10⁸ CFU/mL. A 10 µL was aseptically transferred to eppendorf tube containing 990 µL of TSB (1/100) to obtain 1.5 x 10⁶ CFU/mL.

MIC value determination


Broth micro dilution method was performed to determine the MIC of the tested compounds. Stock solutions of the compounds were prepared in DMSO. A 200 μ L of the tested compounds was transferred to the first row of 96 well plates and 100 μ L of TSB was transferred to the other wells. Two-fold serial dilution was performed by transferring 100 μ L from the wells of the first row to the second row, mixed and 100 μ L was transferred to the third row, mixed, and so on. Then 10 μ L from each microbial suspension was inoculated separately into each well except for the first raw. The plates were incubated at 35 ± 2 °C for 18-24 hr. After incubation the plates were visually inspected for growth (turbidity). Testing of each compound was made in duplicate. A drug -free control was made by inoculating 100 μ L of TSB with 10 μ L of bacterial suspension. For *C. albicans* testing, the principle of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) method was adopted with modification. In this method TSB was used instead of RPMI medium, since no *C. albicans* growth was obtained using RPMI medium. Two fold serial dilutions of the compounds were prepared as described above.

The wells were inoculated with the *C. albicans* to get a final count of 1.5×10^6 CFU/mL. The plates were incubated at 35 ± 2 C° for 18-24 hr. A drug-free control was prepared by inoculating 100 µL of TSB with 10 µL of yeast suspension. After incubation, the absorbance of the wells was measured using a plate reader at 530 nm. MIC is the lowest drug concentration which results in inhibition of growth of \geq 50% of that of the drug-free control. Testing of each compound was made in duplicate.


To check for the validity of the analysis, ciprofloxacin HCl antibiotic was used to test for *S. aureus* and *E. coli*. Fluconazole was used to check for *C. albicans*. To check for the antimicrobial activity of DMSO against the microorganisms used, double serial dilutions of DMSO in TSB was prepared as described above to obtain concentrations of DMSO in the range of 50% to 0.3906%. The wells were then inoculated with 10 μ L of each of the microbial cultures. From this experiment it was found that DMSO can inhibit microbial growth at concentrations above 12.5%. Therefore, when determining the MIC of the compounds, any result obtained where the concentration of DMSO in it equals or exceeds 12.5% was neglected, because the antimicrobial activity obtained could be attributed to DMSO rather than the compound. The compounds were dissolved in DMSO into the final concentration of 10 mg/mL (e.g. 6.1 mg of A1 dissolved in 0.610 mL of DMSO) and so on.

Supplementary Figure 1. Antibacterial activity of FQs 3-13 (MIC μ M values) of both *S.aureus* (blue) and *E.coli* (orange) against ciprofloxacin (below 10 μ M) where the cutoff value was 10 μ M.

Supplementary Figure 2. Antibacterial activity of FQs with MIC value below 10 μ M against *S.aureus* vs. ciprofloxacin.

Supplementary Figure 3. Antibacterial activity of FQs with MIC values below 10 μ M against *E.coli* versus ciprofloxacin.

Code	Compound	ZOI in cm	Code	Compound	ZOI in cm	Code	Compound	ZOI in cm
3a	2-Anis CA	1	4a	R-2-Anis CA	2	5a	T-2-Anis CA	1
3b	3-Anis CA	1.4	4b	R-3-Anis CA	1.1	5b	T-3-Anis CA	1.4
3c	4-Anic CA	1.3	4c	R-4-Anic CA	1.8	5c	T-4-Anic CA	1.7
3d	4-EtACA	1.5	4d	R-4-EtACA	1.5	5d	T-4-EtACA	1.6
3e	4-BuACA	0.8	4e	R-4-BuACA	1	5e	T-4-BuACA	1.1
3f	4-HxACA	0.6	4f	R-4-HxACA	1.5	5f	T-4-HxACA	1.4
3g	2,4-DMeOACA	0.8	4g	R-2,4-DMeOACA	NI	5g	T-2,4-DMeOACA	1.1
7a	CHxCA	1.1	8a	R-CHxCA	1.2	9a	T-CHxCA	1.5
11a	2-Anis CEtA	1.2	12a	R-2-Anis CEtA	1.3	13a	T-2-Anis CEtA	1.5
11b	3-Anis CEtA	0.7	12b	R-3-Anis CEtA	1.6	13b	T-3-Anis CEtA	1.6
11c	2,4-DMeOACETA	1	12c	R-2,4-DMeOACETA	1.5	13c	T-2,4-DMeOACETA	1.6
A1	Cipro Acid "CA"	0.4	A2	Cipro Ester	NI	A3	PF Anilin "CE"	1.7

Supplementary 1 Qualitative assessment for antimicrobial activity for *Staphylococcus aureus ATCC 6538*

ZOI: zone of inhibition; NI: No inhibition zone

Supplementary 2

Compound ZOI in cm Code ZOI in cm Code ZOI in cm Code Compound Compound 3a 2-Anis CA NI 4a R-2-Anis CA 2.9 5a T-2-Anis CA NI 3b 3-Anis CA NI 5b 4b R-3-Anis CA 1.6 T-3-Anis CA 1.4 3c 1.9 R-4-Anic CA 3 5c 1.8 4-Anic CA 4c T-4-Anic CA T-4-EtACA 3d 1.8 4d 2.2 5d 1.2 4-EtACA R-4-EtACA 3e 4-BuACA NI 4e R-4-BuACA 1.5 5e T-4-BuACA NI 3f NI 4f5f 4-HxACA R-4-HxACA 1.4 T-4-HxACA NI 1.3 NI 3g 2,4-DMeOACA 4g R-2,4-DMeOACA 5g T-2,4-DMeOACA NI 7a CHxCA NI 8a 1.4 9a T-CHxCA **R-CHxCA** 1.1 1.1 NI 0.9 11a 2-Anis CEtA 12a R-2-Anis CEtA 13a T-2-Anis CEtA NI 11b 3-Anis CEtA 12b R-3-Anis CEtA 1.9 13b T-3-Anis CEtA 1.9 2,4-DMeOACETA NI **R-2,4-DMeOACETA** T-2,4-DMeOACETA NI 11c 12c 1.6 13c A1 Cipro Acid "CA" 2.2 A2 Cipro Ester NI A3 PF Anilin "CE" NI

Qualitative assessment for antimicrobial activity for Escherichia coli ATCC 25922

ZOI: zone of inhibition; NI: No inhibition zone

Code	Compound	ZOI in cm	Code	Compound	ZOI in cm	Code	Compound	ZOI in cm
3a	2-Anis CA	0.7	4a	R-2-Anis CA	0.6	5a	T-2-Anis CA	NI
3b	3-Anis CA	0.5	4b	R-3-Anis CA	0.6	5b	T-3-Anis CA	0.6
3c	4-Anic CA	0.5	4c	R-4-Anic CA	0.5	5c	T-4-Anic CA	0.9
3d	4-EtACA	0.8	4d	R-4-EtACA	NI	5d	T-4-EtACA	0.6
3e	4-BuACA	0.7	4e	R-4-BuACA	0.7	5e	T-4-BuACA	0.8
3f	4-HxACA	NI	4f	R-4-HxACA	0.9	5f	T-4-HxACA	0.8
3g	2,4-DMeOACA	0.8	4g	R-2,4-DMeOACA	0.5	5g	T-2,4-DMeOACA	0.7
7a	CHxCA	1.3	8a	R-CHxCA	0.7	9a	T-CHxCA	0.5
11a	2-Anis CEtA	0.6	12a	R-2-Anis CEtA	0.9	13a	T-2-Anis CEtA	0.6
11b	3-Anis CEtA	NI	12b	R-3-Anis CEtA	NI	13b	T-3-Anis CEtA	NI
11c	2,4-DMeOACETA	0.7	12c	R-2,4-DMeOACETA	NI	13c	T-2,4-DMeOACETA	0.7
A1	Cipro Acid "CA"	1.4	A2	Cipro Ester	0.5	A3	PF Anilin "CE"	0.7

Supplementary 3 Qualitative assessment for FQs antimitotic activity against *Candida albicans ATCC 10231*

ZOI: zone of inhibition; NI: No inhibition zone

Supplementary 4

IVIIIIII	winning minotory concentrations of the compounds against 5. <i>dureus</i> ATCC 0558									
Code	Compound	MIC in µM	Code	Compound	MIC in µM	Code	Compound	MIC in µM		
3a	2-Anis CA	$19.95 \pm 1.8^{**}$	4a	R-2-Anis CA	2.41 ± 0.22**	5a	T-2-Anis CA	$0.2 \pm 0.02^{**}$		
3b	3-Anis CA	15.11 ± 1.36**	4b	R-3-Anis CA	$0.024 \pm 0.00^{\rm ns}$	5b	T-3-Anis CA	33.04 ± 2.97**		
3c	4-Anic CA	$2.41 \pm 0.22 **$	4c	R-4-Anic CA	$4.23 \pm 0.38 **$	5c	T-4-Anic CA	1.14 ± 0.10 **		
3d	4-EtACA	$7.59 \pm 0.68 **$	4d	R-4-EtACA	$50.28 \pm 4.53 **$	5d	T-4-EtACA	0.44 ± 0.04 **		
3e	4-BuACA	$28.44 \pm 2.56^{**}$	4e	R-4-BuACA	$0.32 \pm 0.03^{**}$	5e	T-4-BuACA	30.99 ± 2.79**		
3f	4-HxACA	$3.68 \pm 0.33^{**}$	4f	R-4-HxACA	$4.77 \pm 0.429 **$	5f	T-4-HxACA	$4.47 \pm 0.40 **$		
3g	2,4-DMeOACA	NI	4g	R-2,4-DMeOACA	$0.004 \pm 0.00 **$	5g	T-2,4-DMeOACA	$1.95 \pm 0.16^{**}$		
7a	CHxCA	$42.37 \pm 3.81 **$	8a	R-CHxCA	$1.86 \pm 0.17 **$	9a	T-CHxCA	$44.66 \pm 4.02^{**}$		
11a	2-Anis CEtA	$3.62 \pm 0.36^{**}$	12a	R-2-Anis CEtA	$26.38 \pm 2.37 **$	13a	T-2-Anis CEtA	3.408 ± 0.31 **		
11b	3-Anis CEtA	$10.38 \pm 0.93 **$	12b	R-3-Anis CEtA	$11.202 \pm 1.01 **$	13b	T-3-Anis CEtA	$1.804 \pm 0.16^{**}$		
11c	2,4-	38.71 ± 3.48**		R-2,4-	$4.04 \pm 0.36^{**}$	13c	T-2,4-	$0.22 \pm 0.02^{**}$		
	DMeOACETA		12c	DMeOACETA			DMeOACETA			
A1	Cipro Acid "CA"	$19.89 \pm 1.79^{**}$	A2	Cipro Ester	NI	A3	PF Anilin "CE"	NI		
Ref.	Ciprofloxacin	1.12 ± 0.10								

Minimum inhibitory concentrations of the compounds against S. aureus ATCC 6538

Results are mean \pm SD, P-value calculated by unpaired t-test between test compound IC₅₀ values and ciprofloxacin (μ M) using Graph Pad Prism software version 5.0.1.* when *P*<0.05 and ** when *P*<0.01 or 0.001, *** when P<0.0001, NS: not significantly different from reference agent. NI: no Inhibition zone. MIC: Minimum inhibitory concentration. SD: Standard deviation.

Minin	num inhibitory conc	entration of the com	pounds	against E. coli ATCC	25922			
Code	Compound	MIC in µM	Code	Compound	MIC in µM	Code	Compound	MIC in µM
3a	2-Anis CA	NI	4a	R-2-Anis CA	$2.99 \pm 0.27 **$	5a	T-2-Anis CA	NI
3b	3-Anis CA	NI	4b	R-3-Anis CA	$169.54 \pm 15.26^{**}$	5b	T-3-Anis CA	99.14 ± 8.93**
3c	4-Anic CA	$50.31 \pm 4.53 **$	4c	R-4-Anic CA	NI	5c	T-4-Anic CA	39.27 ± 3.53**
3d	4-EtACA	$2.01 \pm 0.18 **$	4d	R-4-EtACA	$47.56 \pm 4.28 **$	5d	T-4-EtACA	$0.239 \pm 0.02 **$
3e	4-BuACA	NI	4e	R-4-BuACA	2.105 ± 0.19 **	5e	T-4-BuACA	NI
3f	4-HxACA	NI	4f	R-4-HxACA	$10.55 \pm 0.95 **$	5f	T-4-HxACA	NI
3g	2,4-DMeOACA	NI	4g	R-2,4-DMeOACA	53.21 ± 4.79**	5g	T-2,4-DMeOACA	NI
7a	CHxCA	NI	8a	R-CHxCA	61.77 ± 5.56**	9a	T-CHxCA	$4.68 \pm 0.42 **$
11a	2-Anis CEtA	37.73 ± 3.40**	12a	R-2-Anis CEtA	NI	13a	T-2-Anis CEtA	36.18 ± 3.26**
11b	3-Anis CEtA	NI	12b	R-3-Anis CEtA	$9.088 \pm 0.82 **$	13b	T-3-Anis CEtA	$12.114 \pm 1.09 **$
11c	2,4-	NI		R-2,4-	NI	13c	T-2,4-	NI
	DMeOACETA		12c	DMeOACETA			DMeOACETA	
A1	Cipro Acid "CA"	$10.622 \pm 0.96^{**}$	A2	Cipro Ester	NI	A3	PF Anilin "CE"	NI
Ref.	Ciprofloxacin	0.0278 ± 0.00						

Supplementary 5 Minimum inhibitory concentration of the compounds against *E coli* ATCC 25922

Results are mean \pm SD, P-value calculated by unpaired t-test between test compound IC₅₀ values and ciprofloxacin (μ M) using Graph Pad Prism software version 5.0.1.* when P < 0.05 and ** when P < 0.01 or 0.001, *** when P < 0.0001, NS: not significantly different from reference agent. NI: no Inhibition zone. MIC: Minimum inhibitory concentration. SD: Standard deviation

Supplementary 6

Minimum inhibitory concentration of the compounds against C. albicans ATCC 10231

Code	Compound	MIC	in µM	Code	Compound	MIC	in µM	Code	Compound	MIC	in µM
3a	2-Anis CA	No	MIC		R-2-Anis CA	No	MIC	5a	T-2-Anis CA	No	MIC
		obtained*		4a		obtained*				obtained*	
3b	3-Anis CA	No	MIC		R-3-Anis CA	No	MIC	5b	T-3-Anis CA	No	MIC
		obtained*		4b		obtained*				obtained*	
3c	4-Anic CA	No	MIC		R-4-Anic CA	No	MIC	5c	T-4-Anic CA	No	MIC
		obtained*		4c		obtained*				obtained*	
3d	4-EtACA	No	MIC		R-4-EtACA	No	MIC	5d	T-4-EtACA	No	MIC
		obtained*		4d		obtained*				obtained*	
3e	4-BuACA	No	MIC		R-4-BuACA	76.199± 8.0	01^{+}	5e	T-4-BuACA	99.29± 10.0)0 ⁺
		obtained*		4e							
3f	4-HxACA	No	MIC		R-4-HxACA	No	MIC	5f	T-4-HxACA	No	MIC
		obtained*		4f		obtained*				obtained*	
3g	2,4-DMeOACA	No	MIC		R-2,4-DMeOACA	No	MIC	5g	T-2,4-DMeOACA	No	MIC
		obtained*		4g		obtained*				obtained*	
7a	CHxCA	No	MIC		R-CHxCA	230.94±20.	$30.94 \pm 20.22^+$ 9a		T-CHxCA	No	MIC
		obtained*		8a						obtained*	
11a	2-Anis CEtA	No	MIC		R-2-Anis CEtA	No	MIC	13a	T-2-Anis CEtA	No	MIC
		obtained*		12a		obtained*				obtained*	
11b	3-Anis CEtA	No	MIC		R-3-Anis CEtA	No	MIC	13b	T-3-Anis CEtA	No	MIC
		obtained*		12b		obtained*				obtained*	
11c	2,4-	No	MIC		R-2,4-	No	MIC	13c	T-2,4-	No	MIC
	DMeOACETA	obtained*		12c	DMeOACETA	obtained*			DMeOACETA	obtained*	
A1	Cipro Acid "CA"	No	MIC	A2	Cipro Ester	No	MIC	A3	PF Anilin "CE"	No	MIC
		obtained*				obtained*				obtained*	
Ref.	Fluconazole	9570.96±8	61.38								

* Because of solubility issues. Results are mean \pm SD, P-value calculated by unpaired t-test between test compound IC₅₀ values and fluconazole (μ M) using Graph Pad Prism software version 5.0.1. ⁺When *P*<0.05, NS: not significantly different from reference agent. NI: no Inhibition zone. MIC: Minimum inhibitory concentration. SD: Standard deviation