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Introduction

Arsenic (As) is a naturally occurring metalloid that is
present in food, soil and water. The heavy metal is a
recognized toxicant and carcinogen present in industrial
settings and in the environment (Shi et al., 2004). As is
currently one of the highest priority hazardous substances
globally (NRC, 1999). Different types of As are recognized
to exist in the environment and in the human body;
inorganic and organic arsenic. Millions of people are
currently exposed all over the world to this ubiquitous
toxicant at exposure levels leading to long-term toxicity,
particularly cancer (Basu et al., 2001; Gebel, 2000).

Exposure to As is a more serious problem in
developing countries where, due to inadequate municipal
potable water supply, many populations resort to sinking
tube wells which are unfortunately contaminated by
geogenic arsenic. Chronic ingestion of inorganic As
contaminated drinking water is considered the major
source for the risk to human health. In humans, the chronic
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Abstract

Arsenic (As) is a ubiquitous metalloid found in several forms in food and the environment, such as the soil,
air and water. The predominant form is inorganic arsenic in drinking water, which is both highly toxic and
carcinogenic and rapidly bioavailable. As is currently one of the most important environmental global
contaminants and toxicants, particularly in the developing countries. For decades, very large populations have
been and are currently still exposed to inorganic As through geogenically contaminated drinking water. An
increased incidence of disease mediated by this toxicant is the consequence of long-term exposure. In humans,
chronic ingestion of inorganic arsenic (>500mg/L As) has been associated with cardiovascular, nervous, hepatic
and renal diseases and diabetes mellitus as well as cancer of the skin, bladder, lung, liver and prostate. Contrary
to the earlier view that methylated compounds are innocuous, the methylated metabolites are now recognized to
be both toxic and carcinogenic, possibly due to genotoxicity, inhibition of antioxidative enzyme functions, or
other  mechanisms. As inhibits indirectly sulfhydryl containing enzymes and interferes with cellular metabolism.
Effects involve such phenomena as cytotoxicity, genotoxicity and inhibition of enzymes with antioxidant function.
These are all related to nutritional factors directly or indirectly. Nutritional studies both in experimental and
epidemiological studies provide convincing evidence that nutritional intervention, including chemoprevention,
offers a pragmatic approach to mitigate the health effects of arsenic exposure, particularly cancer, in the relatively
resource-poor developing countries. Nutritional intervention, especially with micronutrients, many of which
are antioxidants and share the same pathway with As, appears a host defence against the health effects of
arsenic contamination in developing countries and should be embraced as it is pragmatic and inexpensive.
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ingestion of inorganic arsenic (>500m/day As) has been
associated with cardiovascular, nervous, hepatic and renal
diseases and diabetes mellitus as well as cancer of the
skin, urinary bladder, lung, liver and prostate (Gebel,
2000).

Epidemiological studies indicate that populations
exposed to high levels of arsenic are susceptible to develop
liver, bladder, skin and lung cancer (Cheu et al., 2001;
Smith et al., 1998; Steinmaus et al 2000; Tseng et al.,
1968; Bates et al., 1992; Schwartz, 1997; Blot and
Fraumen, 1995; Bates et al., 1995). In addition to its
carcinogenic effects, As exposure has been suggested to
play a role in black foot disease (a form of peripheral
vascular disease) (Tseng et al., 1996), type II diabetes
mellitus (Tseng et al., 2000) and cardiovascular disease
(Engel et al., 1994).

Cancer of the liver, common in developing countries
is an important member of the various types of cancer
associated with chronic arsenic ingestion based on
epidemiological evidence (IARC, 1987). These health
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effects of exposure or ingestion of arsenic are of major
public health significance as over 200 million people, (the
population of the whole of Africa thirty years ago) largely
in developing countries, are exposed to As in drinking
water. This contamination is currently greatest in China,
Bangledesh and India where over 60% of drinking water
may be affected.

Despite these major health implications of As, its
contribution or potential contribution to serious health
problems in developing countries is insufficiently
recognized. The primary purpose of this review is to focus
on the health or potential (occult) health effects of arsenic
contamination in developing countries, examining the
public health significance, pragmatic methods of
prevention of associated toxicity including
carcinogenicity, and priorities within an economic
framework in which costs, cost-effectiveness and cost
benefit analysis will also be highlighted.

History of Arsenic Exposure

After the Second World War there was a marked
departure from inorganic chemicals as pesticides into the
use of carbon-based or organic pesticides; a few of the
old materials however persisted (Carson, 2002). Chief
among these is As, which is still the basic ingredient in a
variety of weed and insect killers (Carson 2002) which
are of particular relevance to developing countries as an
attempt to enhance food production to feed the teeming
population, thus accentuating the risk of exposure.

Furthermore, As is a highly toxic mineral occurring
widely in association with the ores of various metals (many
developing countries have a significant proportion of their
economy dependent on mineral exploitation and mining),
and in small amounts in volcanoes, in the sea and in spring
water, a major source of water for many rural populations
in developing countries. The relations of As to man are
varied and historic. The tasteless nature of As compounds
makes them more dangerous toxicants. This property has
been exploited to make As a favourite agent of homicide
from long before the time of ancient poisoners to the
present (Carson, 2002). As is one of the constituents in
English chimney soot and along with certain aromatic
hydrocarbons is considered responsible for the
carcinogenic action of the soot which was first recognized
about two centuries ago by the English physician, Percival
Pott (Pott 1775). The economic situations in most
developing countries imply the use of low technology
based domestic and industrial processes, many of which
are associated with increased generation of soot.

Association between Arsenic and Cancer in
Humans and Animals

Cancer is perhaps the most feared of the consequences
of exposure to environmental contaminants. The
association between As and cancer in men and animals is
historic. Huerper (Huerper, 1957), gives a fascinating
account of the consequences of exposure to As.
Reichenstein, a city in Silesia, for almost a thousand years
had been the site of mining for gold and silver ores and

for several hundred years for As ores. As the centuries
progressed, As wastes accumulated in the vicinity of the
mine shafts and were swept down from the mountains.
Underground water also became contaminated and As
entered the drinking water. For several centuries a
significant segment of the population suffered from the
disease known then as Reichstein disease, a chronic form
of arsenicism with accompanying disorders of the liver,
skin, the gastrointestinal and nervous systems (Hutchinson,
1895). Malignant tumors were also commonly found in
Reichstein disease. Reichstein disease is now mainly of
historic significance; improved modern water supplies has
largely eliminated As from water supplies. This is largely
only true in developed countries. As still constitutes a
significant contaminant in water supplies in many
developing countries (NRC, 1999, Bates et al., 1995). In
Cordoba province in Argentina, for instance, chronic As
poisoning accompanied by arsenical skin cancers is
endemic because of the contamination of drinking water
derived from rock weathering containing arsenic. The
eradicated Reichstein disease can be easily recreated or
simulated as well as the endemic arsenicism in Cordoba
by protracted use of arsenical insecticide which is common
in developing countries in an attempt to eradicate disease
and improve agricultural yield to feed the teeming
populations in these countries.
Though As contamination largely focuses only on man,
As contaminated environment affects also animals. An
interesting report emanating from Germany in 1936
illustrates this (Carson, 2002).

Radiation from certain rocks or As washed out of soil
or rocks to contaminate food or water supplies have been
associated with malignancy. The history of cancer is long
but our recognition of the etiologic agents causing it has
been slowly evolving. The first recognition of the
involvement of environmental agents in the carcinogenic
process was first described by Pott (1775). He observed
that the scrotal cancer so common among chimney sweeps
must be caused by the soot that accumulated on their
bodies. Though he could not defend his hypothesis in the
strict scientific manner, modern research methods have
now isolated the harmful constituents in soot and
vindicated Pott. For over a century after Pott’s classical
observation, very little progress was made on the
involvement of chemicals in the human environment and
their relationship to cancer by repeated skin contact,
inhalation or swallowing. However, it had been observed
that skin cancer was prevalent among workers exposed to
As fumes in wales (Carson, 2002). It was also observed
that workers in the cobalt mines in Saxony and in the
uranium mines at Joachimsthal in Bohemia were
susceptible to a pathology of the lungs, later identified as
cancer (Carson, 2002). These events were, however, pre-
industrial, before the explosion of industries, the industrial
revolution, a phase that most developing countries appear
to be in today, which involves the use of As and its
compounds.

A common use of As is as an insecticide. One of the
earliest pesticides associated with cancer is As, found in
sodium arsenite as a weed killer, and in calcium arsenate
and various other compounds as insecticides. In the district
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of Freiberg, Saxony, smelters for silver and lead poured
As fumes into the air which was blown out, polluting the
surrounding countryside and settling down upon the
vegetation. Horses, cows, goats and pigs, which fed on
this vegetation, showed signs and symptoms of As
poisoning, such as loss of hair and thickening of the skin
(Huerper, 1957). Wild animals, such as deer inhabiting
nearby forests, were also observed to exhibit abnormal
pigment spots and precancerous warts (Carson, 2002;
Huerper, 1957).

Further evaluation indicated that one had a definitely
cancerous lesion. Both domestic and wild animals were
also affected by arsenical enteritis, gastric ulcers, and
cirrhosis of the liver. Furthermore, sheep kept near the
smelters developed cancers of the nasal sinus; and at their
death As was found in the brain, liver and tumors (Carson,
2002; Huerper, 1957). Heavy mortality among insects,
especially among bees was also recorded. Rainfalls
washed arsenical dust from the leaves of vegetation and
carried it along into the water of brooks and pools; a great
many fish died. Apart from the food chain effect of As the
effect on direct agricultural production, including animal
husbandry, a major economic activity in many developing
countries, is obvious. Detailed studies, including
nutritional investigations conducted in Taiwan, showed
an increased rise of blackfoot disease in Taiwan (Tseng et
al., 1996; Valenzuela et al., 2005). Additionally, the
combination of low intake of micronutrients and chronic
exposure to As in drinking water has been considered to
lead to greater susceptibility to carcinogenesis in Taiwan
(Cheu et al., 2001; Tseng et al., 1968).

Metabolism of Arsenics

In most mammals, including humans the
biomethylation of inorganic As is an essential step for its
elimination. This leads to the synthesis of organic
arsenicals. Among the most recognized arsenical
metabolites are monomethyl arsenic acid (MMA) and
dimethylarsinic acid (DMA). DMA is formed through
alternating reduction of pentavalent arsenate to trivalent
arsenite and addition of methyl groups through the action
of methyl transferase enzymes, reactions that require S-
adenosine methionine. The metabolites are subsequently
eliminated through the urine. Cullen et al, (1984) have
proposed a sequence for methylation of inorganic As,
though the complete sequence of events is still
incompletely elucidated.

iAS(V)  ›   iAS(III)  ›   MMA(V)  ›   MMA(III)  ›   DMA(V)
›   DMA(III)

The methylation of arsenic was initially considered a
detoxification process. Recent studies have, however,
shown that some of these metabolites can also be
carcinogenic (Gebel, 2001). A number of factors have been
identified in different mammalian species, including
humans, which affect methylation (Bertolero et al., 1981;
Buchet et al., 1980; Tam et al., 1997; Vahter, 1981) These
include gender, age, ethnicity, dose, route and form of
administration, pregnancy, nutritional status and genetic

polymorphism (Vahter, 2001). Available evidence suggests
that arsenic biotransformation involves both
bioinactivation and detoxification steps (Vahter, 2001).
The possibility exists that DMA plays a significant role
in arsenic carcinogenicity in humans, therefore,
elucidation of the mode and stage at which it exerts or
commences its deleterious effect deserves attention, as
this will enhance not only cancer risk assessment but also
cancer prevention strategies. This has received a good deal
of attention recently (Wanibuchi et al., 2004) and will be
examined in greater detail subsequently.
Another major metabolite of As that is important for its
toxic and carcinogenic potential is MMA. In combination
with As metabolites, it has been found to promote
preoneoplastic lesions in the liver possibly through a
mechanism of oxidative stress in experimental models
(Nishikawa et al., 2001). This appears to hold more
carcinogenic potential for humans who are more
susceptible to the health hazards of As (Goerring et al.,
1999). This is probably of greater significance in
developing countries where the biologic processes for
biological protection to arsenicals, such as the immune
system and the antioxidant defense system, are
compromised (Anetor et al., 2005)

Studies of Arsenic Metabolites

Improved understanding of As metabolites is important
because they are currently considered more potent in
toxicity than inorganic As. Earlier studies on As
epidemiology have concentrated on inorganic arsenite
AS(III) and arsenate AS(V); experimental evidence was
limited until recently (Yamanaka et al., 1989). DMA(V)
has since then been consistently demonstrated to have a
wide range of carcinogenic effects in F344 rats in our
laboratory and others around the world. (Yamamoto et
al., 1995) investigated the promotion effects of DMA(V)
in a two-stage carcinogenicity test after multi-organ
initiation and found that DMA(V) significantly enhanced
tumor formation in the urinary bladder, kidney, liver and
the thyroid gland. A study to assess the promotional
activity of DMA(V) on rat liver carcinogenesis and
possible mechanisms involved (Wanibuchi et al., 1997),
using the medium-term bioassay (Ito test) and varying
doses in drinking water for six weeks, showed that
DMA(V) increased the excretion of 8-
hydroxydeoxyguanosine (8-OHdG), elevated cell
proliferation (PCNA) and increased the number and areas
of glutathione S-transferase placental form (GST-P)
positive foci. Ornithine decarboxylase (ODC) was also
increased in the liver exposed to DMA(V); consistent with
dose-dependent promotion of DMA(V), it also increased
oxidative DNA damage and increased cell proliferation,
all consistent with the carcinogenic potential of this major
As metabolite.

In another experiment investigating dose-dependent
promotion effects of DMA(V) on a medium-term rat
urinary bladder bioassay, DMA(V) was administered at
doses ranging from 2 to 100ppm in drinking water for 32
weeks after BBN initiation. Dimethylarsinic acid exerted
dose-dependent promoting activity; 10ppm was the
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minimum effective dose. Increase in 5-bromo-2-
deoxyuridine (BrdU) labeling index was observed
suggesting that enhanced turnover may play a major role
in the profound promoting effect of DMA(V) (Li et al.,
1998). Though most earlier studies largely examined the
promotional effects of DMA(V), there are indications it
may have other potentials. Previous investigators (Li et
al., 1998; Chen et al., 1999) have reported that DMA(V)
demonstrated promotional effects in the National Cancer
Institute (NCI) - Black Reiter rat (NBR), which is more
resistant to BBN urinary bladder carcinogenesis compared
to other strains. Additionally, NBR rats, which lack alpha-
2-globulin-synthesizing ability, demonstrated induction of
preneoplastic lesions (papillary or nodular hyperplasia)
of bladder in the DMA(V) treated group (Wanibuchi et
al., 1996). It is noteworthy that the induction of
preneoplastic lesions was significantly more increased in
the DMA(V) treated group than the carcinogen BBN
treated group. Furthermore, carcinomas were enhanced
as well as increased in BrdU labeling index of the urinary
bladder epithelial cells for the DMA(V) treated group. It
is probable that apart from promotion activity, DMA(V)
may also have initiation potential in some of these
experiments.

These observations have a number of far reaching
implications for developing countries that are at greater
risk of As exposure. This may be aggravated by the known
interaction between infections and chemicals in
carcinogenesis (Clayson, 2001). This may arise from the
inflammatory changes associated with infections, which
may enhance the effect of chemicals through oxidative
damage and consequently the carcinogenic process. Toxic
metal exposure, though strictly controlled and rather
uncommon in the developed countries, is seen quite often
in developing countries (Ercal et al., 2001), putting them
at greater risk of toxic metal associated pathology.

Mode of Arsenic Toxicity and its Health
Effects in Developing Countries

Like other heavy metals As has electron-sharing
affinities that can result in formation of covalent
attachment (Bondy, 1996). These attachments are mainly
formed between heavy metals and sulphydryl groups of
proteins (Quig, 1998). The tripeptide, glutathione (GSH),
found in mammalian tissues including humans, is present
at millimolar concentrations and accounts for over 90%
of the total non-protein sulfur. The physiological and
pathological roles of GSH in cellular damage, including
those due to As, are well recognized (Meister, 1994).
Interactions of toxic metals with GSH metabolism are an
essential part of the toxic response of many metals
(Hultberg et al., 2001), including As.

When GSH is depleted by any metal, GSH
synthesizing systems adjust to make more GSH from
cysteine via the _-cysteine glutamyl cycle, GSH is usually
not effectively maintained, if GSH depletion continues
because of chronic ingestion of As in drinking water (Quig,
1998; Meister, 1994). Several enzymes involved in
antioxidant defenses may protect against this imbalance.
This is most unlikely in most developing countries because

of prevailing micronutrient deficiency disorders which are
endemic in these countries (Underwood and Smitasiri,
1999). Micronutrients are the source of most antioxidant
agents; this puts populations in these countries at a greater
disadvantage to the health effects of As.

Additionally, enzymes may become inactive due to
direct binding of As to their active sites, especially if the
sites contain sulphydryl groups (Quig, 1998). Furthermore,
zinc, which serves as a cofactor for many enzymes, may
be replaced by As making the enzyme inactive. Zinc
deficiency is prevalent in most developing countries
(Gibson, 1994). Zinc interestingly is essential for vitamin
A metabolism and deficiency of vitamin A predisposes to
cancer and skin disease, thus potentiating the effect of
As. All these in concert will put populations in developing
countries at greater risk to the adverse health effects of
As contamination. As previously indicated, As is
associated with several diseases including diabetes (Lai
et al., 1994), hypertension (Chen et al., 1995) and tumors
of the skin, bladder, liver and lungs (Chen and Wang,
1990). The mechanisms by which As may induce cancer
have not been fully elucidated (NRC, 1999; Modi et al.,
2004). However, besides various mechanisms that have
been proposed, oxidative stress is currently the theory most
accepted as the major factor in arsenic-induced
carcinogenesis. Arsenic-induced oxidative stress has been
comprehensively reviewed by Kitchen et al (Kitchen,
2001) and Bernstam et al (Bernstam and Nriagu, 2000).
However, recent reports (Cohen et al., 2006) are beginning
to challenge the oxidative stress phenomenon in arsenic
induced carcinogenesis as the major factor in this disorder.
This is yet to be universally recognized. It remains to see
how the scientific community will receive this emerging
concept.

Malnutrition in developing countries implies greater
vulnerability to arsenic-induced cancer and other non-
communicable diseases, which are already known to be
steadily on the increase in many developing countries
(Parkin et al., 1993). The contribution of As to the raised
disease burden in these countries is uncertain, but it is
most likely to be substantial given the huge population
ingesting As in drinking water and the geogenic nature of
As. Various lines of evidence for arsenic-induced free
radical formation have been suggested (Ercal et al., 2001).

These include:
1) Direct evidence for arsenic-induced free radical

formation
2) Indirect evidence for arsenic-induced oxidative

stress
3) Effects of arsenic on cellular antioxidant defense

systems

Biomakers of oxidative stress have been reported with
arsenite treatment over the last decade 8-OHdG, a major
biomarker of ROS-induced DNA damage, has been
associated with As exposure. Yamanaka et al(2001)
observed increased 8-OHdG in urine samples of mice
gavaged with 220 mg/kg of DMA(V). Furthermore, in a
long-term carcinogenesis study of rats, hepatic 8-OHdG
levels were found to be raised in DMA-treated rats,



Asian Pacific Journal of Cancer Prevention, Vol 8, 2007 17

Micronutrients for Protection Against Arsenic Exposure in Asia

suggesting an increased rate of ROS attack on DNA
(Wanibuchi et al., 1997). One possible implication of this
in developing countries is greater genome instabilities,
which is the precursor of proliferative disorders and may
indeed be contributory to the rising incidence of
malignancies in developing countries (Parkin et al., 1993;
Phillip, 1985) where extensive populations in these
countries consume As in drinking water.

Carcinogenicity and Arsenic Contamination

As ground waters are contaminated with toxic
substances and other chemicals, there is danger that not
only poisonous but also, cancer producing substances are
being introduced into the public water supplies. An
investigation at the National Cancer Institute (NCI) in USA
warned long ago that the danger of cancer hazards from
the consumption of contaminated water will grow
considerably within the foreseeable future (Carson, 2002;
Huerper, 1957). Indeed a study in Holland in the early
1950s (a period comparable to the phase of development
in most developing countries) provides support for the
view that polluted water ways may carry a cancer hazard.
Cities obtaining their drinking water from rivers had a
higher death rate from cancer than did those whose water
supply came from sources presumably less susceptible to
pollution, such as wells (Carson, 2002).

As, the environmental contaminant most clearly
established as causing cancer in man, has been reported
in two historic cases in which polluted water supplies
caused wide spread occurrence of cancer. In one case, As
came from the slag heaps of mining operations, (an activity
on the increase in Nigeria and other developing countries
as previously indicated) (Carson, 2002; Phillip, 1985).
These conditions may easily be enhanced in areas of
mining activities when the As content of the earth crust is
brought to the surface. The surface in such areas becomes
heavily contaminated with As. The rains then carry part
of the As into streams, rivers and reservoirs, as well as
into the vast subterranean seas of ground water. This in
turn carries with it higher carcinogenicity events in the
affected communities.

Nutritional Status and its Effect on Arsenic
Contamination and Health in Developing
Countries

Among the factors that influence cellular response and
susceptibility to environmental contaminants, including
As, nutrition has received increasing recognition in recent
years (Chow, 2002). Although the mechanism of chronic
As toxicity is not fully understood, studies of populations
in Taiwan (Tseng et al., 1968), Chile (Bogono and Greiber
1971; Bogono et al., 1977) and Mexico (Cerbian et al.,
1983), living in regions endemically contaminated with
As (0.3-0.8mg/L) in drinking water, have manifested the
well known signs of As toxicity such as
hyperpigmentation, keratosis, skin cancer and black foot
disease (NRC, 1999; Cheu et al., 2001; Smith et al., 1998;
Tseng et al., 1968; Tseng et al., 1996).

Some other populations exposed to similar As levels

in economically advanced countries like the United States
did not exhibit these health effects (Valentine et al., 1992;
Southorick et al., 1983; Harrington et al., 1978). This
suggests the possibility that other factors may play
significant roles in the expression of chronic As toxicity,
including differences in duration of exposure to As and
importantly to nutritional status.

Direct studies on the effects of nutrition on As toxicity
have been hindered by lack of an adequate animal model
of chronic As toxicity and carcinogenicity. Nutritional
status in developing countries may be particularly relevant
in that populations exhibiting As toxicity have mostly been
those of low economic status and also suffering from some
degree of malnutrition (Gebel, 2001).
Nutritional studies in Chile revealed that food energy and
total protein intakes below the recommended daily
allowances (Zaldivar et al., 1978) are equivocal. The
possible effect of the possible risk factor of low protein
diet and health effects of As contamination in
disadvantaged populations prompted Engel and Receiveur
(Engel And Receiveur, 1993) to study low protein diet.
They found that the exposed population in Taiwan had
protein and methionine intakes that met recommended
levels. This may however not be representative of the
majority of the population in developing countries.
Moreover, questions have been raised whether the cysteine
and methionine levels they suggested as being required
for detoxification of As toxicity are below the methylation
capacity needed to detoxify extra As burden, even though
those levels may be adequate for normal populations (Beck
et al., 1995) Mushak and Crocetti (Mushak and Crocetti
1995) have argued theoretically that these micronutrient
levels may still be adequate.

Different micronutrients have different effects on the
toxicity of metals; these have also been shown to exhibit
different manifestations in different regions of developing
countries. Selenium deficiency has been known to be
endemic in China, giving rise to disorders such as Keshan’s
disease and Kaschin Beck’s disease. Selenium status has
been demonstrated to be inversely related to the risk of
hepatocellular carcinoma mortality (Sakoda et al., 2005).
It is also considered that As contamination may be
contributory to hepatocellular carcinoma. Selenium
deficiency has been suggested to play a role in arsenic-
associated health abnormalities. The role of selenium
deficiencies in arsenic-induced skin cancer has also been
discussed (Wagner et al., 1979). A study conducted by
Valentine et al (Valentine et al., 1994) initially evaluated
the differences in selenium intakes between populations
in rural northern Mexico and a region in California known
to be exposed to equal levels of As in drinking water but
exhibiting different degrees of toxicity. This study
interestingly revealed that the only difference nutritionally
from the recommended daily allowances was a greater
lack of vitamin A in the Mexican study. It is noteworthy
that vitamin A, which plays an essential role for normal
vision, growth, immune function and maintenance of
epithelial cells (disorders of which increase
carcinogenicity), is one of the major deficient
micronutrients of current focus by the international
community in the developing world (Levin et al., 1993).
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These studies in humans, along with an understanding of
how various forms of As exert their toxicities and
carcinogenicities, how they are metabolized and detoxified
or ameliorated, and other ways by which As may effect
populations in developing countries may provide better
insight into how nutritional status may enhance host
defenses against As toxicity, and the corollary, how
endemic deficiencies of protective micronutrients put the
populations in the developing world at greater risk of the
deleterious health effects of As toxicity.

 This may be particularly important in the case of
cancer in which As has been strongly implicated. Most
cancers develop from a single abnormal cell through
several successive rounds of mutations and natural
selection. This process commences with a change in the
cell’s DNA sequence. DNA damage has to occur during
its replication and there exist several phenotypic
expressions of this alteration. The study of the biochemical
and molecular alterations during cell transformation are
the central theme of many research activities regarding
As toxicity and carcinogenicity. These are usually
regulated by enzymes and processes dependent on
micronutrients or modulated by them.

Diet and Mechanisms of Arsenic Toxicity:
Implications for Developing Countries

Pentavalent arsenic, As(v), is chemically similar to
phosphorus. Arsenate uncouples oxidative
phosphorylation by substitution for phosphate in ATP
synthesis (Mitchell et al., 1971; Gresser, 1981). One
implication of this is reduced energy for work performance
in countries that are dependent mainly on manual or semi-
manual operations, which will in turn result in low
productivity and poor economy and health.

That phosphate and arsenate can share the same
transport mechanism has been demonstrated by decreased
intestinal absorption of arsenate with phosphate infusion
in the rat (Gonzatez et al., 1995), owing to the considerable
abundance of phosphate in most natural foods.
Theoretically, dietary phosphate could competitively
displace arsenate uptake and decrease the toxicity of As
from contaminated drinking water.

The use of phosphate supplement to ameliorate
arsenic-induced health effects has been largely unexplored.
Phosphorus, being so abundant in natural foods that
deficiency states are uncommon, naturally may indeed
have offered some degree of protection against As related
health effects. There is need for a proper investigation of
this possibility to understand the decreased risk, if any,
that phosphate offers in these populations, and the
converse owing to famine and starvation common in
developing nations.

Another chemical similarity exists between As and
selenium, which generally allows for antagonistic effects
between both metalloids (Levander, 1977). Unlike the
situation with phosphate no interaction exists between As
and selenium at the gut level. Instead, As and selenium
each enhances the biliary excretion of the other (Levander
and Baumann 1966). This mechanism may be useful in
controlling As ingestion. But a report in the late 1970’s

suggests that As appears to abolish the anti-carcinogenic
effects of selenium (Schrauzer et al., 1978), though this
requires further clarification to demonstrate the benefit
of the protective role of selenium against As toxicity. More
recent studies tend to confirm this protective effect.
Selenium is now known to alleviate As toxicity (Sakoda
et al., 2005). Selenium ion also partially reverses or
prevents the uncoupling of oxidative phosphorylation by
arsenate (Hill, 1975). Selenium has also been reported to
decrease the teratogenic toxicity of arsenate in
experimental models when both selenate and arsenate salts
are administered simultaneously (Ferm, 1977).

All of the above observations suggest that adequate
or even extra selenium in the diet may alleviate the health
effects associated with As contamination in the
populations at risk in developing countries.

Further studies on arsenic-essential nutrient
interactions show decreases in selenium and iron levels
during the progression of black foot disease in which As
has been implicated (Tseng et al., 1996; Wang et al., 1994).
The interaction between As and protein-containing food
substances deserves some attention concerning As related
health effects. Trivalent arsenicals, such as arsenite,
interact with sulphydryl containing amino acids, peptides
and proteins (Winski and Carter, 1995). Arsenite exerts
its cellular toxicity by binding major sulphydryl groups
resulting in enzyme inhibition. As earlier indicated, GSH
is a thiol tripeptide and antioxidant that plays a key role
in many xenobiotic detoxification reactions, including As
detoxification. Several studies have demonstrated that
cellular toxicity is inversely related to intracellular GSH
levels and that As toxicity is exacerbated by GSH
depletion. But GSH level is dependent on the nutritional
status of the subjects (Bray and Taylor, 1993). The sources
of sulphur amino acids on which GSH is dependent
understandably are low when intake of the sulfur amino
acids is low in the diet. Thus, content of low sulfur
containing amino acids or poor protein diets (common in
developing countries) generally leads to low GSH
availability, and this is associated with more pronounced
arsenic-induced cellular toxicity (Baunnann et al., 1988).
Poor protein diet also aggravates As toxicity in another
manner; low intake of sources of methyl groups, such as
methionine, choline or protein, decrease As excretion
(especially excretion of the major metabolite DMA(V) in
urine) and enhances retention of As in tissues (Vahter et
al., 1987). Diets deficient in good sources of methyl
donors, such as methionine and choline, decrease S-
adenosyl methionine (SAM) levels, thus enhancing
intoxification processess (Shivapurkar and Poirier, 1983).
Zinc is another essential micronutrient that is deficient in
major developing countries, especially in Africa (Gibson,
1994). Zinc induces increased synthesis of the low
molecular-weight, cysteine rich metal binding protein,
metallothionein (MT), suggesting that As toxicity can be
decreased by this mechanism, and thus the prevalence of
zinc deficiency in these resource poor countries may
predispose them to the adverse effects of As exposure.
Experimental evidence, however, suggests that this
mechanism may not account for the protection zinc offers
against arsenic toxicity (Kreppel et al., 1994). Despite the
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uncertainty of the mechanism of the tolerance to As
toxicity, optimum or even above average zinc intake is
associated with increased elimination of As. Thus, efforts
to improve zinc nutrition in developing countries in which
As contamination is a major public health concern may
be a pragmatic measure to ameliorate the health problems
of As contamination.

Oxidative Stress Associated with Arsenic
Contamination

While the modes of action are complex and
multifarious, increased oxidative stress is directly or
indirectly responsible for causing and/or exacerbating the
adverse effects from exposure to a number of
environmental agents (Chow 1991), including As.
Oxidative damage, which may exacerbate many of the
various pathologies already prevalent in the major
developing countries, is a consequence of decreased
antioxidant potential and increased oxidative stress (Chow
1979). Current hypotheses favour the view that lowering
oxidative stress can have clinical benefit. More and more
evidence indicates that a proper balance between oxidants
and antioxidants is involved in maintaining health and
longevity and that altering this balance in favour of
oxidants may result in pathological responses causing
functional disorders and disease.

The metabolism of As generates reactive oxygen
species that may lead to the damage of major
biomolecules, including DNA, proteins, lipids and other
body constituents of which these are component parts,
including antibodies.

As concentrations in tissues such as the liver, heart
and kidneys have been positively correlated with lipid
peroxidation in rats (Ramos et al., 1995). Studies in human
fibroblasts (Lee and Ho, 1995) with arsenite indicate that
it induces the body’s antioxidant activities.

Arsenite has been reported to induce haem oxygenase,
resulting in haem degradation, iron release and decreases
in the cytochrome P450 biotransformation enzymes that
are involved in both endogenous and xenobiotic
metabolism (Albores et al., 1995). Another major
antioxidant, enzyme superoxide dismutase(SOD) activity,
was also increased by sodium arsenite treatment of human
fibroblasts (Lee and Ho, 1995), again reiterating the role
of antioxidants in combating the health disorders
associated with As contamination.

The dietary antioxidants, vitamins A and E, may also
alleviate As toxicity and can be manipulated as a dietary
tool against As contamination. Experimental studies
confirm that supplementation of vitamin E could at least
in part prevent arsenite-induced death of human fibroblasts
(Lee and Ho, 1994).

A pragmatic and sustainable method of deriving the
benefit of the antioxidant defense system against the huge
problem of As contamination in developing countries is
copious dietary intake of fruit and vegetables, particularly
coloured vegetables (rich in vitamin A and β-carotene),
which have been inversely associated with the odds ratio
of lung cancer in tin miners at high risk of arsenic exposure
and associated risk factors (Forman et al., 1992).

Famine and starvation, which are common in many
developing countries especially in Africa as a result of
wars and other social strife, may aggravate the health
effects of As contamination in these countries. Chronic
exposure to As may result in mitochondrial changes that
block coenzymes and enzymes such as lipoic acid and
dehydrogenase involved in bioenergetics and ultimately
hypoglycaemia. The inhibition of pyruvate dehydrogenase
gluconeogenesis (Szsinicz and Forth, 1988) may also
contribute to this, suggesting that protein and
micronutrients may be more important than carbohydrate
deficiency caused by suppression of gluconeogenesis,
which may aggravate As poisoning. Studies in
experimental models show that starved rats were more
susceptible to As(III) than rats with free access to food
(Szsinicz and Forth, 1988). Starvation, so common in some
developing countries at risk of As contamination, may
also involve other important nutritional factors.
As pointed out earlier As exposure may play a role in the
development of diabetes mellitus, based on studies of the
association with As in drinking water in Taiwan (Laim et
al., 1994) in addition to occupational exposure to As in
copper smelter workers in Sweden (Rahman and Axelson,
1995), reminiscent of what happens in smelters dotted all
over many developing countries.

Nutritional modulation by way of supplements may
attenuate the degree of As toxicity and carcinogenicity.
Arsenite-associated bone marrow chromosomal
aberrations were found to be reduced in experimental
models fed crude garlic extract (Roychoudhury et al.,
1996). The beneficial effect may derive from arsenite’s
affinity for the sulphur moieties in many of the chemical
constituents of garlic extract. This garlic and the related
onions, which are fortuitiously common in the regions
where As contamination is most prevatlent, can, through
appropriate health education, be employed in prophylaxis
against the adverse health effects of As contamination.
This experimental report has recently been corroborated
by the observation of Fukushima et al (2001) that
environmental compounds are likely involved in the
development of many human cancers, that their
elimination would prevent cancer. But this is not practical,
thus it is important to search for naturally occurring or
synthetic compounds that may suppress or prevent the
process of carcinogenesis. As contamination appears a
very appropriate candidate for chemo-preventive
intervention.

This view also appears consistent with epidemiological
and experimental observations that strongly correlate the
dietary intake of food, vegetables and medicinal plants
with reduced risk of cancer and other health problems
(Wattenberg, 1990; Steinmetz and Potter, 1991; Sultana
et al., 2005). Whatever the mechanisms and degree of
actual success achieved with nutrients, it is clear that
nutritional status may play an important role in the
expression of As toxicity. The recent study of Wei et al
(2005) on effects of co-administration of antioxidants and
arsenicals and the inhibitory effects of antioxidants in
bladder carcinogenesis again elegantly demonstrates the
promise of micronutrients to pragmatically combat the
serious health effects of As contamination in affected
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populations.
In the past it was thought that the most important

nutritional factor, at least in principle, is adequate protein
intake for the detoxifying methylation reactions. With the
demonstration of the carcinogenic nature of some of the
major methylated compounds of As (Sultana et al., 2005;
Wei et al., 2005; Wei et al., 1999; Wei et al., 2002); this is
unlikely. Rather it is most probable that given the mode
of toxicity of As largely through oxidative stress, it is likely
that micronutrients, which are constituents of the
antioxidant defense system, may be more effective as
weapons against the adverse health effects of As
contamination in developing countries. The fact that
studies of highly exposed populations from developing
countries have been employed as the basis for setting
regulatory levels in other countries implies that the effect
of nutritional status on As contamination occupies a central
position in combating the adverse health effects of As.
Further studies are, however, required to determine the
specific nutrients that are more protective against As
toxicity and to fully establish if correction of dietary
deficiencies will be adequate to handle the magnitude of
the As burden or whether megadoses will be required
remains speculative. Though the recent study of Islam et
al (2004) on the manipulation of air and bacteria in
controlling As contamination in water is promising, its
application in the poorly educated populations in
developing countries may be fraught with difficulties.

Conclusions

As contamination is undoubtedly a problem in many
developing countries, although the true magnitude of the
problem in some others, particularly in Africa, is
incompletely elucidated. Scattered reports and
experimental evaluations indicate that the burden there is
also large.

Data from mechanistic studies indicate that
micronutrients have a significant role in modulating the
toxicity of As.

Micronutrients interact with As at various stages in
the body-affecting metabolism, including absorption,
distribution and excretion. One other mechanism is
oxidative stress, which accompanies micronutrient
deficiency disorders so common in these countries. One
implication of this is that populations in developing
countries who unfortunately also consume diets deficient
in micronutrients will also be increasingly susceptible to
the adverse health effect of As.

Evidence abounds that adequate diet can ameliorate
the deleterious effects of As contamination. The studies
that have evaluated the effects of nutritional status on As
toxicity will also facilitate the process of risk assessment
in these populations.

Additionally, the opportunity provided by the
interaction of nutrition with As contamination shows
clearly that this is a pragmatic approach to curtail the
adverse health effects of As contamination. Consequently,
it is no longer acceptable to ignore the effects of nutrition
on the health of the huge population of humans exposed
to As contamination. The traditional methods for

controlling toxic exposure generally are to remove the
affected individuals or population from the site of the
exposure or to remove the source of exposure.

In the case of As contamination, very large populations,
about 200 million people globally, particularly in India
and the Gunga-Meghna-Bruhmaptura (GMB) of
Bangladesh. Under such circumstances, it is impracticable
to remove everyone from exposure or to remove the source
of exposure. In situations like this, nutritional intervention
as a form of chemoprevention may prove to be the best
host defense against As contamination and it appears
within the reach of these relatively resource poor countries.
Thus, the nutritional intervention approach will go a long
way to mitigate the problem of As contamination of these
large populations in developing countries, which
eventually affects their health and ultimately their
economy - a vicious circle.
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