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Introduction

 Esophageal cancers (or oesophageal cancer) which 
arises from the epithelium, or surface lining of the 
esophagus are typically carcinomas. ESCC fall into 
two classes. One subtype is primarily squamous cell 
cancer, arising from the cells that line the upper part of 
the esophagus and adenocarcinoma, and this cancer is 
similar to head and neck cancer in their appearance and 
associates with tobacco and alcohol consumption. The 
other is adenocarcinomas, which are often associated with 
a history of gastroesophageal reflux disease and Barrett’s 
esophagus, arising from glandular cells that are present at 
the junction of the esophagus and stomach (Holmes and 
Vaughan, 2007). 
 Recently, many researches are carried out to understand 
the precise molecular mechanisms of esophageal squamous 
cell carcinoma (ESCC), which could be summarized as 
three aspects: tumour suppressor genes, oncogenes and 
apoptotic genes. P53 is a tumour suppressor that halts 
progression in both the G 1 and G 2 phase of the cell 
cycle to assess DNA damage. Accumulation of p53 in the 
normal oesophagus, suggested that the loss of suppressor 
function p53 might be an early event in carcinogenesis 
of the oesophagus. Mutations in codons 175, 248 and 
273 of p53 are considered to have growth advantages 
to progress to invasive squamous cell carcinoma and 
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Abstract

 The esophageal squamous cell carcinoma (ESCC) is an aggressive tumor with a poor prognosis. Understanding 
molecular changes in ESCC should improve identification of risk factors with different  molecular subtypes and 
provide potential targets for early detection and therapy. Our study aimed to obtain a molecular signature of 
ESCC through the regulation network based on differentially expressed genes (DEGs). We used the GSE23400 
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were linked by our method. STAT1 also arose as a hub node in our transcriptome network, along with some 
transcription factors like CCNB1, TAP1, RARG and IFITM1 proven to be related with ESCC by previous 
studies. In conclusion, our regulation network provided information on important genes which might be useful 
in investigating the complex interacting mechanisms underlying the disease. 
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occured most frequently. LOH of the Rb gene was found 
correlated with the loss of pRb protein expression and 
associated with p53 alterations in human oesophageal 
cancer. It is suggested that associated Rb and p53 
inactivation may be the major event in the development 
and progression of oesophageal cancer, due to the greater 
selective advantage of the affected cells. The oncogenes 
activated most frequent in oesophageal cancer are cyclin 
D1, c-erbB1 and 2, c-myc, c-ras, Int-2/hst-1, and EGFR. 
Cyclin D1 gene amplification was found in about 32% of 
oesophageal tumours, and 92% of these tumours showed 
cyclin D1 overexpression. Frat1 expression was also found 
to be relatively high in human oesophageal cancer cell 
lines through the activation of the WNT-h-catenin-TCF 
signaling pathway. Proteins that have been found to be 
aberrantly expressed within oesophageal cancer including 
the anti-apoptotic proteins Bcl-2 (up-regulated) and pro-
apoptotic protein Bax (down-regulated) (Kuwano et al., 
2005; McCabe and Dlamini, 2005).
 DNA microarray analysis as a global approach is 
applied to investigate physiological mechanisms in 
health and disease (Spies et al., 2002). The microarray 
experiment significant reduction of MDR1 expression 
was observed in patients suggesting that MDR1 might 
affect the sensitivity of 5FU and/or CDDP in the adjuvant 
chemotherapy for esophageal cancers (Kihara et al., 2001). 
Genomic expression profiling evolves as a useful tool to 
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identify novel pathomechanisms in human cancer (Guo, 
2003).
 The purpose of this paper is to propose a hypothesis 
that a transcriptome network can be developed such that 
a set of transcription factors, regulated the differently 
expression genes are induced by ESCC and can be 
identified and modulated. Further analysis of the genes 
and pathways in the network were taken to identify 
potential mechanisms responded to the ESCC. The study 
does not address regulation network but searches for the 
significance pathways related to ESCC.

Materials and Methods

Data Source
 Affymetrix microarray data: One transcription profiles 
of Ischemic cardiomyopathy GSE23400 (Su et al., 2011) 
were obtained from a public functional genomics data 
repository GEO (http://www.ncbi.nlm.nih.gov/geo/). Only 
106 chips are usable. Samples derived from 53 DCMi 
and 53 healthy control patients were hybridised onto 
Affymetrix Human Genome U133A Array (Wachi et al., 
2005).
 Pathway data: KEGG (Kyoto Encyclopedia of Genes 
and Genomes) is a collection of online database dealing 
with genomes, enzymatic pathways and biological 
chemicals (Kanehisa, 2002). The PATHWAY database 
records networks of molecular interactions in the cells, and 
variants of them specific to particular organisms (http://
www.genome.jp/kegg/). Total 130 pathways, involving 
2,287 genes, were collected from KEGG.
 Regulation data: There are approximately 2600 
proteins in the human genome that contain DNA-
binding domains, and most of which are presumed to 
function as transcription factors (Wachi et al., 2005). The 
combinatorial use of a subset of the approximately 2000 
human transcription factors easily accounts for the unique 
regulation of each gene in the human genome during 
development (Brivanlou and Darnell, 2002). 
 These transcription factors are grouped into 5 super 
class families, based on the presence of conserved DNA-
binding domains. TRANSFAC database contains data 
on transcription factors, and their experimentally-proven 
binding sites and regulated genes (Wingender, 2008). 
 Transcriptional Regulatory Element Database (TRED) 
has been built to increase the needs of an integrated 
repository for both cis- and trans- regulatory elements 
in mammals (Jiang et al., 2007). TRED has the curation 
for transcriptional regulation information, including 
transcription factor binding motifs and experimental 
evidence. The curation is currently focusing on target 
genes of 36 cancer-related TF families. 
 774 pairs of regulatory relationship between 219 
transcription factors (TFs) and 265 target genes were 
collected from TRANSFAC (http://www.gene-regulation.

com/pub/databases.html).
 5,722 pairs of regulatory relationship between 102 
transcription factors (TFs) and 2,920 target genes were 
collected from TRED (http://rulai.cshl.edu/TRED/).
 Combined the two regulation datasets, total 6328 
regulatory relationships between 276 TFs and 3,002 target 
genes were collected (Table 1).
 miRNA datasets: Integrate miRNA to disease 
datasets and miRNA to target genes datasets to find the 
relation between disease and genes. A human miRNA 
disease database (HMDD) (Lu et al., 2008) which 
manually retrieves the associations of miRNA and 
disease from literatures contains 444 miRNA genes, 259 
diseases, 1,149 publications, and 2,886 miRNA-disease 
associations. miR2Disease (Jiang et al., 2009) provides a 
comprehensive resource of miRNA deregulation in various 
human diseases. Total 349 miRNA and 163 diseases 
were collected. Merge the above two database, 5,036 
relationships were collected. We also integrate starbase 
(Yang et al., 2011), miR2Disease, miRecords (Xiao et al., 
2009) and TarBase (Papadopoulos et al., 2009) database 
of miRNA-target genes, whether is proved by experiment. 
At last, 211,464 relations between miRNA and genes were 
selected.

Methods
 Differentially expressed genes (DEGs) analysis: For 
the GSE23400 dataset, the limma method (Smyth, 2004) 
was used to identify DEGs. The original expression 
datasets from all conditions were processed into 
expression estimates using the RMA method with the 
default settings implemented in Bioconductor, and then 
constructed the linear model. The DEGs only with the fold 
change value larger than 1.5 and p-value less than 0.05 
were selected. 
 Co-expression analysis: To demonstrate the potential 
regulatory relationship, the Pearson Correlation Coefficient 
(PCC) was calculated for all pair-wise comparisons of 
gene-expression values between TFs and the DEGs. The 
regulatory relationships whose absolute PCC are larger 
than 0.6 were considered as significant. 
 Gene Ontology analysis: The Biological Networks 
Gene Ontology tool (BiNGO) is an open-source Java 
tool to determine which Gene Ontology (GO) terms are 
significantly overrepresented in a set of genes. The BiNGO 
analysis (Maere et al., 2005) was used to identify over-
represented GO categories in biological process. 
 Regulation network construction: Using the regulation 
data that have been collected from TRANSFAC database 
and TRED database, we matched the relationships 
between differentially expressed TFs and its differentially 
expressed target genes.
 Base on the above two regulation datasets and the 
pathway relationships of the target genes, we constructed 
the regulation networks by Cytoscape (Shannon et al., 

Table 1. Regulation Data from TRANSFAC and TRED
Source  Regulation           TFs Targets    Link

TRANSFAC  774 219 265 http://www.gene-regulation.com/pub/databases.html
TRED 5722 102 2920 http://rulai.cshl.edu/TRED/
total 6328 276 3002 
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2003). Base on the significant relationships (PCC > 0.6 or 
PCC < -0.6) between TFs and its target genes, 33 putative 
regulatory relationships were predicted between 7 TFs and 
22 target genes.
 Significance analysis of pathway: We adopted an 
impact analysis that includes the statistical significance 
of the set of pathway genes, and also considered other 
crucial factors such as the magnitude of each gene’s 
expression change, the topology of the signaling pathway, 
their interactions, etc (Draghici et al., 2007). In this model, 
the Impact Factor (IF) of a pathway Pi is calculated as the 
sum of two terms:
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 The first term is a probabilistic term that captures the 
significance of the given pathway Pi from the perspective 
of the set of genes contained in it. 
 It is obtained by using the hyper geometric model 
in which pi is the probability of obtaining at least the 
observed number of differentially expressed gene, Nde, 
just by chance (Tavazoie et al., 1999; Draghici et al., 
2003). 
 The second term is a functional term that depends on 
the identity of the specific genes that are differentially 
expressed as well as on the interactions described by the 
pathway (i.e., its topology). 
 The second term sums up the absolute values of the 
perturbation factors (PFs) for all genes g on the given 
pathway Pi. 
 The PF of a gene g is calculated as follows: 
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 In this equation, the first term ΔE (g) captures the 
quantitative information measured in the gene expression 
experiment. The factor ΔE (g) represents the normalized 
measured expression change of the gene g. The first 
term ΔE (g) in the above equation is a sum of all PFs 
of the genes u directly upstream of the target gene g, 
normalized by the number of downstream genes of each 
such gene Nds (u), and weighted by a factor βug, which 
reflects the type of interaction: βug = 1 for induction, βug 
= −1 for repression (KEGG supply this information about 
the type of interaction of two genes in the description of 
the pathway topology). USg is the set of all such genes 
upstream of g. We need to normalize with respect to the 
size of the pathway by dividing the total perturbation by 
the number of differentially expressed genes on the given 
pathway, Nde (Pi). In order to make the IFs as independent 
as possible from the technology, and also comparable 
between problems, we also divide the second term in 
equation 1 by the mean absolute fold change ΔE, and 
calculated across all differentially expressed genes. The 
results of the significance analysis of pathway were shown 
in Table 3.
  Regulation network between TFs and pathways: To 
further investigate the regulatory relationships between 
TFs and pathways, we mapped DEGs to pathways and got 

a regulation network between TFs and pathways (Figure 
2).
 miRNA network construction: Using the miRNA-
disease data that have been collected from HMDD and 
miR2Disease database, we matched the disease only to 
the esophageal. The esophageal related miRNA selected 
and then mapped the miRNA to the target genes. At last, 
14 miRNA and 431 DEGs were used to construct the 
network.

Results 

Regulation network construction in ESCC
 To get pathway-related DEGs of ESCC, we obtained 
publicly available microarray data sets GSE23400 
from GEO. After microarray analysis, the differentially 
expressed genes with the fold change value larger than 1.5 
of GSE23400 and p-value less than 0.05 were selected. 
2008 genes were selected as DEGs from GSE23400. To 
get the regulatory relationships, the co-expressed value 
(PCC ≥0.6) was chosen as the threshold. Finally, we got 
only 17 regulatory relationships between 8 TFs and their 
16 differently expressed target genes. By integrating the 
regulatory relationships above, a regulation network of 
ESCC was built between TFs and its target genes (Figure 
1). In this network, STAT1 with the higher degree forms a 
local network which suggesting it may plays an important 
role in ESCC. Both STAT1 and IRF9 regulate the ISG15 
target genes directly. Besides, SP1 regulating 3 DEGs and 
TFAP2A regulating the CCNB1 were also observed in our 
network.

GO analysis of the regulation network in ESCC
 Several Gene Ontology (GO) categories were 
enriched among these genes in the regulatory network, 
including negative regulation of biological process, tissue 
development, embryonic eye morphogenesis and so on 
(Table 2).

Significant pathway in ESCC
 To identify the relevant pathways changed in lung 
adenocarcinoma, we used a statistical approach on 
pathway level. Significance analysis at single gene level 
may suffer from the limited number of samples and 
experimental noise that can severely limit the power of the 

Figure 1. Regulation Network Construction in ESCC
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Table 2. GO Biological Process Analysis
GO-ID   Description        count  p-value            corr p-value

48519 negative regulation of biological process 14 2.80E-07 2.32E-04
9888 tissue development 9 1.20E-06 4.97E-04
48048 embryonic eye morphogenesis 3 2.43E-06 6.72E-04
48513 organ development 12 5.14E-06 1.06E-03
48523 negative regulation of cellular process 12 6.95E-06 1.15E-03
44419 interspecies interaction between organisms 6 9.91E-06 1.36E-03
7398 ectoderm development 5 1.46E-05 1.36E-03
30219 megakaryocyte differentiation 2 1.48E-05 1.36E-03
51704 multi-organism process 8 1.85E-05 1.36E-03
31324 negative regulation of cellular metabolic process 8 1.88E-05 1.36E-03

Figure 2. Regulation Network of TF-PATHWAY Figure 3. miRNA Network. The red points strand for the 
miRNA, the yellow points strand for the TFs and the pink points 
strand for target genes

Table 3. Pathway Significant Analysis
Database Name        Pathway Name   Impact Factor    %PathwayGenes in Input     corrected gamma p-value

KEGG Cardiac muscle contraction 23.687 8.046 1.27E-09
KEGG Cell cycle 21.205 31.356 1.37E-08
KEGG ECM-receptor interaction 17.348 34.524 5.36E-07
KEGG DNA replication 14.992 44.444 4.93E-06
KEGG Focal adhesion 14.383 21.182 8.72E-06
KEGG Proteasome 9.932 31.25 5.31E-04
KEGG p53 signaling pathway 9.397 27.536 8.63E-04
KEGG Graft-versus-host disease 9.074 2.381 0.001155
KEGG Gap junction 8.384 9.375 0.002144
KEGG Biosynthesis of unsaturated fatty acids 8.239 40.909 0.00244

chosen statistical test. Pathway can provide an alternative 
way to relax the significance threshold applied to single 
genes and may lead to a better biological interpretation. 
So, we adopted a pathway based impact analysis method 
that contained many factors including the statistical 
significance of the set of differentially expressed genes 
in the pathway, the magnitude of each gene’s expression 
change, the topology of the signaling pathway, and their 
interactions and so on. The impact analysis method yields 
many significant pathways contained Cardiac muscle 
contraction, Cell cycle, ECM-receptor interaction and so 
on (Table 3).

Regulation network between TFs and pathways in ESCC
 To further investigate the regulatory relationships 
between TFs and pathways, we mapped DEGs to pathways 
and got a regulation network between TFs and pathways 
(Figure 2). In the network, SP3 and ATAT1 were shown as 
hub nodes linked to lots of esophageal related pathways. 
Some of TFs Interactive regulated lots of pathways, 
such as STAT1 and SP3 both regulated the Phagosome 

pathway, and STAT1 and IRF9 both regulated the RIG-I-
like receptor signaling pathway. 

miRNA network analysis
 The miRNA network further confirms that the DEGs 
were highly related to ESCC. Finally, we selected 14 
miRNA and 431 DEGs that response to esophageal (Figure 
3).
 
Discussion

From the result of regulation network construction in 
ESCC, we could find that many TFs and pathways closely 
related with ESCC have been linked by our method. The 
gene STAT1 is shown as hub nodes in our transcriptome 
network. Although the role of STAT1, Sp1 and ISG15 in 
ESCC has not been investigated to verify, some evidences 
also suggest that they may play important roles in response 
to ESCC.
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Sp1 transcription factor was over-expressed in ESCC 
cells and the increased Sp1 staining was observed in 
esophageal tumors from patients (Papineni et al., 2009). 
However, Sp1 plays an important role in ESCC through 
regulating other target genes expression, such as fascin. 
Fascin expression was enhanced by Sp1 over-expression 
and blocked by Sp1 RNAi knockdown. Specific inhibition 
of ERK1/2 decreased phosphorylation levels of Sp1, 
and thus suppressed the transcription of the FSCN1, 
resulting in the down-regulation of fascin. Stimulation 
with EGF could activate the ERK1/2 pathway and 
increase phosphorylation levels of Sp1 to enhance fascin 
expression (Lu et al., 2010). 

STAT1 can be phosphorylated by the receptor 
associated kinases, and translocate to the cell nucleus 
where they act as transcription activators in response to 
cytokines and growth factors such as EGF. EGF treatment 
leads to a strong growth arrest in three esophageal 
squamous cell carcinoma cell lines. STAT1 was also found 
to be activated by EGF in this three cell lines. Therefore, 
the EGF-STAT1 pathway may be intrinsic to esophageal 
epithelial lineage of cells and is lost in a considerable 
fraction of the carcinomas (Watanabe et al., 2001). And, 
the introduction of a dominant-negative STAT1 construct 
into TE8 cells abolished not only ESCC cells growth 
inhibition but also p21/WAF1 induction by EGF (Ichiba 
et al., 2002).

RARG (retinoic acid receptor gamma 1), is a 
nuclear hormone receptor that act as ligand-dependent 
transcriptional regulators. RARs have numerous target 
genes, which have retinoic response elements in their 
promoter regions. RARG were down-regulated in 
esophageal adenocarcinoma tissues (Hourihan et al., 
2003).

Cyclin B1 plays an important role as a mitotic 
cyclin in the G (2)-M phase transition during the cell 
cycle. One-, 3-, and 5-year survival rates in esophageal 
squamous cell carcinoma (ESCC) cells with cyclin B1 
expression were significantly lower than those in ESCC 
cells without cyclin B1 expression (Nozoe et al., 2002). 
And ESCC cells over-expressing cyclin B1 reveal strong 
invasive growth and high potential of metastasis to lung 
in xenograft mice. Suppression of cyclin B1 expression 
via small interfering RNA approach specifically inhibits 
their ability to metastasize (Song et al., 2008). 

TAP1 protein is a member of the MDR/TAP subfamily 
of ATP-binding cassette (ABC) transporters. This protein 
is involved in the pumping of degraded cytosolic peptides 
across the endoplasmic reticulum into the membrane-
bound compartment where ABC1 molecules assemble. 
TAP1, as an antigen-processing machinery component, 
was down-regulated in 44% of ESCC lesions. TAP1 loss 
was significantly associated with tumor grading, lymph 
node metastasis and depth of invasion (Ayshamgul et al., 
2011).

ISG15 is an ubiquitin-like protein that becomes 
conjugated to many cellular proteins upon activation 
by interferon-alpha and -beta. 5-Fluorouracil (FU) is a 
chemotherapeutic agent commonly used against ESCC. 
Study showed that three IFN-related genes, an IFN 
receptor gene (IFNAR2) and two IFN-stimulated genes 

(ISG15K, ISG-54K) were up-regulated after three cell 
lines (T.T, TE-2, and TE-6), derived from human ESCC, 
were exposed to 5-FU indicating a combination of 5-FU 
and an IFN, may be particularly efficacious in ESCC 
(Matsumura et al., 2005). 

Prior laboratory prediction of individual drug response 
is of key importance in ESCC. Interferon induced 
transmembrane protein 1 (IFITM1) gene alone, being 
suggested as a key gene of Wnt pathway, was commonly 
selected in 5-fluorouracil (5-FU) and cis-platinum (CDDP) 
screening methods using a new statistical analysis of 
oligonucleotide microarray expression data, based on 
a two-dimensional mixed normal model. The results 
suggested the IFITM1 gene was a novel critical biomarker 
of CDDP response in ESCC (Fumoto et al., 2008). IFITM1 
was up-regulated in esophageal tumor tissue from patients 
(Chattopadhyay et al., 2009).

Using a case-control design, the authors measured the 
odds of being diagnosed with colorectal adenocarcinoma 
some time in life among persons diagnosed with 
adenocarcinoma of the esophagus relative to persons 
diagnosed with squamous cell carcinomas of the 
esophagus. The results concluded that men with esophageal 
adenocarcinoma may be more likely to be diagnosed with 
colorectal cancer in their lifetime than expected, but the 
opposite association may exist for women providing 
additional evidence that some colorectal and esophageal 
adenocarcinoma share a common etiology (Vaughan et al., 
1995). Some studies also reported the risk of colorectal 
cancer in Barrett’s esophagus patients was more than six 
times greater than in those patients participating in colonic 
screening programs (Morgan, 1996).

Primary malignant melanoma of the esophagus is a 
rare but aggressive tumor that accounts for <1% of all 
ESCC (Lin et al., 2006). To date, dozens of melanoma-
associated antigens (MAGEs) have been identified in 
relation with tumor genesis which can be recognized by 
T lymphocytes to induce immune reaction. Therefore, 
MAGE genes take part in the immune process by 
targeting some early tumor cells for immune destruction. 
Over-expression of MAGE-A1, 2b, 3, 4, 6, 9, 10, and 
12 was found in esophageal adenocarcinoma relative 
to Barrett’s metaplasia which may provide potential 
targets for immunotherapy in patients with esophageal 
adenocarcinoma (Lin et al., 2004).

One case of ESCC revealed serum prostate-specific 
antigen (PSA) and γ-seminoprotein levels elevated 
in blood biochemistry detection. Furthermore, PSA-
positive mRNA was demonstrated in the tissue of the 
esophageal tumor by RT-PCR. Previous reports also 
suggested esophagus cancer might result from prostate 
cancer metastasis (Nakamura et al., 1997). Annexin I is 
a pleotrophic, calcium-dependent phospholipid binding 
protein. Study indicated loss of inhibition of annexin I 
appeared associated with a lack of cellular differentiation, 
and annexin I protein expression was decreased in human 
esophageal and prostate cancer, which indirectly suggested 
that some correlation consisted in esophageal and prostate 
carcinoma onset (Paweletz et al., 2000).

A deeper understanding of transcription factors and 
their regulated genes remain an area of intense research 
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activity in futures. Our regulation network is useful in 
investigating the complex interacting mechanisms of 
transcription factors and their regulated genes in disease. 
However, further experiments are still needed to confirm 
the conclusion. Our network could explain the mechanism 
of esophageal not only from the regulation network but 
the miRNA network. The 14 miRNAs were related to 
esophageal collected from HMDD and miR2Disease 
database.
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