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Introduction

	 Prostate cancer is the most commonly diagnosed 
malignancy and a leading cause of cancer-related death 
among males over the age of fifty in the western world 
(Stangelberger et al., 2008). Although the age-adjusted rate 
of cancer deaths has decreased steadily in the past 10 years, 
prostate cancer remains the second leading cause of cancer 
deaths in men after lung cancer (Shen and Abate-Shen, 
2010). The morbidity and mortality of prostate cancer is 
principal caused of its propensity to metastasize to other 
tissue, such as lung, liver and bone (Bubendorf et al., 
2000; Logothetis and Lin, 2005). Therefore, understanding 
the mechanism of prostate cancer onset and metastasis is 
the key to treat this disease successfully and increasing 
survivability (Jiang et al., 1994).
	 Currently, there are many hypothesis of prostate cancer 
pathogenesis. Some investigators appreciate that tumor 
microenvironment plays an important role in the initiation 
and progression of prostate cancer (Tuxhorn et al., 2001; 
Chung et al., 2005; Alberti, 2006). In a recent study, 
Dakhova and colleagues found that formation of reactive 
stroma in prostate cancer result in alterations in a number 
of pathways including neurogenesis, axonogenesis and 
the DNA damage/repair pathways (Dakhova et al., 2009). 
Berger et al. found several prostate tumors contained 
complex chains of balanced rearrangements that occurred 
within or adjacent to known cancer genes and suggested 
genomic rearrangements may arise from transcriptional 
or chromatin aberrancies and engage prostate tumorigenic 
mechanisms (Berger et al., 2011). As the high-throughput 
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Abstract
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technologies have been used in many fields, the detection 
of the expression level across the whole genome is a useful 
way to find unusual genomic alteration in prostate cancer 
patients with microarray (Rhea et al., 2011). Microarray 
gene expression profiling has identified several new 
biomarkers with diagnostic and possible prognostic value 
for prostate cancer, including AMACR, HPN, MUC1, 
AZGP1, CD166/MEMD, CD24, SLC18A2, TEAD1 and 
SPINK1 (Glinsky et al., 2004). Besides, polymorphisms 
of VDR gene and MDM2 gene were also reported to be 
associated with elevated prostate cancer risk (Chen et al., 
2012; Guo et al., 2012).
	 However, there are disagreement among the study 
results of different microarray experiments and different 
statistic methods. Meta-analysis focused on contrasting 
and combining results from different studies, in the hope 
of identifying patterns among study results of prostate 
cancer.
 
Materials and Methods

Gene expression datasets of prostate cancer
	 Our meta-analysis was based on Chandran’s study 
(Chandran et al., 2007) and Gorlov’s study (Gorlov et al., 
2009). In the first study, Chandran and colleagues analyzed 
gene expression profiles of 24 androgen-ablation resistant 
metastatic samples and 64 localized prostate tumor 
samples. Differential expression analysis showed that 
415 genes were up-regulated and 364 genes were down-
regulated in the progression of localized prostate cancer to 
metastatic prostate cancer. We selected the differentially 
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expressed genes with at least two-fold change as our first 
dataset. This dataset consisted of 174 genes, and 73 of 
which were up-regulated genes in metastatic prostate 
cancer tissue. 
	 The other dataset of our study were from Gorlov’s 
meta-analysis. They analyzed 18 gene array datasets 
, including 11 datasets for the transition from normal 
prostate to localized prostate cancer and 7 datasets for 
the transition from localized prostate cancer to metastatic 
prostate cancer. These datasets can represent the dynamic 
process of prostate cancer. We extracted the top 500 
significant differentially expressed genes between normal 
prostate and non-metastatic prostate cancer, and those 
between non-metastatic prostate cancer and metastatic 
prostate cancer as our second dataset. Overall, we 
conducted a meta-analysis of 1174 gene expression data.

Extraction of Co-expressed genes
	 In order to extract co-expressed genes of our target 
genes, we developed an advanced method to calculate 
the co-expression relationship. First, we downloaded 
expression dataset from Gene Expression Omnibus 
using “Affy U133 v2 platform” and “Human sapient” 
and a total of 1974 expression datasets were collected. 
Then, we calculated the D-value of each gene between 
the max expression level (Emax) and min expression 
level (Emin) (D-value = Emax - Emin) in each dataset. 
For each gene, we selected the top 30 D-value datasets 
and constructed gene expression matrix using those data 
(Figure 1)., Next, we calculated the Pearson coexpression 
value between random two genes, and marked the value 
as Xij. For example, Xba reflected the Pearson correlation 
between Gene A and Gene B, calculated by equation (III) 
in Figure 1. We applied this method for all human genes 
which could detect by Affy expression array, and got the 
correlation matrix of genes. 

Protein-Protein Interaction network construction    
	 Protein-protein interaction (PPI) network construction 
have become a major method for identifying biological 
relationships. As there are so many protein-protein 
interaction database publicly and each database has their 
own features, we constructed an in-house database with 
HPRD, IntAct, MIPS, BIND, DIP, MINT, PDZBase and 
Reactome databases recommended by a previous study 

(Mathivanan et al., 2006). To demonstrate the potential 
relationships among the differentially expressed genes, 
we matched the differentially expressed genes to PPI data 
that have been collected from the above in-house database. 
Based on the above relationships, an PPI network was 
constructed using the Cytoscape (Shannon et al., 2003).

Gene Ontology analysis 
	 The Gene Ontology (GO) project (http://www.
geneontology.org/) provides structured, controlled 
vocabularies and classifications that cover several domains 
of molecular and cellular biology and are freely available 
for community use in the annotation of genes, gene 
products and sequences (Harris et al., 2004). To further 
understand the functions of the gene list, we performed 
GO enrichment analysis using BINGO package (Maere 
et al., 2005) in R. The p-value < 0.01 was considered as 
significant level.

Biological Pathway Analysis 
	 KEGG (Kyoto Encyclopedia of Genes and Genomes) 
is a collection about understanding high-level functions 
and utilities of the biological system. These molecular 
datasets generated mostly by genome sequencing 
and other high-throughput experimental technologies 
(Kanehisa, 2002). To functional annotation of genes in the 
list, we identified the over-represented KEGG categories 
in pathways.

Results 

Identification of differentially expressed genes
	 We collected a total of 1174 differentially expressed 
genes in the whole progression of prostate cancer from 
two studies. By integrating these genes, we found that 

Figure 1. The Work Flow of Extraction of Co-
Expression Genes. We calculated the coexpression value 
between random two genes used the genes from Affy expression 
array, and marked the value as Xij. Genei represents the 
expression value of the i gene

Figure 2. Venn Plot Displays the Gene Datasets from 
Chandran’s Study and Gorloy’s Study. The orange panel 
is the differentially expressed genes between normal prostate 
tissue and localized prostate cancer tissue from Gorloy’s study. 
The blue panel is the differentially expressed genes between 
localized and metastatic prostate cancer tissue from Chandran’s 
study. The green panel is the differentially expressed genes 
between localized and metastatic prostate cancer tissue from 
Gorloy’s study. The A/B/C/D panels reflect the overlapping 
genes of those three gene datasets
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Table 1. The GO Term Enriched by the 725 Genes 
with High P value (P < 1.0E-05)
GO-ID	                  Description	   Gene count    p-value

GO:0030029	 actin filament-based process	 289	 6.87E-06
GO:0040011	 locomotion	 830	 6.57E-06
GO:0000904	 cell morphogenesis involved	 449	 2.06E-06
	 in differentiation
GO:0003012	 muscle system process	 187	 7.08E-10
GO:0006936	 muscle contraction	 170	 2.54E-10
GO:0044421	 extracellular region part	 544	 6.47E-06
GO:0008092	 cytoskeletal protein binding	 306	 2.58E-06

Figure 3. The Interaction Relationships among the 
Eight Differentially Expressed Genes. The   oval genes 
are the differentially expressed genes. The rectangle genes 
are the high-related genes with differentially expressed genes 
according to PPI weight

Figure 4. The Most Significant Enriched Pathway of 
the 725 Co-expressed Gene List. The genes in red box were 
co-expressed genes in our list

there were 8 genes differentially expressed in the whole 
progression (Part D in Figure 2). These genes were NBL1, 
C10orf116, SMTN, PARM1, UTRN, SYNPO2, MYLK 
and PTN. We chose these 8 genes for further analysis. 

Key Prostate Cancer Gene Network
	 We further constructed a PPI network using the 8 
differentially expressed genes (Figure 3). We tried to find 
the shortest way to connect the differentially expressed 
genes using data from Protein-Protein Interaction 
Database. If the differentially expressed genes can be 
connected (significant) through one or two genes, we 
linked them with black line, and colored the linker genes 
blue (Figure 3). Gene PARM1, C10orf116, NBL1 and 
SMTN cannot be connected in short way.

Extraction of Co-expressed genes
	 To deeply analyze these eight genes, the newly 
developed method (co-expression relationship) was 
employed to find the potential co-expression relationships 
among them. For each differentially expressed gene, we 
got their expression level data from the 1974 datasets 
and calculated the D-value between max expression level 
and min expression level. And then, the top 30 D-value 
datasets for each gene were extracted. By calculating the 
Pearson correlation between the differentially expressed 
gene and genes in the selected 30 datasets using the 
method described in Figure 1, we obtained 8 co-expression 
gene lists corresponding to the 8 differentially expressed 
genes. Each list contained the top 500 co-expression genes 
according to correlation value. 
	 Next, we merged those eight lists and selected the 
genes co-expressed with over two of the 8 differentially 
expressed genes, and finally obtained a gene list including 

725 co-expressed genes. We believed that this list included 
most of the potential prostate cancer genes. 

GO enrichment analysis
	 To functionally classify these 725 co-expressed genes, 
we performed GO analysis and observed significant 
enrichment of these genes in 7 GO categories (Table 1). 
The most significant enrichment was the GO category of 
actin filament-based process with P = 6.87E-06. The other 
significant GO categories included locomotion (P = 6.57E-
06) and cell morphogenesis involved in differentiation (P 
= 2.06E-06).

Pathway enrichment analysis 
	 To further investigate the function of this 725 co-
expressed gene list, we mapped them to the KEGG 
database. Excitingly, seven of them were found in the 
prostate cancer pathway (KEGG-ID: hsa05215; Figure 4) 
with p-value of 0.03 in our KEGG analysis. This pathway 
contains many molecular alterations in prostate-cancer 
cells which implicates in carcinogen defenses (GSTP1), 
growth factor signaling pathways (NKX3.1, PTEN, and 
p27), and androgens (AR). They are critical determinants 
of the phenotype of prostate-cancer cells. These genes also 
covered some other important pathways. For example, 
six genes are in the pathway of hsa05200 (Pathways in 
Cancer)

Protein-Protein Interaction Analysis 
	 Although some of the co-expressed genes in our list 
were mapped to KEGG pathways, there are still many 
genes that cannot be located in any pathway. Therefore, we 
used the protein-protein interaction data again to infer their 
function through their interacted protein. We hypothesized 
that the gene in our list involved in prostate cancer if its 
interactive genes involved in prostate cancer. And, if all 
genes inputted to PPI have similar function, there would 
be a regulation network among them. 
	 Firstly, the network weight of the 725 genes were 
calculated basing on the PPI data. We chose the gene with 
the highest weight - ITGB1 for further analysis. ITGB1 
has been reported to be involved in extra-cellular matrix 
interactions and be also related to many tumor types, 
including prostate cancer. 
	 To construct a relatively simple network, we used 
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a smaller gene list comprised the eight differentially 
expressed genes and the top 7 genes (high network weight) 
from 725 list to perform PPI analysis. We are glad to find 
that eight of them were interacted as a network (Figure 
5). 
 
Discussion

The overlapped differentially expressed genes were 
C10orf116, PARM1, MYLK, NBL1, PTN, SMTN, 
SYNPO2 and UTRN. Among these identified genes, 
we found that some of them were classically known 
biomarkers which are closely related to prostate cancer 
progression, such as PARM1 and MYLK. 

Previous studies have reported that PARM-1 is a 
novel mucin-like, androgen-regulated gene exhibiting 
proliferative effects in prostate cancer cells (Fladeby 
et al., 2008), and it may play a role in prostatic cell 
immortalization (Cornet et al., 2003). The MYLK gene 
was also presented significant changes in functional 
connectivity between normal and tumoral conditions 
of prostates (Fujita et al., 2008). Moreover, SYNPO2 
expression has been reported to suppress tumor growth 
(Korkola et al., 2009) and found to inhibit proliferation and 
invasiveness of prostate cancer cells. It is a homolog of 
myopodin which suppresses tumor growth and metastasis 
in prostate cancer (Jing et al., 2004). To confirm our result, 
we queried these eight genes on the Cancer Gene Census 
provided by Sanger Institute (CGC, http://www.sanger.
ac.uk/genetics/CGP/Census/), and found three of them 
were recorded in CGC prostate cancer list (17 totally). 
This suggested that our result was reliable.

PPI network construction showed that 4 of the 8 
differentially expressed genes can be connected by 7 
genes (Figure 3). We focused on the gene CALM1, as 
it connected MYLK, SYNPO2 directly and connected 
UTRN and PTN through one or two genes. It may play 
an important role in the progression of prostate cancer. 

Among the 725 co-expressed gene list, four of them 
were prostate related genes known well. They are PARM1, 
PMEPA1, PTGDS, and PTGER2. The PMEPA1 gene has 
been shown to suppress the androgen receptor (AR) and 
TGF-β signaling pathway and is abnormally expressed in 
prostate tumors (Liu et al., 2011). Besides, PTGDS and 

PTGER2 have been reported as AR-regulated or involved 
in prostate cancer (Love et al., 2009).

As GO analysis result in Table 1, those 725 genes 
were enriched in several biological processes. The 
most significant GO category was actin filament-based 
process. It have been reported that miR-1 had down-
regulated target gene in actin filament-based process in 
human prostate tumors, consistent with the array data in 
the Hudson’s study (Hudson et al., 2011). The second 
significant GO category in our result was locomotion. A 
recent study suggested that homotypic collisions between 
two prostate cancer cells results in contact inhibition of 
locomotion, which was mediated by EphA-Rho-Rho 
kinase signaling (Astin et al., 2010). Bonkhoff collected 
many experience about benign and malignant prostate 
tissue, and finally found that there are many evidence 
that cell morphogenesis will affect neuroendocrine 
differentiation in prostate cancer (Bonkhoff, 1998). 
Almost all the significant GO function have been verified 
to have relationship with prostate cancer, except for the 
fourth category in Table 1- muscle system process. The 
definition of this category is an organ system process 
carried out at the level of a muscle. The physical sign 
of prostate cancer patients always includes acratia 
phenomena and it’s always not easy to detect prostate 
cancer early, we should pay attention to genes enriched 
in this category. 

From Figure 5, we could easily find that PIK3R1 was 
a hub gene. To date, activated mutations of PIK3R1 have 
not been reported in prostate cancer (Boormans et al., 
2010). But why this gene located in the center site of the 
network? Could it imply us the relation between PIK3R1 
with prostate cancer? From the Figure 3, we know that AR 
plays an important role in prostate cancer progression. The 
silence of IGF1R will enhance DNA damage in prostate 
cancer, which activated by the PTEN mutation (Rochester 
et al., 2004). Another study (Savinainen et al., 2002) had 
verified that ERBB2 plays a role in the development 
of prostate cancer. McCabe showed that inhibition of 
PDGFRA reduces proliferation of prostate cancer cells 
(McCabe et al., 2008). All these studies tell us that the 
remaining genes in the network of Figure 5 may also 
related to prostate cancer. It seems that the hub gene of 
PIK3R1 plays an control role of this network undoubtedly.

In conclusion, Many of the genes in our 725 co-
expression list have been reported to be implicated in the 
oncogenesis of prostate cancer. Therefore, the remaining 
genes in our list are worthy to be validated in wet lab, 
especially the genes in Figure 3 and Figure 5.
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