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Introduction

 Microarray technology is allowing researchers 
to measure the expression of thousands of genes 
simultaneously which this has translated a tool for 
identifying genes that have been expressed differentially 
among different phenotypes. Always a list of differentially 
expressed genes is the result of a microarray experiment. 
The main attention of the researchers is to translate 
such lists into a better understanding of the underlying 
biological phenomena related to interest phenotypes. 
This is the starting point for Gene Set Analyses (GSA) to 
incorporate biological into statistical knowledge (Emmert-
Streib and Glazko, 2011).
 From 2000, a number of enormous approaches with 
different statistical methods have been suggested to 
execute GSA, we divide them into two groups: 1- Based 
on univariate analyses, 2- Based on multivariate analyses. 
In univariate analyses, some researchers used tests 
based on contingency tables such as chi-square, Fisher-

phenotypes. This subgroup was called Overrepresentation 
(Man et al., 2000, Al-Shahrour et al., 2004; Khatri and 
Draghici, 2005). Another subgroup of these methods is 
the Gene Set Enrichment Analysis (GSEA). Although it 
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utilized the result from individual gene analyses, using of 
statistics such as Kolmogorov-Smirnov, Mean and Sum 
could increase the ability of these methods to identify 
differentially expressed gene sets (Mootha et al., 2003; 
Subramanian et al., 2005; Tian et al., 2005). 
 The GSEA presented by Mootha et al. (2003) could 
identify oxidative phosphorylation as a gene set with 
differential expression between normal and diabetes type 
II phenotypes while previous method could not do it. 
Although the GSEA methods obtain credible results, these 
approaches cannot take account of correlation structure 
between genes and cover the hypothesis of interest 
involving a group of genes.
 In contrast to the GSEA approaches, multivariate 
analyses (Hotelling’s T2 and N-statistics) consider 
correlation structures between genes within each gene set 
(Kong et al., 2006; Nettleton et al., 2008; Tsai and Chen, 
2009). A common drawback of microarray data is high 
dimension of microarray data -due to many genes with 
small samples that increases type I error rate- adjusted 
by statistical techniques such as principal component or 
shrinkage analysis (Liu et al., 2007; Tsai and Chen, 2009; 
Jacobson and Emerton, 2012). Goeman et al. (2004) 
and Hummel et al. (2008) proposed the Globaltest and 
ANCOVAGlobal test, respectively. These methods set in 
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the multivariate approaches, because they modeled gene 
expressions as random effects in a logistic regression 
model and calculated p-value use of the score test proposed 
by Le Cessie and Van Houwelingen (1995) and Houwing-
Duistermaat et al. (1995).
 In this study we evaluated two groups by simulated and 
acute lymphoblastic leukemia (ALL) microarray dataset 
with use of the Category and Hotelling’s T2 approaches. 
 
Materials and Methods

 Here we describe two gene set analysis methods, 
the Category based on univariate techniques and 
the Hotelling’s T2 based on multivariate techniques. 

calculation in both methods.

 The Category analysis is the simple and wealthy 
extension of the GSEA. This method presents genes 
and gene sets that they are expressed differentially 
(Gentleman, 2010). This package found out p-values based 
on summing the t-statistics for the all members of each 
gene set and did permutation for calculating permutation-
based p-value. We used this method by Category package 
in the Bioconductor (www.bioconductor.org).

2

 Tsai et.al considered complicated correlation structures 
between genes and used of the Hotelling’s T2 statistic. 
However, one of the important statistical issues associated 
with differential expression detection for large scale 
microarray data lies in the extreme multiple testing and 

2 statistic by 
incorporating a shrinkage sample covariance matrix in 
the test statistics. This method is useful for identifying 
differentially expressed gene sets that contain both up- and 
down-regulated genes (Tsai and Chen, 2009). 

Results 

 We carried out a set of simulations, to assess the 
performance of the two GSA methods (Category and 
Hotelling’s T2). The simulated data sets contained four 
gene sets, respectively with 3, 5, 10, and 20 genes. 
Expression of these 38 genes for the two groups was 
generated from a multivariate normal distribution with a 

mean vector  and a diagonal variance-covariance matrix 
. In this process, 38 elements of  were generated as 

uniform and random variables in interval (0, 10) and the 
38 diagonal elements of  were generated as uniform and 

was uncorrelated among the genes within each set. In the 
next step we repeated the same process except for the off-
diagonal elements of the variance-covariance matrix . 
In this stage, the off-diagonal zero correlations between 
all pairs of the genes in each set were substituted with 
a correlation of 0.3, 0.5 and 0.9. For  = 1,..., 38, mean 
vectors  for the two phenotypes (i = 1, 2) differ by. 
Here, we consider a range of  from 0-3 with an increment 
of 0.3 (Liu et al., 2007; Tsai and Chen, 2009).
 The simulation data were replicated  1000 
times in each condition and for calculating permutation-
based p-value has been done permutations 1000 times. 
Then, we checked the type I error and power of the two 
tests according to the simulation data. For comparing the 
type I error across the two tests, it was estimated by the 
observed proportion of replications with a p-value smaller 
than the size 0.05. For each permutation-based p-value, 
1000 random permutations were carried out ( =0). Also, 
to compare the power across the two tests, the observed 
proportion of the replications of an experiment in which 
the null hypothesis was correctly rejected estimated the 
power.
 Table 1 shows type I error rate of two tests for 
correlations 0, 0.3, 0.5 and 0.9; gene set size of 3, 5, 10 
and 20; and sample size of 10 and 25 in each group. As 
the correlations between gene pairs increase, we could not 
see any systematic pattern in changes of the type I error 
rate of the Category method, while the type I error rates of 
Hotelling’s T2 decreases. However, when the size of gene 
sets in each group increases, the range of the variation of 
the type I error decreases and in the Category method that 
it goes to zero. 
 The results of observed power using 10 samples in 
each scenario of each method are shown in Figure 1. As 
the correlation increases, the power of the Hotelling’s T2 
method increases, however the power of the Category 
method decreases slightly. Both methods show decrease 
in power when the size of gene sets increase. We also 
estimated the power of the two tests using 25 samples, 
instead of 10 samples in each group, and observed similar 
patterns as shown in Figure 2. 

 In this section, we used the described GSA methods 
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Table 1. The Type I Error of the Simulation Experiment

Gene n=10 n=25
Set Size Test r=0 r=0.3 r=0.5 r=0.9 r=0 r=0.3 r=0.5 r=0.9

3 Category 0.136 0.116 0.139 0.124 0.121 0.124 0.123 0.113
 Hotteling’ T2 0.038 0.020 0.022 0.007 0.037 0.032 0.038 0.016
5 Category 0.055 0.046 0.017 0.053 0.048 0.052 0.049 0.045
 Hotteling’ T2 0.002 0 0 0.001 0.003 0.005 0.004 0.002
10 Category 0.009 0.019 0.016 0.017 0.017 0.013 0.013 0.016
 Hotteling’ T2 0 0 0 0 0 0 0 0
20 Category 0 0 0 0.001 0.001 0.003 0.002 0.001
 Hotteling’ T2 0 0 0 0 0 0 0 0
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(Category and Hotelling’s T2) to analyze the data from a 
microarray study of acute lymphoblastic leukemia. This 
data set is publicly available at the Bioconductor (Li, 
2007). The ALL dataset contains 12625 genes and 128 

patients with BCR-ABL and 42 persons with no observed 
cytogenetic abnormalities (NEG) and 1857 genes. 
 These genes were categorized according to the Kyoto 
Encyclopedia Gene and Genome (KEGG) as 200 gene sets 
(Kanehisa and Goto, 2000).
 The Category initiated 30 gene sets with p-values 

observed in the Hotelling’s T2 methods. From these 

statistical power comparing to another method. In the 
Category method, our findings about the significant 
effect of DNA replication (p=1.24e-10), repair mismatch 
(p=9.72e-7), non-homologous end-joining and purine 
metabolism (p=0.000247) on ALL were in agreement 
with the results of the previously published surveys (van 
Laarhoven et al., 1983; Matheson and Hall, 1999; Shah 
and Rajshekhar, 2004; Chiou et al., 2007). Table 2 shows 

 Table 3 shows the significant gene sets in the 
Hotelling’s T2

effect of D-glutamine and D-glutamate metabolism 
(p=0.03), Glycosphingolipid biosynthesis-globo series 
(p=0.034) and Renin-angiotensin system (p=0.032) on 
ALL were in agreement with the results of the previously 
published surveys (Merritt et al., 1988; Teresa Gomez 
Casares et al., 2002; Cory and Cory, 2006). 
 In this case, we found a number of shared genes 

RFC1, RFC2, RFC3, RFC4 and RFC5 were previously 
shown to be related to ALL elsewhere (Zolzer et al., 2010; 
Kobayashi et al., 1989; de Jonge et al., 2009; Koppen et al., 
2010). These genes are a subset of common genes between 
DNA replication and repair mismatch. Moreover, there 
were eight common genes (POLA2, POLE3, POLA1, 
POLE, POLE2, PRIM1, PRIM2 and POLE4) between 
DNA replication and purine metabolism. According to 

between ALL and these genes in other documents.

Figure 1. The Results of the Simulation Experiment, 

Power Analysis of Three Gene Set Analysis. 10vs.10 
samples

Figure 2. The Results of the Simulation Experiment, 

Power Analysis of Three Gene Set Analysis. 25vs.25 
samples

Table 2. 

by the Category Method

 Gene Set P-value

1 Ribosome 3.59E-21
2 DNA replication 1.24E-10
3 Spliceosome 7.42E-07
4 Mismatch repair 9.72E-07
5 Homologous recombination 9.65E-05
6 Non-homologous end-joining 0.000247
7 Nucleotide excision repair 0.000308
8 Purine metabolism 0.000464
9 RNA polymerase 0.000859
10 Parkinson’s disease 0.001277
11 Pyrimidine metabolism 0.002218
12 Terpenoid backbone biosynthesis 0.003047
13 O-Glycan biosynthesis 0.003543
14 Base excision repair 0.004281
15 Metabolic pathways 0.008337
16 Tyrosine metabolism 0.011487
17 Glycolysis / Gluconeogenesis 0.012894
18 Oxidative phosphorylation 0.014379
19 Citrate cycle (TCA cycle) 0.016137
20 Keratan sulfate biosynthesis 0.016518
21 Pyruvate metabolism 0.017790
22 Cysteine and methionine metabolism 0.023119
23 Porphyrin and chlorophyll metabolism 0.025649
24 Pentose phosphate pathway 0.028052
25 Proteasome 0.028645
26 Cardiac muscle contraction 0.029528
27 Heparan sulfate biosynthesis 0.031428
28 Glioma 0.039697
29 RNA degradation 0.041485
30 Basal transcription factors 0.045362
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 The relationship among gene sets that share some of 
their members and their proper interpretation are subject 
to further investigation.
 
Discussion

The methods based on multivariate techniques could 
regard as the all of the genes within each gene at the same 
time and account for the correlation structures between 

would be better than the methods based on univariate 
techniques. Because, the univariate methods such as 
the Fisher’s exact test or GSEA test which calculate the 
p-values under the assumption of independence between 
genes will have incorrect type I error if genes are in fact 
correlated (Goeman and Buhlmann, 2007; Liu et al., 
2007). In this paper, we evaluated the execution of the 
Category and Hotelling’s T2 methods (univariate and 
multivariate techniques) for analyzing of gene sets on 
simulated and real gene expression data. Both chosen 
methods are self-contained null hypotheses, because 
self-contained hypothesis tests have more power and 
more clear biological interpretation than competitive null 
hypothesis tests (Goeman and Buhlmann, 2007).

The results on simulated data were according to our 
expectation, they indicated decrease the type I error rate 
and increase the power in multivariate (Hotelling’s T2) test 
as increasing the correlation between gene pairs. In the 
scenarios with the correlation less than 0.5, the power of 
Hotelling’s T2 test was less than the Category test (one-
sided tests). 

In spite of the general belief that multivariate tests 
pay attention to a complex correlation structure between 
genes and, hence, may result in a better power compared 
to univariate tests, Emmert-Streib and Glazko (2011), 
Nettleton et al. (2008) and our results (when correlations 

Another reason to this non-ordinary result may be 

up-regulated expression in our simulated data (Kong et 
al., 2006). However, we know the Category method is a 
one-sided test, while the Hotelling’s T2 method is a two-
sided test. This idea that the changes of gene expressions 
in each gene set is either up or down regulated seems not 
to be true, thus we preferred to use two-sided tests (the 
Hotelling’s T2 method) instead of one-sided tests (the 
Category method). 

Perhaps a wrong assumption which data was simulated 
from a Multivariate Normal distribution has made 
dissimilarity between the results of the real and simulated 
data. Purdom and Holmes (2005) pointed to this common 
error in simulation while in many GSA studies have been 
used Multivariate Normal distribution to simulate gene 
expression data (Kong et al., 2006; Jiang and Gentleman, 
2007; Liu et al., 2007; Dinu et al., 2008; Song and Black, 
2008; Tsai and Chen, 2009).
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