
Asian Pacific Journal of Cancer Prevention, Vol 14, 2013 4501

DOI:http://dx.doi.org/10.7314/APJCP.2013.14.8.4501
Significance of Caveolin-1 Regulators in Pancreatic Cancer

Asian Pac J Cancer Prev, 14 (8), 4501-4507

Caveolin-1 and Pancreatic Cancer

Caveolin-1
	 Caveolae	were	originally	identified	as	omega-shaped	
invaginations	of	the	plasma	membrane	inepithelial	cells	
(Smart	et	al.,	1999),	which	were	discovered	by	Palade	in	
the	1950s	(Casley-Smith	et	al.,	1975).	Currently,	caveolae	
are	considered	integral	transmembrane	microdomains	and	
critical	components	for	the	interactions	between	integrin	
receptors	and	cytoskeleton-associated	signaling	molecules	
(Cordes	et	al.,	2007).	Further,	 they	are	associated	with	
various	membranous	structures,	including	the	endoplasmic	
reticulum,	 Golgi,	 and	 plasma	membranes	 (Parat	 et	
al.,	 2004).	Caveolae	 are	 specialized	 structures	mainly	
composed	 of	 cholesterols	 and	 sphingolipids.	They	 are	
abundant	in	endothelia,	muscle	cells,	adipocytes,	and	lung	
epithelial	cells	(Okamoto	et	al.,	1998),	and	are	implicated	
in	several	endocytic	and	trafficking	mechanisms.	The	coat	
proteins	 required	 for	 caveolae	 formation	 are	 the	 three	
caveolins:	caveolin-1,	-2,	and	-3	(Fujimoto	et	al.,	2000).	
Caveolin-1	and	-2	are	ubiquitously	expressed	in	the	human	
body,	whereas	caveolin-3	is	found	only	in	muscle	tissue	
(Anderson	et	al.,	1998).	Caveolin-1	is	the	major	structural	
protein	 in	 caveolae	 (Smart	 et	 al.,	 1994)	 and	 acts	 as	 a	
scaffold	to	organize	multiple	molecular	complexes	that	
regulate	a	variety	of	cellular	events	(Kato	et	al.,	2004)	such	
as	cellular	transformation,	tumorigenesis,	cell	metastasis,	
and	angiogenesis.	
	 However,	the	fact	that	it	appears	to	act	as	both	a	tumor	
suppressor	and	oncogene,	depending	on	 the	context,	 is	
especially	 intriguing.	 In	 ovarian	 (Prinetti	 et	 al.,	 2010),	
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Abstract

 Caveolin-1 is a scaffold protein on the cell membrane. As the main component of caveolae, caveolin-1 is involved 
in many biological processes that include substance uptake and transmembrane signaling. Many of these processes 
and thus caveolin-1 contribute to cell transformation, tumorigenesis, and metastasis. Of particular interest 
are the dual rolesof tumor suppressor and oncogene that caveolin-1 appear to play in different malignancies, 
including pancreatic cancer. Therefore, analyzing caveolin-1 regulators and understanding their mechanisms of 
actionis key to identifying novel diagnostic and therapeutic tools for pancreatic cancer. This review details the 
mechanisms of action of caveolin-1 regulators and the potential significance for pancreatic cancer treatment. 
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colon	(Nimri	et	al.,	2012),	and	breast	cancer	cells	(Rao	
et	al.,	2012;	Simpkins	et	al.,	2012),	caveolin-1	is	down-
regulated	and	negatively	 correlated	with	 the	malignant	
potential	of	tumor	cells.	It	is	up-regulated	and	promotes	
cell	proliferation	and	invasion	in	bladder	(Thomas	et	al.,	
2011),	esophageal	(Kato	et	al.,	2002),	and	prostate	cancer	
cells	(Li	et	al.,	2001).	High	expression	of	caveolin-1	has	
favorable	prognoses	in	bile	duct	cancer	and	breast	cancer	
(Murakami	et	al.,	2003;	Rao	et	al.,	2012),	but	is	correlated	
with	poor	prognoses	in	prostate,	esophageal,	renal,	and	
non-small	cell	 lung	carcinoma	(Li	et	al.,	2001;	Kato	et	
al.,	 2002;	 Steffens	 et	 al.,	 2011).	 In	 pancreatic	 cancer,	
caveolin-1	is	reduced	compared	to	normal	pancreaticor	
precancerous	tumor	tissue.

Pancreatic cancer
	 Pancreatic	cancer	is	one	of	the	deadliest	cancers	(Shi	et	
al.,	2012)	and	has	been	called	the	king	of	cancer	because	
of	its	poor	cure	rate	and	prognosis	(Siegel	et	al.,	2012).	
Compared	with	other	cancers,	it	has	higher	resistance	to	
conventional	treatments	including	surgery,	radiation,	and/
or	chemotherapy	(Diamantidis	et	al.,	2008).	Despite	the	
fact	that	diagnostic	techniques	are	rapidly	developing,	the	
early	diagnosis	of	pancreatic	cancer	remains	poor	(Luo	et	
al.,	2008).	Data	indicates	that	the	five-year	survival	rate	
ranges	between	0.4	 and	2	percent	 in	 the	United	States	
(Krechler	 et	 al.,	 2011).	Furthermore,	 75	percent	of	 the	
patients	who	are	diagnosed	at	an	advanced	stage	die	within	
1	year.	Currently,	surgical	resection	is	the	only	treatment	
that	 results	 in	 long-term	 survival	 for	 pancreatic	 cancer	
patients.
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Table 1. Caveolin-1 Regulators
Regulatory	Factor	 Method	 Outcome	 References

Forkhead	box	(FOXO)	 PI3K/AKT/FOXO	pathway	 Promotion	 (Boreddy	et	al.,	2011;
	 	 	 Roy	et	al.,	2010)
Lipopolysaccharide	(LPS)	 Inhibit	NF-κB	activation	by	preventing	the	formation		 Suppression	 (Tiruppathi	et	al.,	2008;
	 of	IKK-γ/IKK	complex	and	TLR4/MyD88	signaling		 	 Ikebe	et	al.,	2009)
High-density	lipoprotein	(HDL)	 Activate	MAP	kinase	pathway	through	ERK1/2	 Suppression	 (Frank	et	al.,	2001)
Stimulatory	protein	1	(Sp1)	 Affect	promoter	activity	 Promotion	 (Dasari	et	al.,	2006)
Estrogen	receptorα	(ERα)	 Methylate	caveolin-1	gene	promoter	 Suppression	 (Zschocke	et	al.,	2003)
p53	 Bind	caveolin-1	promoter	sequence	with	E2F/DP-1	 Promotion	 (Lee	et	al.,	2012)
Cholesterol	 Sterol	regulatory	element	binding	protein	(SREBP)	and	Sp1	 Suppression	 (Llaverias	et	al.,	2004)
Carbon	monoxide	(CO)	 Activate	guanylatecyclase	and	p38	MAPK	 Suppression	 (Kim	et	al.,	2005)
Vascular	endothelial	growth	factor	(VEGF)	 VEGF/MEK	signal	transduction	pathway	and	protein	kinase	 Suppression	 (Liu	et	al.,	1999)
	 C/MEK/c-myc	gene/androgen	receptor	pathway
Epithelial	membrane	protein	2	(EMP2)	 Promote	formation	of	membrane	lipid	rafts	containingGPI-APS	 Promotion	 (Wadehra	et	al.,	2004)
Endothelial	NO	synthase	(eNOS)	 Inhibit	the	catalytic	activity	of	eNOS	 Promotion	 (Venema	et	al.,	1997)
Reactive	oxygen	species	(ROS)	 Catalase	and	N-acetylcysteine;	prevent	formation	of	 Suppression	 (Rungtabnapa	et	al.,	2011)
	 caveolin-1-ubiquitin	complex
Src	kinase	 Phosphorylate	caveolin-1	 Suppression	 (Shields	et	al.,	2011)
Na+/K+-ATPase	 Separate	regulation	of	Na+/K+-ATPase	in	the	transport	process	 Promotion	 (Cai	et	al.,	2008)
Breast	cancer	susceptibility	gene	1	(BRCA1)	 Anti-caveolin-1	gene	in	caveolin-1	gene	promoter	 Promotion	 (Wang	et	al.,	2008)
Flotillin-1	 Prevent	lysosomal	degradation	 Promotion	 (Vassilieva	et	al.,	2009)

Structure and Expression of Caveolin-1

	 Caveolin-1,	a	21-24kDa	integral	membrane	protein,	
is	a	principal	component	of	caveolae	membranes	in	vivo	
(Liu	et	al.,	2013).	Caveolae	are	involved	in	constitutive	
endocytic	trafficking.	Liquid-ordered	domains	are	formed	
within	the	Golgi	apparatus	and	thus	the	biogenesis	of	both	
caveolae	 and	 caveolae-related	 liquid-ordered	 domains	
initiate	in	the	Golgi	and	are	transported	to	the	cell	surface	
by	 vesicular	 organelles.	Caveolin-1	 is	 formed	 during	
endocytosis	 and	 recycled	 back	 to	 the	 cell	membrane	
(Smart	 et	 al.,	 1999).	 Immunofluorescent	 staining	 of	
cells	transfected	with	caveolin-1	indicated	that,	like	the	
NH2	terminus,	the	COOH-terminal	region	is	located	on	
the	 cytoplasmic	 side	 of	 the	 plasma	membrane.	Using	
the	 anti-peptide	 antibodies	 and	 epitope	 tags	 targeting	
the	N-	 and	C-terminal,	Glenney	 et	 al.	 found	 that	 the	
N-terminal	 and	 C-terminal	 are	 both	 located	 on	 the	
cytoplasmic	 side	 of	 the	 plasma	membrane.	The	NH2	
terminus	has	a	tyrosine	that	is	phosphorylated	by	V-Src	
(Glenney	et	al.,	1989)	and	the	C-terminus	has	a	cysteine	
palmitoylationsite	 (Dietzen	 et	 al.,	 1995).	 Studies	 have	
revealed	 that	COOH-terminal	 palmitoylationis	 crucial	
for	caveolin-1	to	attach	to	the	plasma	membrane	(Sowa	
et	 al.,	 2003).	Both	phosphorylation	 and	palmitoylation	
occurintracellularly	(Sargiacomo	et	al.,	1993).	Caveolin-1	
interacts	with	a	variety	of	signaling	molecules,	including	
endothelial	nitric	oxide	synthase	(eNOS),	heterotrimeric	
G	 proteins,	 adhesion	molecules,	 nonreceptor	 tyrosine	
kinases,	Src-family	tyrosine	kinases,	and	p42/44	mitogen-
activated	protein	kinase	(MAPK).	Residues	82-101	in	the	
N-terminal	region	are	called	the	caveolin-1	scaffolding	
domain	(CSD)	and	serve	tobind	other	molecules	to	the	
cell	membrane	(Arbuzova	et	al.,	2000).	Couet	et	al.	found	
that	 the	CSD	was	 the	area	where	caveolin-1	 interacted	
with	signaling	molecules	indicating	that	the	CSD	is	the	
most	important	functional	area	ofcaveolin-1	(Couet	et	al.,	
1997).	Some	factors	have	been	identifiedthatinteract	with	
the	CSD	and	regulate	caveolin-1	activity.

Caveolin-1 Regulation in the Human Body

 In	 the	pre-transcriptional	and	 transcriptional	 stages,	

caveolin-1	 is	 regulated	mainly	 through	 cell	 signaling	
pathways.	During	the	post-transcriptional	stage,	expression	
is	mainly	regulated	through	ubiquitination	and	lysosomal	
degradation.	Caveolin-1	is	degraded	in	the	late	endosome	
and	 lysosome.	 Generally	 speaking,	 the	 velocity	 of	
degradation	is	very	slow.	However,	if	caveolin-1	assembly	
is	altered,	the	rate	of	decomposition	is	accelerated.	The	
most	likely	explanation	for	this	phenomenon	is	cholesterol	
consumption,	 which	would	 inhibit	 the	 assembly	 of	
complete	 cytoskeletal	proteins	 and	cause	 caveolin-1	 to	
be	more	easily	decomposed	(Hayer	et	al.,	2010).
	 During	both	transcription	and	translation,	caveolin-1	
expression	is	influenced	by	a	variety	of	factors	(mainly	
multiple	signal	transduction	pathways)	which	results	in	
changes	to	cellular	physiological	processes.	The	following	
sections	detail	how	caveolin-1	expression	is	regulated.	

Significance of pre-transcriptional caveolin-1 regulation 
in pancreatic cancer
	 Pre-transcriptional	regulation	of	caveolin-1	is	mainly	
controlled	 by	 transcription	 factors	 and	 transcription-
related	factors.
 Forkhead	box	(FOXO):	FOXO	transcription	factors	are	
of	vital	importance	in	cellular	proliferation,	metabolism,	
and	 apoptosis	 downstream	of	PTEN,	phosphoinositide	
3-kinase	(PI3K),	and	AKT	(Eijkelenboom	et	al.,	2013).	In	
thestationary	phase	of	cell	growth,	FOXO	induces	stable	
expression	of	insulin	receptors	and	regulates	caveolin-1	
through	 thePI3K/AKT/FOXO	 pathway	 (Boreddy	 et	
al.,	2011).	Vanden	et	al.	found	that	active	FOXO	binds	
directly	 to	 the	 caveolin-1promoter	 regionand	 activates	
transcription	 (Van	 et	 al.,	 2005).	 In	 pancreatic	 cancer,	
Roy	SK	 et	 al.	 found	 that	 inhibition	 of	 the	PI3K/AKT	
and	MAPK/extracellular	regulated	protein	kinase	(ERK)	
pathways	activates	FOXO	 transcription	and	caveolin-1	
expression,	leading	to	cell	cycle	arrest	and	apoptosis	(Roy	
et	al.,	2010).
 Lipopolysaccharide	(LPS):	LPS	actswith	NEMO	[an	
essential	modifier-binding	domain	of	nuclear	factor-kappa	
B	 (NF-κB)]	 to	 inhibit	 the	 formation	of	 the	 IKK-γ	 and	
IKK	 complexes,	 thuspreventing	 the	 activation	 ofNF-
κB	 (a	 family	 of	 transcription	 factors)	 and	 caveolin-1	
expressionin	vivo	(Tiruppathi	et	al.,	2008),	NF-κB	is	a	key	
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factor	connecting	inflammation	with	cancer	progression.	
The	 idea	 that	 a	 tumor	 itself	 can	 act	 as	 a	 stimulator	 of	
chronic	inflammation	is	becoming	more	widely	accepted	
by	oncologists	(Zhu	et	al.,	2008).	Maier	et	al.	found	that	
NF-κB	 promotes	 epithelial-mesenchymal	 transition,	
migration,	 and	 invasion	 in	 pancreatic	 carcinoma	 cells	
(Maier	et	al.,	2010).	Ikebe	et	al.	found	that	LPS	promotes	
NF-κB	activation	and	increases	invasive	ability	through	
the	TLR4/MyD88	signaling	pathway	(Ikebe	et	al.,	2009).
 High	 density	 lipoprotein	 (HDL):	When	NIH/3T3	
cells	 areexposedto	HDL,	 caveolin-1	 promoter	 activity	
isinhibited.	This	 phenomenon	 suggests	 that	HDL	hasa	
direct	negative	impact	on	caveolin-1	transcription.	Further	
research	revealed	that	HDL	can	downregulate	caveolin-1	
expression	without	 affecting	 caveolin-2	 expression	 by	
activating	 the	MAP	kinase	 pathway	 through	ERK1/2	
activation	(Frank	et	al.,	2001).	We	also	know	that	a	high-
fat	diet	is	a	risk	factor	for	pancreatic	cancer	and	a	high-fat	
diet	increases	caveolin-1	(Yang	et	al.,	2007).
 Stimulatory	protein	1	 (Sp1):	Sp1	 is	 one	of	 the	 two	
transcription	factors	that	bind	thecaveolin-1	gene	andaffect	
promoter	 activity	 (Chen	 et	 al.,	 2011).	 Sp1	 is	 a	 central	
transcription	factor	that	regulates	a	number	of	pathways	
critical	 to	 tumorigenesis,	 including	 tumor	 cell-cycle	
progression,	 apoptosis,	 angiogenesis,	metastasis,	 and	
evasion	of	the	immune	system	(Huang	et	al.,	2012).	Dasari	
et	al.	showed	that	oxidative	stress	enhances	Sp1-stimulated	
caveolin-1	 expression.	 In	 addition,	 other	 studies	 have	
shown	 that	 p38	MAPK	 is	 an	 oxidative	 stress-induced	
upstream	 regulatory	 factor	 of	 Sp1.	 Inhibition	 of	 p38	
MAPK	prevents	 oxidative	 stress	 from	 inducing	 Sp1-
mediated	caveolin-1	gene	expression	and	premature	cell	
aging	(Dasari	et	al.,	2006).	Sp1	activation	is	also	essential	
for	the	differential	overexpression	of	vascular	endothelial	
growth	factor	(VEGF),	which	is	involved	in	pancreatic	
cancer	angiogenesis	and	progression	(Shi	et	al.,	2001).
 Estrogen	 receptorα	 (ERα):	 Estrogens	 are	major	
promoters	 of	 cell	 proliferation	 in	 both	 normal	 and	
neoplastic	 epithelium.	Two	major	 ERs	 are	 ERα	 and	
Erβ	 (Kimbro	 et	 al.,	 2008).	 ERα	 acts	 as	 an	 estrogen	
transcription	factor	that	stimulates	estrogen	target	genes	
and	regulates	cell	progression	and	growth,	especially	in	
breast	epithelium	(Singh	et	al.,	2005).	In	neuroepithelioma	
cells,	ectopic	ERα	inhibits	caveolin-1	transcription	and	the	
caveolin-1	promoter	is	methylated	(Zschocke	et	al.,	2003).	
However,	because	caveolin-1	mutations	occur	in	the	early	
stages	 of	mammary	 transformation,	 this	 observation	
suggested	that	caveolin-1	might	be	an	upstream	activator	
of	 Erα	 (Sotgia	 et	 al.,	 2006).	There	may	 be	 negative	
feedback	regulation	of	caveolin-1	as	the	proliferation	of	
pancreatic	cancer	cells	is	highly	sensitive	to	estrogen	in	
vitro	(Konduri	et	al.,	2007).

Significance of caveolin-1 transcription regulators in 
pancreatic cancer
 p53:	p53	is	the	strongest	tumor	suppressor	gene	and	
it	 regulates	apoptosis,	cell	cycle	arrest,	and	senescence	
(Lee	et	 al.,	2011).	p53	binds	directly	 to	 the	caveolin-1	
promoter	 with	 the	 E2F/DP-1	 and	 Sp1	 transcription	
factors,	thusincreasing	caveolin-1	expression	(Lee	et	al.,	
2012).	In	human	pancreatic	ductal	adenocarcinoma,	low	

p53	 transcript	 levelsareassociated	with	 poor	 prognosis	
(Grochola	et	al.,	2011).	Much	evidence	indicates	that	p53	
provokes	a	classic	proapoptotic	response	by	delaying	G1-
to-S	progression	(Gupta	et	al.,	2010).
 Cholesterol:	Cholesterol	is	also	a	powerful	regulator	
of	gene	expression.	It	carries	out	this	activity	by	jointly	
binding	 the	 sterol	 regulatory	 element	 binding	 protein	
(SREBP)	with	 Sp1.	 KLF11	 [a	 Krüppel-like	 factor;	
also	 referred	 to	 as	 transforming	 growth	 factor-beta	
early	 inducible	 gene	 2	 (TIEG2)]	 inhibits	 Sp1/SREBP	
cholesterol-dependent	gene	expression	(Llaverias	et	al.,	
2004).	High	cholesterol	intake	increases	in	the	incidence	
of	pancreatic	cancer	(Takeyama	et	al.,	2005).
 Carbon	 monoxide	 (CO):	 CO	 (a	 product	 of	
hemeoxygenase	 activity)	 is	 an	 endogenous	 gaseous	
transmitter	that	exerts	anti-proliferative	effects	(Schwer	
et	al.,	2013).	CO	affects	caveolin-1	gene	expression	by	
activating	guanylatecyclase	and	p38	MAPK.	p38	MAPK	
down-regulates	 ERKs	 that	 inhibit	 caveolin-1	 gene	
transcription	 (Kim	 et	 al.,	 2005).	 In	 pancreatic	 cancer,	
CO	protects	cells	from	apoptosis.	Protection	is	mediated	
through	 the	 generation	 of	 cyclic	GMP	 (cGMP)	 and	
the	 activation	of	 cGMP-dependent	 protein	 kinases	 and	
guanylatecyclase	(Gunther	et	al.,	2002).
 Vascular	endothelial	growth	factor	(VEGF):	VEGF	is	a	
key	mediator	of	angiogenesis	and	promotes	proliferation,	
survival,	migration	of	endothelial	cells,	and	blood	vessel	
formation	and	neovascularization	(Ferrara	et	al.,	2002).	
On	 the	 one	 hand,	Liu	 J	 et	 al.	 found	 that	 activation	 of	
the	VEGF/MEK	signal	transduction	pathway	decreased	
caveolin-1	while	leaving	caveolin-2	unchanged	inhuman	
umbilical	 vein	 endothelial	 cells	 (Liu	 et	 al.,	 1999).	 In	
prostate	cancer	cells,	 the	protein	kinase	C/MEK/c-myc	
gene/androgen	 receptor	 pathway	 increases	 caveolin-1	
(Wu	 et	 al.,	 2002).	On	 the	 other	 hand,	 caveolin-1	 also	
stimulates	 expression	 of	VEGFvia	AKT	activation	 (Li	
et	al.,	2009).	VEGF	is	a	well-characterized	mediator	of	
tumor	 angiogenesis	 andfunctions	 primarily	 bybinding	
and	 activating	 the	VEGF	 receptor	 2.	Angiogenesis	 is	
a	 characteristic	 of	many	malignant	 tumors,	 including	
pancreatic	cancer	(Dineen	et	al.,	2008).
 Epithelial	membrane	 protein	 2	 (EMP2):	 EMP2,	 a	
tetraspan	protein,	facilitates	plasma	membrane	delivery	
of	 certain	 integrins.	 EMP2	 also	 contributes	 to	 the	
formation	and	trafficking	of	lipid	rafts	bearing	glycosyl-
phosphatidyl	inositol	anchored	proteins	(GPI-Aps),	thus	
reducing	caveolin-1	expression	 (Wadehra	et	al.,	2004).	
Down-regulation	of	caveolin-1	by	EMP2	does	not	affect	
caveolin-1	 translational	 efficiency,	 phosphorylation,	
or	 degradation.	 Protein	 half-life	 analysis	 showed	 that	
caveolin-1	decomposition	was	more	rapid	when	mediated	
by	EMP2	(Forbes	et	al.,	2007).
 eNOS:The	eNOS	protein	binds	caveolin-1	through	its	
CSD	(Razani	et	al.,	2002).	Caveolin-1	also	functions	as	
an	 eNOS	 inhibitor	with	 a	 calcium/calmodulin	 cofactor	
(Ju	et	al.,	2002).	Enhanced	renal	caveolin-1	expression	
is	linked	to	poor	eNOS	expression	(Valles	et	al.,	2007).	
Increased	caveolin-1	is	associated	with	inhibition	of	the	
catalytic	activity	of	eNOS	(Venema	et	al.,	1997).	There	
may	be	a	feedback	regulator	to	caveolin-1.	In	the	model	of	
pancreatic	cancer	liver	metastasis,	eNOS	overexpression	
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attenuates	both	the	number	and	size	of	tumors.	In	vitro,	NO	
promotes	tumor	cell	anoikis	and	limits	invasive	capacity	
(Decker	et	al.,	2008).
 Reactive	 oxygen	 species	 (ROS):	ROS	areproduced	
by	 cellular	 aerobic	metabolism	 (Gough	 et	 al.,	 2011).	
Cells	 treated	with	 oxidation	 have	 increased	 tyrosine	
kinase	 activity	 and	 decreased	 phosphatase	 activity	
(Vepa	 et	 al.,	 1997).	Rungtabnapa	 found	 that	 catalase	
and	N-acetylcysteine	 promote	 the	 ubiquitination	 and	
degradation	 of	 caveolin-1.	 In	 addition,	 exogenous	
hydrogen	peroxide	prevents	the	formation	of	the	caveolin-
1-ubiquitin	 complex	 and	 inhibits	 caveolin-1	 reduction	
(Rungtabnapa	 et	 al.,	 2011).	 Endogenous	 hydrogen	
peroxide	also	prevents	the	transport	of	newly	synthesized	
caveolin-1	 to	 the	 cell	membrane.	 Palmitoylation	 of	
caveolin-1	 is	significantly	 inhibited	 in	endothelial	cells	
exposed	to	hydrogen	peroxide	(Parat	et	al.,	2002).	Park	
JH	et	al.	found	that	hydrogen	peroxide	and	methyl-beta-
cyclodextrin	 down-regulate	 caveolin-1.	 In	 pancreatic	
cancer,	NADPH	oxidase	4-mediated	generation	of	ROS	
is	proposed	to	have	anti-apoptotic	activity	and	thus	confer	
a	 growth	 advantage	 to	 cancer	 cells.	ROS	 transmit	 cell	
survival	signals	through	the	AKT/ASK1	pathway	and	their	
depletion	leads	to	apoptosis	(Mochizuki	et	al.,	2006).
 Src	 kinase:	 Src	 family	 kinases	 regulate	 cell	
proliferation,	adhesion,	and	motility.	They	are	frequently	
activated	in	human	cancers	and	contribute	to	malignancy	
and	metastasis	(Di	et	al.,	2011).	Src	kinase	increases	as	
a	function	of	tumor	progression	and	plays	a	role	in	the	
transition	 to	malignancy.	 Further,	 itis	 associated	with	
phosphorylation	of	the	caveolin-1	gene	Y14.	More	than	
60%	of	pancreatic	cancer	patients	show	increased	c-Src	
activity,	which	is	associated	with	poor	prognosis	(Shields	
et	al.,	2011).	Src/Stat3	signaling	plays	a	crucial	role	 in	
tumor	 cell	 survival,	 proliferation,	 angiogenesis,	 and	
immune	suppression	(Nam	et	al.,	2012).
 Others:	 There	 are	 additional	 cellular	 signaling	
pathways,	like	transforming	growth	factor/PI3K,	histone	
deacetylase,	and	cAMP	that	are	associated	with	caveolin-
down-regulation	that	are	not	mentioned	here	(Zschocke	et	
al.,	2005).	In	contrast,	oxidized	LDL	increases	caveolin-1	
expression	(Wu	et	al.,	2009).

Post-transcriptional regulation
	 Post-transcriptional	 regulation	of	caveolin-1	mainly	
occurs	through	the	decomposition	process	that	is	carried	
out	through	thelysosomal	and	ubiquitination	degradation	
pathways.
 Na+/K+-ATPase:	High	metabolism	is	a	characteristic	
of	malignancies	 and	Na+/K+-ATPase	 provides	 energy	
for	cellular	metabolism.	Na+/K+-ATPase	is	an	important	
enzyme	in	the	protein	transport	process.	Cai	T	et	al.	found	
that	 caveolin-1	was	 significantly	 reduced	 on	 the	 cell	
surface	when	the	Na+/K+-ATPase	gene	was	knocked	out.	
This	is	due	to	unilateral	regulation	of	the	transport	process	
by	Na+/K+-ATPase	 rather	 than	 an	 interaction	between	
Na+/K+-ATPase	and	caveolin-1	(Cai	et	al.,	2009).
 Breast	cancer	susceptibility	gene	1	(BRCA1):	BRCA1	
is	 involved	 in	multiple	processes,	 such	 as	 cell	 growth,	
apoptosis,	 DNA	 damage	 repair,	 and	 transcriptional	
activation.	 In	 immunofluorescence	 studies,	Wang	Y	

et	 al.	 showed	 that	BRCA1	might	 inhibit	 the	 invasive	
and	metastatic	abilities	of	cancer	cells	by	 inducing	 the	
redistribution	of	caveolin-1.	In	addition,	the	BRCA1	gene	
inhibits	redistribution	of	caveolin-1	in	the	cell	membrane	
and	 cytoplasm	 (Wang	 et	 al.,	 2008).	BRCA1	mutations	
have	 been	 shown	 to	 drastically	 decrease	 survival	 rate	
in	breast	and	ovarian	cancer	patients	who	carry	them.	A	
number	of	studies	have	shown	that	the	third	most	common	
cancer	associated	with	these	mutations	is	pancreatic	cancer	
(Lynch	et	al.,	2005).
  Flotillin-1:	 Flotillins	 are	 localized	 to	 lipid	 rafts	
independent	 of	 caveolin-1	 and	 are	 the	 principal	
proteins	associate	with	lipid	rafts.	These	microdomains	
function	 in	 roles	 such	 as	membrane	 trafficking,	 cell	
morphogenesis,and	 cell	 signaling	 (Evans	 et	 al.,	 2003).	
Flotillin-1	regulates	caveolin-1	 levels	by	preventing	 its	
degradation	in	lysosomes	(Vassilieva	et	al.,	2009).

Relationship between Caveolin-1 and 
Pancreatic Cancer

	 Pancreatic	 cancer	 progression	 is	 attributed	 to	
genetic	 and	 epigenetic	 alterations	 and	 a	 chaotic	 tumor	
microenvironment	(Huang	et	al.,	2012).	Recent	studies	
suggest	that	caveolin-1	plays	important	roles	in	promoting	
cancer	 cell	 development,	 migration,	 invasion,	 and	
metastasis	 (Thomas	et	al.,	2011).	Further	 research	also	
suggests	that	caveolin-1	can	impact	cancer	biology	both	
positively	 and	negatively.	 In	 tumor	 tissue,	 both	 tumor	
cells	 and	 blood	 vessels	 express	 caveolin-1.	However,	
in	peritumoral	 tissue	caveolin-1	 is	mainly	expressed	 in	
blood	vessels	and	only	occasionally	expressed	in	ductal	
or	 parenchymal	 cells.	Overexpression	 of	 caveolin-1	 is	
associated	with	 tumor	size,	grade,	stage,	and	 increased	
serum	levels	of	CA19-9	(Tanase	et	al.,	2009).
	 Caveolin-1	 has	 recently	 been	 identified	 as	 a	 tumor	
metastasis	modifier	gene	that	affects	cancer	cell	motility	
(Koleske	et	al.,	1995;	Yang	et	al.,	1999).	In	contrast,	loss	of	
caveolin-1	leads	to	RhoC-mediated	migration	and	invasion	
in	metastatic	pancreatic	cancer	cells	(Thomas	et	al.,	2011).	
Data	also	indicates	that	caveolin-1,	with	its	dual	function	
in	 cancers,	 is	 associated	with	 tumor	 progression	 and	
inhibits	proliferation	and	invasion	(Mathew	et	al.,	2011).	
Tumor	cells	have	significantly	higher	caveolin-1	levels,	
especially	 in	 the	 tumor	stroma.	Caveolin-1	knockdown	
significantly	 induces	 cell	 apoptosis	 and	 enhances	 the	
radio	sensitivity	of	cancer	cells	(Hehlgans	et	al.,	2009).	
The	 caveolin-1	 gene	 inhibits	 invasion	 of	 pancreatic	
carcinoma	 cellslikely	 through	 the	 Erk/MMP	 signal	
pathway,	however,	the	mechanism	remains	unclear.	This	
suggests	that	endogenous	expression	or	re-expression	of	
caveolin-1	could	act	to	reduce	the	potential	invasivenessof	
cancer	cells	(Han	et	al.,	2010).	Together,	these	findings	
strongly	 imply	 that	 caveolin-1	 plays	 a	 critical	 role	 in	
pancreatic	 cancer	 development	 and	progression	 and	 is	
a	 valuable	 biomarker	 for	 the	 disease.	The	majority	 of	
normal	 and	 adjacent	 normal	 pancreatic	 tissue	 cells	 are	
negative	for	caveolin-1,	whereas	pancreatic	cancer	tissue	
cells	and	stromal	cells	are	strongly	positive	for	caveolin-1.	
Caveolin-1	expression	is	positively	correlated	with	tumor	
differentiation,	 disease	 stage,	 and	 tumor	metastasis.	
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Caveolin-1	 is	 also	 an	 oncogene	 that	 could	 promote	
invasion.	 In	 summary,	 a	 variety	 of	 data	 indicates	 that	
caveolin-1	might	be	a	good	candidate	 for	 a	prognostic	
tumor	marker	 and	 a	 potential	 target	 for	 therapeutic	
intervention	(Bailey	et	al.,	2008).

Five year view
	 Caveolin-1	is	involved	in	a	variety	of	cellular	signal	
pathways	 and	 transmembrane	 transport.	 It	 is	 generally	
accepted	 that	 signaling	 proteins	 are	 proposed	 to	 use	
conserved	caveolin-binding	motifs	(CBMs)	to	associate	
with	 caveolae	 via	CSD.	However,	 Collins	BM	 et	 al.	
found	CBM/CSD-dependent	 interactions	 are	 unlikely	
to	mediate	 caveolar	 signaling	 (Collins	 et	 al.,	 2012).	
Its	 precise	 role	 as	 a	 tumor	 suppressor	 or	 oncogene	 in	
different	human	malignancies	remains	elusive.	Caveolin-1	
regulates	a	variety	of	cellular	events	that	include	cellular	
transformation,	 tumorigenesis,	 cell	 metastasis,	 and	
angiogenesis.	It	 is	 interesting	to	note	 that	caveolin-1	is	
reduced	in	pancreatic	cancer	compared	to	normal	tissue	
in	 precancerous	 tumors,	 such	 as	 pancreatic	 intraductal	
papillary-mucinous	 neoplasms	 (Terris	 et	 al.,	 2002).	
Caveolin-1	 contributes	 to	 cellular	 resistance	 against	
genotoxic	agents	and	thus	its	knockdown	sensitizes	human	
pancreatic	 tumor	 cells	 to	 ionizing	 radiation	 (Cordes	 et	
al.,	2007).	Based	on	this	observation,	caveolin-1	appears	
to	be	a	tumor	suppressor	in	pancreatic	cancer.	However,	
it	 is	 highly	 expressed	 in	 invasive	 tumors	 compared	 to	
noninvasive	tumors	(Terris	et	al.,	2012).	Huang	C	et	al.	
found	the	FoxM1-caveolin	signaling	promotes	pancreatic	
cancer	invasion	and	metastasis	(Huang	et	al.,	2012).	This	
review	detailed	the	mechanisms	that	regulate	caveolin-1	
expression	 in vivo	 and	 their	 significance	 in	 pancreatic	
cancer.	Other	mechanisms	are	being	actively	explored.	
At	present,	a	variety	of	factors,	such	as	HDL,	SREBP1,	
and	epidermal	growth	 factor	 receptor,	 that	 regulate	 the	
expression	 of	 caveolin-1	 have	 been	 identified,	 but	 the	
precise	regulatory	mechanisms	remain	unclear.	In-depth	
research	 in	 this	 field	will	 improve	 our	 understanding	
of	 pancreatic	 cancer	 and	 potentially	 highlight	 novel	
diagnostic	methods	and	anti-cancer	strategies.
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