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Introduction

	 Gastric cancer is one of the most common causes of 
cancer deaths all over the world. Every year, more than 
870 thousand new cases are reported throughout the world 
and more than 650 thousand people die from this type of 
cancer (Parkin, 1998). According to the latest statistics 
of Iran Cancer Research Center, gastric cancer is the 
most common cancer among Iranian men and the third 
most common cancer among Iranian women after breast 
cancer (Mohagheghi et al., 1998; Mohagheghi, 2004). 
One of the most important objectives specified after the 
right diagnosis and prompt treatment for the patients with 
gastric cancer is the survival rate increase especially the 
5-year survival rate. Unfortunately, more than 80% of 
patients with gastric cancer are diagnosed at a stage when 
common treatments such as gastrectomy, chemotherapy, 
or radiation therapy are not effective in increasing the 
patients’ survival (Gunderson and Sosin, 1982; Wisbeck et 
al., 1986; Sadighi et al., 2005; Samadi et al., 2007; Sadighi 
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Abstract

	 Background: Research on cancers with a high rate of mortality such as those occurring in the stomach 
requires using models which can provide a closer examination of disease processes and provide researchers 
with more accurate data. Various models have been designed based on this issue and the present study aimed 
at evaluating such models. Materials and Methods: Data from 330 patients with gastric cancer undergoing 
surgery at Iran Cancer Institute from 1995 to 1999 were analyzed. Cox-Snell Residuals and Akaike Information 
Criterion were used to compare parametric and semi-parametric Cox models in modeling transition rates 
among different states of a multi-state model. R 2.15.1 software was used for all data analyses. Results: Analysis 
of Cox-Snell Residuals and Akaike Information Criterion for all probable transitions among different states 
revealed that parametric models represented a better fitness. Log-logistic, Gompertz and Log-normal models 
were good choices for modeling transition rate for relapse hazard (state 1"state 2), death hazard without a 
relapse (state 1"state 3) and death hazard with a relapse (state 2"state 3), respectively. Conclusions: Although 
the semi-parametric Cox model is often used by most cancer researchers in modeling transition rates of multi-
state models, parametric models in similar situations- as they do not need proportional hazards assumption 
and consider a specific statistical distribution for time to occurrence of next state in case this assumption is not 
made - are more credible alternatives.   
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et al., 2008; Association, 2011). For this reason, the 5-year 
survival rate is low in patients with gastric cancer after 
surgery (Thong-Ngam et al., 2001; Triboulet et al., 2001; 
Schwarz and Zagala-Nevarez, 2002; Adachi et al., 2003; 
Ding et al., 2004). The increase in these patients’ survival 
after surgery requires using models which could provide 
a closer examination on the behavior of variables so that 
it will better describe the natural process of the disease 
and will provide the researchers with more accurate data.
	 One of the statistical models designed to accomplish 
this purpose is the multi-state model. According to this 
model, patients experience different states (save for death 
event) during the study from the beginning to death event. 
The time reaching each state and factors affecting its 
occurrence play a fundamental role in patients’ survival. 
Considering these states (often called intermediate events) 
has developed a novel approach in survival studies, 
because the natural process of disease in such cases can 
be considered as a stochastic process in which patients 
can be placed in various states throughout the study. 
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Most studies on cancer regard the death event as the only 
probable occurrence for patients, but in many cases, events 
other than death event occur in patients during the study 
period which may affect the final results. Relapse is an 
obvious example for these events. Not only does it affect 
patients’ survival as a variable but its occurrence is also 
influenced by different factors.
	 Standard models of survival are the simplest of multi-
state model. In these models, the patient is “Alive” at the 
beginning of the study and then his/her state may change to 
“Death”. This is the only transition which is considered for 
patients during the study. This transition can be illustrated 
as show in Figure 1.
	 Models more complex than two-state, provide the 
patients with the probability of more transition during the 
study. These models are used when the initial state of the 
patient, i.e. “being alive”, is itself divided to two or more 
other states. The number of division depends on the type 
of disease. In the process of gastric cancer, the survival 
time of patient is recorded since the patient has undergone 
surgery. After surgery the patient enters the study and is 
subjected to death hazard. In these studies, the occurrence 
of death and relapse are considered as the end point of 
the study and the intermediate even respectively. This 
modeling is schematically shown in Figure 2.
	 The most important practical application of multi-
state models is transition rate modeling among states in 
each transition. There are various statistical methods for 
this purpose including parametric and semi-parametric 
models. These models are divided into two main 
categories: Proportional Hazard model and Accelerated 
Failure-time model. In the proportional hazard model, 
modeling is done based on hazard function. In this 
case, if baseline hazard is considered parametric, one 
of the exponential, Weibull or Gompertz models will be 
obtained. If the baseline hazard is considered indefinite, 
the semi-parametric Cox model will be achieved. In the 
accelerated failure-time model, modeling is done on time 
logarithm to the occurrence of next state. The obtained 
models in this case include: Exponential, Weibull, Log-
normal, Log-logistic, Gompertz and Generalized gamma. 
It should be noted that the Weibull and exponential models 
are the only ones that have, both, the PH and AFT features.
	 The semi-parametric Cox model does not need to 

consider a specific probability distribution for time to 
the occurrence of next state; therefore, it is the most 
useful model in modeling transition rates of multi-state 
models (Hougaard, 1999; Yagi et al., 2000; Andersen and 
Keiding, 2002; Adachi et al., 2003; Buonadonna et al., 
2003; Chau et al., 2004; Zeraati et al., 2005; Dehkordi and 
Tabatabaee, 2007; Biglarian et al., 2009). But this model 
is severely affected by proportional hazards assumption 
and, for this reason, is often called Cox proportional hazard 
model. In cases where the proportional hazard model is 
not tenable, inferences derived from this model will be 
flawed and will have a bias (Hougaard, 1999; Collett, 
2003; Klein and Moeschberger, 2003; Hosmer Jr et al., 
2011). Accelerated failure-time models are particularly 
important in such circumstances. These models—due to 
having a specific probability distribution for time to the 
occurrence of next state —make statistical inference more 
accurate and cause the standard errors of the estimations 
to be smaller in ratio with the time when there were no 
such assumptions. Modeling of transition rates in multi-
state models is often identified by Cox proportional hazard 
model (Klein et al., 1984; Kay, 1986; Andersen, 1988; 
Hougaard, 1999; Andersen and Keiding, 2002; Klein 
and Moeschberger, 2003; Putter et al., 2007; De Wreede 
et al., 2010; Jackson, 2011). Neither have these studies 
generally used proportional hazards assumption nor did 
they attempt to identify a suitable parametric model as an 
alternative to Cox proportional hazard model. The main 
problem in the application of multi-state models is the 
need to determine the most appropriate model in modeling 
transition rates. So, in addition to comparing parametric 
and Cox semi-parametric models in modeling transition 
rates among different states, Akaike Information Criterion 
and Cox-Snell Residuals have been also used in this study 
to assess these models.

Materials and Methods

	 In this study, 330 patients with gastric cancer with 
the following data were studied: i) the patients had been 
hospitalized and had undergone surgery from 1995 to 1999 
in surgical wards of Cancer Institute of Iran; ii) they had 
records in the archives of the hospital, and in their files 
their addresses and phone numbers were available for 
subsequent follow-up. The survival time of patients was 
determined after surgery and those patients who were still 
alive at the end of study period or the ones whose data were 
not available after a specific time-period were considered 
right censored.
	 Since it is common to use the Cox proportional hazards 
model in modeling transition rates of multi-state models, 
there is a risk that if the assumption of proportional hazards 
is not fulfilled, the results will not be reliable enough. 
Although some researchers tend to turn a blind eye to this 
defect in their researches due to the ease of Cox’s model’s 
application and its interpretations, it is essential to use 
alternative models with a higher degree of reliability such 
as parametric models for more precise investigations in 
such cases. Therefore, in this study to compare parametric 
models including Exponential, Weibull, Log-normal, Log-
logistic, Gompertz, and Generalized gamma as well as 

Figure 2. Three Transitions for Patients During the 
Study in the Above Model. Death hazard without a relapse 
(state 1gstate 3); Relapse hazard (state1gstate2); Death hazard 
with a relapse (state 2gstate 3)
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Cox semi-parametric model in modeling transition rates 
among different states, a multi-state model with three 
states of patient’s being alive without a relapse (state 
1), relapse (state 2) and death (state 3) was considered. 
Moreover, Cox-Snell Residuals and Akaike Information 
Criterion were used to assess these models properly. Cox-
Snell Residuals is a graphical criterion for assessing the 
fitness of parametric and semi-parametric models; the 
less deviation of residuals from the bisector, the more 
appropriate fitness of model (Weissfeld and Schneider, 
1990; Escobar and Meeker Jr, 1992; Collett, 2003). 
Graphical methods are often associated with optical 
illusion. For a better judgment, thus, Akaike information 
criterion can be used along with Cox-Snell residuals. 
Akaike information criterion is used to measure the 
goodness of statistical models’ fitness, and the smaller it 
is, the better it is (Collett, 2003; Klein and Moeschberger, 
2003). AIC for the models used in this study has been 
calculated according to the following equation: AIC=-
25log(likelihood)+2(p+k)
	 In which p is the number of parameters in the model 
and k is a constant coefficient which has been used 
depending on the type of model. For example, k is for the 
exponential model and k=2 for Weibull model (Klein and 
Moeschberger, 2003). The smaller the AIC is, the more 
efficacious the model will be. All data were analyzed using 
R 2.15.1 software.

Results 

	 Figure analysis of Cox-Snell residuals for parametric 
models and Cox semi-parametric model in modeling 
transition rates in three transitions; relapse hazard (state 
1"state 2), death hazard without a relapse (state 1"state 
3) and death hazard with a relapse (state 2"state 3) 
represents better fitness of parametric models compared 
with Cox semi parametric model. The figure of Cox-Snell 
residuals for relapse hazard (state 1"state 2) shows that 
among parametric models, Log-logistic model has a better 
fitness to data (Figure 3). Furthermore, analysis results 
of these residuals to compare parametric and Cox semi-
parametric models in modeling transition rates for death 
hazard without a relapse (state 1"state 3) also revealed 
that among parametric models Gompertz proved better 
fitness to the data (Figure 4). Besides, the analysis of these 
residuals in modeling transition rates for death hazard 
with a relapse (state 2"state 3) showed that Log-normal 
model is a suitable alternative for Cox semi-parametric 
model in modeling this transition rate (Figure 5). Akaike 
information criterion confirms these results too. Based on 
this criterion, Log-logistic model in modeling transition 
rate state 1"state 2, Gompetrz in modeling transition rate 
state 1"state 3 and Log-normal in modeling transition rate 
state 2"state 3 are the best models (Table 1).
 

Figure 4. The Cox-Snell Residuals in the Considered 
Cox Proportional Hazard and Parametric Models 
in Modeling Transition Rate state 1" state 3
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Figure 3. The Cox-Snell Residuals in the Considered 
Cox Proportional Hazard and Parametric Models in 
Modeling Transition Rate state 1"state 2
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Table 1. The Comparison Results of the Akaike 
Information Criterion (AIC) between the Cox 
Proportional Hazard and Parametric Models
Models	 state 1"state 2	 state 1"state 3	 state 2"state 3

Cox 	 414.2	 1884.5	 231
Exponential	 293.9	 809.7	 163.3
Weibull	 290.4	 807.8	 162.4
Log-logistic	 285.5	 808	 161.8
Log-normal	 290	 863.9	 160.5
Gompertz	 294	 805.5	 163.8
Gamma	 288.8	 809.7	 161.3

Discussion

Most cancer researchers tend to use Cox semi-
parametric model rather than parametric models in 
modeling transition rates among different states in a 
multi-state model. A systematic review on cancer journals 
indicates that only 5% of studies in which Cox model has 
been used for modeling transition rates among different 
states, investigated the required assumptions for this 
model(Altman et al., 1995). The absence of proportional 
hazards assumption causes the estimations of transition 
rates among different states to be unreliable and biased. 
Moreover, studies conducted in this scope demonstrate 
that either proportional hazards assumption is made or 
not, parametric models are more efficient (Orbe et al., 
2002; Patel et al., 2006). Therefore, parametric models 

such as exponential, Weibull, log-normal, log-logistic, 
Gompertz and gamma can be better choices in such 
situations. Considering a particular statistical distribution 
for time to the occurrence of next state and requiring no 
assumption of proportional hazards (PH), these models 
provide fitness for data.

A major objective of this paper is to investigate the 
comparative performance of Cox semi-parametric and 
parametric survival models in modeling transition rates 
of multi-state models. So, in this study the results of 
Cox semi-parametric model and parametric models were 
compared in modeling transition rates of a multi-state 
model with three states of patient’s being alive without a 
relapse (state 1), relapse (state 2) and death (state 3). To 
assess these models, Akaike information criterion (AIC) 
and Cox-Snell residuals were used. The analysis of Cox-
Snell residuals for all probable transitions among states 
revealed that parametric models had better fitness. This 
finding is consistent with the findings obtained from most 
studies carried out on patients with gastric cancer (Orbe 
et al., 2002; Nardi and Schemper, 2003; Dehkordi, 2007; 
Pourhoseingholi et al., 2007). In the meanwhile, Log-
logistic, Gompertz, and Log-normal were suitable choices 
for modeling transition rate state 1"state 2, modeling 
transition rate state 1"state 3, and modeling transition 
rate state 2"state 3, respectively. In addition, the analysis 
of models based on Akaike information criterion also 
confirmed the results obtained from Cox-Snell residuals 
(Table 1).

Although most researchers in medical and cancer 
fields have made use of Cox semi-parametric models 
in modeling transition rates of a multi-state model into 
account, results of parametric models have often been 
more reliable and have had less bias. As parametric models 
do not need proportional hazards assumption (PH) in 
similar situations and they consider a specific statistical 
distribution for time to the occurrence of next state, they 
have a better fitness. Parametric models will also be 
credible alternatives to Cox semi-parametric model where 
proportional hazard assumption is not made. In addition, 
fully parametric models may offer some advantages. 
Based on asymptotic results, parametric models lead to 
more efficient parameter estimates than Cox model. With a 
decrease in sample sizes, relative efficiencies may further 
change in favor of parametric models. When empirical 
information is sufficient, parametric models can provide 
some insights into the shape of the baseline hazard. 
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