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Introduction

 Gastric cancer is one of the most common causes of 
cancer deaths all over the world. Every year, more than 
930 thousand new cases are reported throughout the world 
and more than 700 thousand people die from this type 
of cancer (Parkin et al., 2005). According to the latest 
statistics of Iran Cancer Research Center, gastric cancer is 
the most common cancer among Iranian men and the third 
most common cancer among Iranian women after breast 
cancer (Mohagheghi, 2004; Mohagheghi et al., 2009; 
Mousavi et al., 2009; Razavi et al., 2009).  One of the most 

and prompt treatment for the patients with gastric cancer 
is the survival rate increase especially the 5-year survival 
rate. Unfortunately, more than 80% of patients with gastric 
cancer are diagnosed at a stage when common treatments 
such as gastrectomy, chemotherapy, or radiation therapy 
are not effective in increasing the patients’ survival 
(Sadighi et al., 2005; Samadi et al., 2007; Sadighi et al., 
2008; Association, 2011). For this reason, the 5-year 
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survival rate is low in patients with gastric cancer after 
surgery. The increase in these patients’ survival after 
surgery requires using models which could provide a 
closer examination on the behavior of variables so that it 
will better describe the natural process of the disease and 
will provide the researchers with more accurate data.
 A group of statistical models designed to accomplish 
this purpose is the multi-state model. According to this 
model, patients experience different states (save for death 
event) during the study from the beginning to death event. 
The time reaching each state and factors affecting its 
occurrence play a fundamental role in patients’ survival. 
Considering these states (often called intermediate events) 
has developed a novel approach in survival studies, 
because the natural process of disease in such cases can be 
considered as a stochastic process in which patients can be 
placed in various states throughout the study. Generally, a 

process in which people are transmitted in a continuous 
time among a discrete set of states. 
 Standard models of survival are the simplest of multi-



Ali Zare et al

442

state model. In these models, the patient is “Alive” at the 
beginning of the study and then his/her state may change to 
“Death”. This is the only transition which is considered for 
patients during the study. This transition can be illustrated 
(Figure 1).
 Models more complex than two-state, provide the 
patients with the probability of more transitions during the 
study. These models are used when the initial state of the 
patient, i.e. “being alive”, is itself divided into two or more 
other states. The number of division depends on the type 
of disease. In the process of gastric cancer, the survival 
time of patient is recorded since the time the patient has 
undergone surgery. After surgery the patient enters the 
study and is subjected to death hazard. In these studies, the 
occurrence of death and relapse are considered as the end 
point of the study and the intermediate even respectively. 
This modeling is schematically shown in Figure 2.
 There are three transitions for patients during the study 
in the above model: i) Death hazard without a relapse 
(state 1 state 3); ii) Relapse hazard (state 1 state 2); iii) 
Death hazard with a relapse (state 2 state 3).
 To define a multi-state model, it is necessary to 
determine the transition rate among states. This transition 
rate for the transition from state r to state s
follows: q

rs
(t, H(t))=l

t
i m

0    
p(X(t+ t)=s| X(t)=r, H(t))/ t

 In this equation H(t) is an indicative of the history 
of the process up to time t. Most researchers consider 
assumptions like Markov or time homogeneity in order 
to model transition rates. These assumptions can make 
the multi-state model simpler, but if these assumptions 

hence incorrect inferences. In the following they will be 
discussed in some depth.

transition rates in multi-state models. Based on Markov 
assumption, forecasting the future of the process is only 
dependent on the current state of the process and there is 
no need to the history of the process up to time . According 
to this assumption, the transition from state r to state s can 

q
rs
(t, H(t))=l

t
i m

0    
p(X(t+ t)=s| X(t)=r/

t

 Thus, the transition rate can change over time, but it is 
not dependent on the past and the history of the process. 
One of the most important medical data which can be 
considered as the history of the process is sojourn time 
of the process in a particular state. Therefore, based on 
Markov assumption the transition rate from state r to state   
is not dependent on sojourn time of the process in r state. 

Now, suppose that the r state is related to the relapse and 
the s state is related to the absorbing state of death. It 
cannot be expected that death occurrence in patients who 
have had relapse in a short time and have then experienced 
death event be the same as patients who have remained in 
this state for a longer time and have then experienced the 
death event. For this reason, applying Markov assumption 
is not reasonable for medical studies and cancer and 

fundamental assumption. The special feature of Markov 
model is that the maximum likelihood function for a 
sequence of discrete observations is easily obtained 
and it often has a closed form. But if this assumption is 

suitable and exhaustive test. It should be mentioned here 
that the proposed methods for evaluating this assumption 
are few and minor. Most of presented methods have 

exact times of transitions among the states. Then, based 
on these estimated times, a test for Markov assumption 
has been designed. Assessing Markov assumption in 
these methods is based on the effect of sojourn time 
of the process in former states on the transition rate to 
latter states. In this method, of course, the precision and 
accuracy of results is based on the precision of transition 
times among states because observing states occurrence of 
in a multi-state model occur often in optional times (Kay, 
1986; Pérez-Ocón et al., 2000). In these models the exact 

which in turn can affect the results. Other methods have 
also been presented to assess Markov assumption which 

such as progressive model; or have been designed just for 
right-censored data; or even require regular time intervals 
between observations (Peto and Peto, 1972; Foulkes and 
De Gruttola, 2003; Healy and Degruttola, 2007).
 Another assumption which is usually considered for 
multi-state models is the time homogeneity assumption. 
Based on this assumption transition rate from state r to 
state s is not dependent on time. 
 In other words, the transition rate from state r to 
state s is constant over time. Various methods have 
been developed to assess this assumption (Faddy, 1976; 

One is the process which is homogeneous with time and 
transition rate from state r to state s is not dependent on 
time. The other process is dependent on time with time 
varying transition rate. The latter process uses statistical 
tests such as score test and likelihood ratio to assess 
time homogeneity assumption. One of the limitations of 
these methods is transition rate modeling among states 

modeled transition rates as the additive model and others 
have used multiplicative models to model transition 
rates. In both forms score tests can be used to test time 
homogeneity assumption (De Stavola, 1988; Gentleman 
et al., 1994). 
 Among other widely used methods to assess this 

Figure 1. Standard Models of Survival 
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assumption the most common is piecewise constant 
model (Faddy, 1976; Saint-Pierre et al., 2003; Titman, 
2008; Titman and Sharples, 2010a). In this method, the 
transition rates among states are modeled as piecewise 
constant. This method is general and exhaustive to assess 
time homogeneity, however, in this method the number 
of points and intervals in which the transition rates is 

of this method is highly dependent on selected points. 
Some algorithms, of course, have been designed to select 
these points based on the maximum likelihood function 
(Chen et al., 1999; Mathieu et al., 2005; Ocañ-Riola, 
2005). But as the number of observations per person 
increases, the application of these methods is limited 
(Chen et al., 1999). This is why most researchers tend to 
use the following issues to select these points: i) clinical 
indications (Sharples et al., 2001); ii) investigating the 
model of empirical hazard function (Pérez-Ocón et al., 
2001); and iii) selecting points so that the number of 
observations becomes equal (Kay, 1986). 
 Although Markov and time homogeneity assumptions 
make the multi-state model simpler, they will lead to 

in case these assumptions are not held. Models which 
have been presented to assess the assumptions of a 
multi-state model, on the other hand, have practically 
many limitations. These limitations are either related to 
the presented method for assessing the hypotheses or are 

Therefore, this study aims to present exhaustive methods 
to assess these hypotheses based on Cox-Snell residuals, 
Akaikie information criterion, and Schoenfeld residuals 

models nor to a special censoring mechanism but of course 
applicable to all statistical softwares. 

Materials and Methods

 In this study, 330 patients with gastric cancer with 
the following data were studied: i) the patients had been 
hospitalized and had undergone surgery from 1995 to 
1999 in surgical wards of Cancer Institute of Iran; ii) 
they had records in the archives of the hospital, and 

available for subsequent follow-up. The survival time of 
patients was determined after surgery and those patients 
who were still alive at the end of study period or the 

period were considered right censored. To investigate the 
disease process and to assess the common hypotheses of 
multi-state models, a model with three states of patient’s 
being alive without a relapse (state 1), relapse (state 2) 
and death (state 3) was considered. Moreover, to assess 
Markov and time homogeneity assumptions in relapse 
(state 1 state 2), death hazard without a relapse (state 
1 state 3) and death hazard with a relapse (state 2 state 
3), demographic variables such as age (at the time of 
surgery), sex, and smoking history; clinical data of the 
disease including tumor location (Cardia - Anterior - 
other), type of pathology (Adenocarcinoma - other), 

disease stage (I-II-III-IV) (American Joint Committee on 
Cancer, 2002), location of metastases (lymph nodes - liver 
- other), the type and extent of gastrectomy (T.G-S.G-D.G-
PT.G-PX.G); and post-surgical and treatment variables 
including number of renewed treatments (chemotherapy 
- radiotherapy - surgery or a combination of them) were 
used.
 In multi-state model, the change in states is independent 
of the past and the sojourn times are independent in 
different states, so the only factor which affects Markov 
process (the process of being Markov) is the type of 
process sojourn in each state. In other words, the sojourn 
time distribution has an integral role in model’s Markov 
process (process of being Markov). For example, if the 
transition rate from state r to state s is to have Markovian 
features, it is necessary that the time in which the process 
stops (is in sojourn) in r state have an Exponential 
distribution. Therefore, one of the methods used to test 
Markov assumption is the assessment of sojourn time 

time of the process in a state is usually considered from 
entrance time to that state to entrance time to the next state. 
A wide range of statistical distributions can be regarded 
for this time duration including: Exponential, Weibull, 
Log-normal, Log-logistic, Gompertz, and Generalized 
gamma. 
 But the main issue is the assessment of a suitable 
distribution for the sojourn time because if this time 
duration has exponential distribution, it will be suggestive 
of holding Markov assumption in transition at hand. So 
Cox-Snell residuals and Akaikie information criterion 
were used to assess a suitable distribution for the sojourn 
time in the states of a multi-state model and Markov 
assumption accordingly. Cox-Snell Residuals is a 

distributions; the less deviation of residuals from the 

(Weissfeld and Schneider, 1990; Escobar and Meeker Jr, 

and Prentice, 2011). Graphical methods are often 
associated with optical illusion. For a better judgment, 
thus, Akaikie information criterion can be used along with 
Cox-Snell residuals. Akaikie information criterion is used 

and the smaller it is, the better it will be (Akaike, 1998; 
Collett, 2003; Klein and Moeschberger, 2003; Klein and 
Zhang, 2005). AIC for the distributions used in this study 
has been calculated according to the following equation: 
AIC=-2 log(likelihood)+2(p+k)

 In which p is the number of parameters in the model 
and k is a constant coefficient which has been used 
depending on the type of model. For example, k=1 is 
for the exponential distribution and k=2 for Weibull 
distribution (Klein and Moeschberger, 2003). The 

will be. Besides, the following criterion has been used 

exponential distribution instead of the optimal distribution 
(Akaike, 1980; 1998; Anderson, 2008).

G=exp(AIC
min

-AIC
exponential

/2)

 In which AIC
min

 is the value of Akaikie information 
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criterion for the best distribution and AIC
exponential

 is the 
value of Akaikie for Exponential distribution. Based 
on this criterion, if the data goodness of fit rate of 
Exponential distribution is high, Markov assumption 
can be consistently accepted while the low rate of data 

held.
 As it was mentioned earlier, transition rates among 
states will not be dependent on time and will remain 
constant over time if time homogeneity assumption is 
taken into account in multi-state models. In other words, 
the transition rate from state r to state s is constant over 
time. There is a close relationship between transition 
rates modeling and time homogeneity assumption in 
multi-state models. Because in this state the transition 
rate is a function of covariates effects and the constancy 
of transition rate with the time is equal to the constancy of 
covariates effects over time. The most common statistical 
model for modeling the transition rates of a multi-state 
model is the semi-parametric Cox model. In this model 
the transition rate is a function of the covariates effects 
in Cox regression model. Based on semi-parametric Cox 
model, modeling is as follows: q

rs
(Z(t))=q(0)

rs 
exp( T

rs  
Z(t))

 In this model q(0)

rs 
 is the baseline transition rate, T

rs
 is the 

Z(t) is the vector of 
covariates in transition from r state to s state. Therefore, 
the assessment of time homogeneity assumption in 
each transition is equal to holding proportional hazards 
assumption in modeling that transition. Ergo, proportional 
hazard assessment in each transition can be considered as 
a method to evaluate the time homogeneity assumption. 
Different methods have been designed to assess this 
assumption which are mostly graphical and are mainly 
based on Score and Schoenfeld residuals (Klein and  
Moeschberger, 2003; Klein and Zhang, 2005). However, 
applying methods which are based on statistical test and 
provide making judgments about holding this assumption 
is always preferred. One of the methods designed to 
achieve this aim is a statistical test based on Schoenfeld 
residuals (Grambsch and Therneau, 1994). This method 
can be performed with any censoring mechanism and 
is not limited to a particular type of multi-state models 
(Klein and Zhang, 2005; Jackson, 2011). In this study, 
thus, we used this method which is run-able in most 
common statistical softwares to assess time homogeneity 
assumption of the process in each transition rate. All 
analyses in this study were carried out with STATA11 and 

for this test.

Results 

 
assumption in three transition rates of relapse (state 

1 state 3), death hazard without a relapse (state 1 state 2) 
and death hazard with a relapse (state 2 state 3) showed 
that in case of a relapse (state 1 state 2), Log-logistic 
among statistical distributions is more appropriate for 
sojourn time in state 1 (Figure 3). The analysis results 
of these residuals for death hazard without a relapse 
(state 1 state 3) also revealed that among statistical 

distributions, Gompertz is more appropriate for sojourn 
time in state 1 (Figure 3). Moreover, these analyses 
indicated that for death hazard with a relapse (state 2 state 

3) Log-normal distribution is appropriate for sojourn time 
in state 2 (Figure 3).

these results. Based on AIC, Log-logistic model is the 
appropriate distribution for the sojourn time of state 1 
in transition rate state 1 state 2, Gompertz model is the 
appropriate distribution for the sojourn time of state 1 in 
transition rate state 1 state 3, and Log-normal model is 
the appropriate distribution for the sojourn time of state 2 
in transition rate state 2 state 3 (Table 1). Furthermore, 
the comparison of Akaikie information criterion of 
exponential distribution with the most appropriate 

Figure 3. The Analysis of Cox-snell Residuals for 

Markov Assumption in Modeling Transition Rates
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distribution for sojourn time in each transition suggests 

distribution for sojourn time (Markov assumption) in 
transitions of relapse (state 1 state 2), death hazard 
without a relapse (state 1 state 3) and death hazard with 
a relapse (state 2 state 3) were1.5, 12.2, and 24.7 percent 
respectively.
 The analysis of time homogeneity assumption based on 
Schoenfeld residuals test in all transitions of a multi-state 
model and for all of the variables which have been used in 
modeling also showed that for relapse (state 1 state 2) and 
for death with a relapse (state 2 state 3) this assumption 
is held. But for death without a relapse (state 1 state 3) 
time homogeneity assumption is not held. In addition, 
further analyses on covariates in each transition show 
that in relapse (state 1 state 2) and death with a relapse 
(state 2 state 3) transitions, this assumption is held for the 
general model as well as for each of the variables used in 
modeling. But for death without a relapse transition (state 

1 state 3), this assumption is not held for the general 
model; neither is it for the variable of ‘number of renewed 
treatments’ (Table 2).

Discussion

The multi-state model is an appropriate model to 
study cancers, like gastric cancer, which have a high 
rate of mortality. These models provide the possibility 
of a closer analysis of variables behavior and based on 

therefore provide researchers with more detailed and 
accurate data. But reaching this objective requires holding 

assumptions such as Markov and time homogeneity. These 
assumptions can make the multi-state model simpler, but 

model hence incorrect inferences. There are, of course, a 
number of methods designed to assess the assumptions of 
a model which have many limitations in practice. These 
limitations are either related to the method presented to 
assess the assumptions or are limited to a special type of 
the data: right censoring, for instance, or a special type of 
multi-state models: e.g. progressive model (Faddy, 1976; 

1988; Gentleman et al., 1994; Chen et al., 1999; Pérez-
Ocón et al., 2000; Pérez-Ocón et al., 2001; Foulkes and De 
Gruttola, 2003; Healy and Degruttola, 2007). The present 
study, thus, attempted to present exhaustive methods for 
assessing these assumptions based on Cox-Snell residuals, 
Akaikie information criterion, and Schoenfeld residuals 
which are not limited to a special type of multi-state 
models and censoring mechanism and are applicable to 
most statistical softwares. To assess these assumptions, 
a multi-state model with three states of patient’s being 
alive without a relapse (state 1), with a relapse (state 2) 
and death (state3) was considered. The assessment of 
Markov assumption based on Cox-Snell residuals (Figures 
3) and Akaikie information criterion (Table 1) showed that 
among statistical distributions Log-logistic distribution for 
sojourn time in state 1, Gompertz distribution for sojourn 
time in state 1, and Log-normal distribution for sojourn 
time in state 2 were the most appropriate distributions for 
transition rates of relapse (state 1 state 2), death hazard 
without a relapse (state 1 state 3) and death hazard with 
a relapse (state 2 state 3

may seem reasonable that the Exponential distribution is 
not appropriate for sojourn time and therefore Markov 

of taking Exponential distribution into account for the 
sojourn time (Markov assumption) in transition rates of 
relapse (state 1 state 2), death hazard without a relapse 
(state 1 state 3) and death hazard with a relapse (state 

2 state 3) are 1.5, 12.2, and 24.7 percent respectively. 

relapse (state 1 state 2), when considering exponential 
distribution for state 1, is 1.5 percent only, it can be 
concluded that Markov assumption is not only held 
for this transition. As the relative rates of goodness of 

time (Markov assumption) for death hazard without a 
relapse (state 1 state 3) and death hazard with a relapse 
(state 2 state 3) transitions were 12.2 and 24.7 percent 
respectively, Markov assumption can be accepted in these 

is, of course, a dearth of studies conducted in this scope 
and a criterion cannot be simply presented for goodness of 

considered the criterion of 5%. In other words, if sojourn 
time of exponential distribution is taken into account 

assumption can then be accepted for the focused transition.  
The analysis of time homogeneity assumption based 

on the results of Schoenfeld residuals test (Table 2) 
also revealed that this assumption—with regard to the 

Table 1. The Results of the Akaike Information 

Criterion (AIC) for Assessing Markov Assumption in 

Transition Rates

Models state 1 state 2 state 1 state 3 state 2 state 3

Exponential 293.9 809.7 163.3
Weibull 290.4 807.8 162.4
Log-logistic 285.5 808.0 161.8
Log-normal 290.0 863.9 160.5
Gompertz 294.0 805.5 163.8
Gamma 288.8 809.7 161.3

Table 2. The Analysis of Time Homogeneity Assumption 

Based on Schoenfeld Residuals Test in Transition Rates

Variables state 1 state 2 state 1 state 3 state 2 state 3
 statistic   p value statistic   p value statistic   p value

Sex -0.24 0.11  0.02 0.71 -0.26 0.11
Age -0.11 0.45 -0.00 0.98 0.12 0.32
Smoking history 0.10 0.50  0.00 0.98 0.06 0.61
Type of pathology 0.01 0.93 -0.07 0.27 -0.01 0.94
Tumor location 0.08 0.56 -0.04 0.59 -0.12 0.37
Number of renewed treatments
 0.19 0.30 0.45 <0.001   0.02 0.89
Disease stage -0.22 0.18 0.06 0.40  0.04 0.77
Lymph node metastases
 -0.12 0.44 0.12 0.08  0.00 0.98
Liver metastases -0.17 0.15 0.08 0.28 -0.05 0.73
Distance metastases -0.04 0.78 0.04 0.55  0.12 0.42
Type and extent of gastrectomy
 -0.10 0.47 -0.01 0.88  0.12 0.43
Global test  0.45  <0.001  0.71
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general test and for each of the variables of model— is 
held only for relapse (state 1 state 2) and death hazard 
with a relapse (state 2 state 3). The only variables which 
prevents this assumption being held in death hazard 
without a relapse (state 1 state 3) transition, is the 
‘number of renewed treatments’.

In the absence of the basic assumptions such as 
Markov and time homogeneity in multi-state models, 
many alternatives have been proposed. In cases where 
Markov assumption is not held, using non-Markov and 
semi-Markov models (Chen and Tien, 2004; Ruiz-Castro 
and Pérez-Ocón, 2004; Kang and Lagakos, 2007; Meira-
Machado et al., 2009; Foucher et al., 2010; Titman and 
Sharples, 2010b; Titman, 2012), and in cases where time 
homogeneity assumption is not held, constructing models 
of transition rates as time-dependent, based on parametric 
models; or constructing models based on piecewise 
constant models have been proposed as alternatives (Omar 
et al., 1995; Pérez-Ocón et al., 2001; Hsieh et al., 2002; 
Mathieu et al., 2005; Ocañ-Riola, 2005; Meira-Machado 
et al., 2009; Titman, 2011). But, generally, using each of 
these generalizations requires assessing Markov and time 
homogeneity assumptions because if these assumptions 
are held, it will be inappropriate to use more complicated 
models. On the other hand, applying a multi-state model 
using Markov and time homogeneity assumptions where 

the model to the data hence incorrect inferences.  
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