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Introduction
 Cancer accounts for approximately 20% of all cause 
specific mortality in the world (WHO, 2013a). Cancer 
has been identified as the predominant cause of death in 
developed nations and is also the second most common 
cause of death in developing nations due to limited 
resources (Jemal et al., 2011).
 Nearly 32.6 million people were diagnosed with 
cancer in the past 5 years prior to 2012. In the same year, 
14.1 million were diagnosed as new cancer cases, and an 
estimated 8.2 million people died due to cancer. Among 
these, female breast cancer accounted for nearly 522,000 
deaths and 1.67 million new cases. Responsible for nearly 
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Abstract

 Background: Race and ethnicity are significant factors in predicting survival time of breast cancer patients. In 
this study, we applied advanced statistical methods to predict the survival of White non-Hispanic female breast 
cancer patients, who were diagnosed between the years 1973 and 2009 in the United States (U.S.). Materials 
and Methods: Demographic data from the Surveillance Epidemiology and End Results (SEER) database were 
used for the purpose of this study. Nine states were randomly selected from 12 U.S. cancer registries. A stratified 
random sampling method was used to select 2,000 female breast cancer patients from these nine states. We 
compared four types of advanced statistical probability models to identify the best-fit model for the White non-
Hispanic female breast cancer survival data. Three model building criterion were used to measure and compare 
goodness of fit of the models. These include Akaike Information Criteria (AIC), Bayesian Information Criteria 
(BIC), and Deviance Information Criteria (DIC). In addition, we used a novel Bayesian method and the Markov 
Chain Monte Carlo technique to determine the posterior density function of the parameters. After evaluating 
the model parameters, we selected the model having the lowest DIC value. Using this Bayesian method, we 
derived the predictive survival density for future survival time and its related inferences. Results: The analytical 
sample of White non-Hispanic women included 2,000 breast cancer cases from the SEER database (1973-2009). 
The majority of cases were married (55.2%), the mean age of diagnosis was 63.61 years (SD = 14.24) and the 
mean survival time was 84 months (SD = 35.01). After comparing the four statistical models, results suggested 
that the exponentiated Weibull model (DIC= 19818.220) was a better fit for White non-Hispanic females’ breast 
cancer survival data. This model predicted the survival times (in months) for White non-Hispanic women after 
implementation of precise estimates of the model parameters. Conclusions: By using modern model building 
criteria, we determined that the data best fit the exponentiated Weibull model. We incorporated precise estimates 
of the parameter into the predictive model and evaluated the survival inference for the White non-Hispanic 
female population. This method of analysis will assist researchers in making scientific and clinical conclusions 
when assessing survival time of breast cancer patients. 
Keywords: Breast cancer survival data - statistical probability models - Bayesian inference - predictive inference
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14.3% of all cancer related deaths worldwide, breast 
cancer is also the most fatal cancer among females aged 
between 20-59 (Ferlay et al., 2013; WHO, 2013b).
 Globally, the projections for new breast cancer cases 
in the year 2020 indicate an increase of 18%; and in the 
United States, a 14.4% increase is projected (Ferlay et al., 
2013). It has been suggested that during the year 2000 
to 2009, the overall annual percentage change (APC) 
in breast cancer incidence has increased in the U.S. For 
women aged 40-49, most racial and ethnic groups showed 
an overall APC increase of 1.1% (p<0.001) (Hou and Huo, 
2013).
 Breast cancer incidence is increasing among women 
in the U.S. In the year 2012, an estimated 226,870 new 
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breast cancer cases and 39,510 deaths occurred due to 
the breast cancer (ACS, 2013; Siegel et al., 2014). In 
the year 2010, breast cancer patients in the U.S. spent 
around $16.5 billion in care and medical services; which 
is approximately 13% of the total estimated national 
expenditure on cancer care. It is projected that this figure 
will reach $23.34 billion in the year 2020, and is going 
to be the second largest expenditure in medical care for 
cancer (Mariotto et al., 2011; Montero et al., 2012). About 
14% of women in the U.S. are expected to develop breast 
cancer in their lifetime and the associated costs of care will 
affect their survival (ACS, 2013). Among these women, 
breast cancer affects ethnicities at different rates (DeSantis 
et al., 2011). A higher incidence of 417 cases per 100,000 
is reported among White females compared to other racial 
groups (White et al., 2013).
 The survival of breast cancer patients also depends 
on factors such as genetics, age at diagnosis, stage of the 
cancer, access to care, weight, physical activity status, 
alcohol consumption, disease co-morbidities, social, 
economic, environmental factors, and ethnicity (Graeser 
et al., 2009; Kwan et al., 2010; Protani et al., 2010; Peairs 
et al., 2011; Sprague et al., 2011; ACS, 2013). Screening 
guidelines have also evolved based on the research 
findings correlating breast cancer-screening and survival 
times. Presently, it is recommended that women between 
ages 20 to 39 complete a clinical breast examination (CBE) 
every 3 years. Those who are asymptomatic but aged 40 
years or older are recommended to receive CBE every 
year (Robertson et al., 2011; Smith et al., 2013). Women 
who have a history of breast cancer in their families should 
start screening on a regular basis before age 40. The 
most recognizable signs and symptoms of breast cancer 
often appear in the later stages of the disease, making it 
imperative to detect, diagnose, and treat breast cancer 
early (Walker et al., 2013).
 The Centers for Disease Control and Prevention 
(CDC) has identified that between the years 1999-2010, 
White women accounted for the highest incidence of 
breast cancer and the third highest mortality rates from 
the disease (CDC, 2012). However, White women have 
a higher five-year survival rate when compared to other 
racial groups. Death rates among White women have 
declined 2% from 1997 to 2007; this decline is not found 
in other racial or ethnic groups (DeSantis et al., 2011). 
Research shows that White women, older than age 40 had 
higher rates of breast cancer compared to black women in 
the same age group (Clarke et al., 2012).
 According to the American Cancer Society, the 
incidence of age-adjusted breast cancer vary greatly from 
state to state for example, they may range from 47.79 cases 
per 100,000 in Connecticut to 20.25 cases in rural Georgia, 
the death rates range from 27.6 per 100,000 in Alaska to 
17.5 per 100,000 in New Hampshire (ACS, 2013). The 
contrast in incidence and mortality rates among race, 
ethnicity and other determinants demonstrate a need for 
statistical modeling to predict the survival times. Patients 
diagnosed with breast cancer, visit clinics, healthcare 
units, and hospitals to receive modern treatments to 
improve their prognosis. Advancements in modern 
technology are able to help patients determine survival 

days. In addition, there is a huge demand for new uses of 
statistical analyses in order to facilitate new discoveries, 
diagnosis, and treatment planning.
 The objectives of this paper are: i) to analyze 
demographic variables of the selected sample; ii) to 
demonstrate that the breast cancer survival data follows 
a specific probability model by using model selection 
criterions for goodness of fit tests; iii) to perform the 
Bayesian analysis of the posterior distribution for the 
parameters; and iv) to derive Bayesian survival inference 
for future times by using the best fit model. 

Materials and Methods
 We used breast cancer data (N=657,712) from 
Surveillance, Epidemiology and End Results website 
(SEER, 2010). The data contains information for breast 
cancer patients from 1973 to 2009, and covers 12 cancer 
registries among the 50 U.S. states. A stratified random 
sampling method was used to select nine of the 12 
available states to provide a representative sample of 
White non-Hispanic categories (Figure 1). The total SEER 
data included 4,269 males and 653,443 females. Among 
the 608,032 total females, 22,639 were White Hispanic, 
and 531,562 were White non-Hispanic. Men were not 
included in this study due to the small chance (0.70% of 
total patients) of breast cancer occurring within this group.

Selected patients and their demographic characteristics
 A random sample of 2,000 White non-Hispanic cancer 
cases was included in the data analysis representing nine 
states in the U.S. (Figure 1). Simple random sampling 
(SRS) methodology was used to select a representative 
sample of patients and to minimize selection bias.
 Health care professionals use various statistical 
probability modeling techniques to determine the 
prognosis of cancer patients. Often times the data stored 
in various cancer registries or databases are utilized. 
Survival data taken from these databases follow several 
statistical probability models, for example exponential, 
Weibull, Exponentiated Exponential (EE), Exponentiated 
Weibull (EW), Beta Generalized Exponential (BGE), Beta 
inverse Weibull (BIW) model, among others. For accurate 
predictions, it is imperative that the data fit the appropriate 
model. Different racial and ethnic groups may follow 
different distribution patterns and so it is important to use 

Figure 1. White Non-Hispanic Breast Cancer Cases 
(n=2,000) Randomly Selected from the Nine States 
(darker blue color represents the selected states)
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statistical methodologies to draw clinical inferences.
 Khan et al. (2014a), discussed in details four types 
of statistical probability models. These models include 
EEM, EWM, BGEM, and BIW, which were briefly used 
in this study. There are two parameters, shape (α>0) and 
scale (λ>0) for the EEM (Khan et al. 2014b). The Weibull 
model has three parameters, α>0 and β>0 are the shape 
parameters, and λ>0 is the scale parameter (Khan et al. 
2014c). The beta generalized exponential model has 
four parameters, where the shape parameter, α>0 and 
the scale parameter, λ>0, and additional two parameters, 
a>0 and b>0 are essential for varying tail weight and to 
present skewness (Barreto-Souza et al., 2010). The beta 
inverse-Weibull (BIW) model is another type of statistical 
probability model, where β is the shape parameter, and 
two extra parameters, a>0 and b>0, are used to introduce 
skewness and tail weight (Khan et al. 2014c, 2014d).
 In exploration of the posterior probability for the 
parameters from the EEM, BGEM, EWM and BIWM, 
an innovative Bayesian method may be used to achieve 
posterior inference. In the healthcare research field, 
Bayesian statistics have become more popular because 
of its use of parametric and model-based inference, 
and its applicability to clinical diagnostics, potentially 
improving the field of translational research. Data and 
model parameters are random variables in the Bayesian 
estimation technique; data is termed as “observed” and 
parameters are termed as “unobserved” variables. The 
joint distribution of the posterior parameters is determined 
by multiplication of the likelihood and prior. The 
likelihood relies on the model of underlying process given 
any values for parameters, it is measured as a conditional 
distribution that specifies the probability of the observed 
data. Prior and likelihood combine all the available 
information about the parameters, and manipulates the 
joint distribution in many ways and makes inference about 
the parameters given the data. Given a set of observed data, 
the Bayesian inference develops the posterior distribution 
for the parameters which allows population predictions 
when applied to datasets. For more information regarding 
Bayesian method and its inference, the readers are referred 
to other works (Khan et al., 2012a; 2012b; 2013a; 2013b).
 SPSS software (IBM SPSS, 2011) was used to gather 
descriptive statistics. Nine out of 12 states were used to 
extract data and a geographic map was drawn for White 
non-Hispanic women cases using the Google fusion 
table (Gonzalez et al., 2010). Mathematica version 8.0 
(Wolfram Research, 2012), an advanced computational 
software produced a graphical representation of the 
predictive density for a single future survival time for 
the selected sample. Furthermore, it was used to obtain 
additional predictive inferences for the survival times. To 
assess goodness of fit, summary results of the posterior 
parameters, and to execute related calculations WinBugs 
software (MRC Biostatistics Unit, 2013) was used.

Results 
 Frequency of the sample of breast cancer cases ranged 
from 366 (Connecticut) to 25 (Hawaii), and thus the 
percentage of White non-Hispanic females with breast 

cancer cases in the analysis varied from 1.3% to 18.3% 
for various states (Table 1). The second highest percentage 
of selected patients was observed from Washington and 
the next highest from Michigan.
 The quartiles for the mean age at diagnosis were 52, 
63, and 75 years, respectively (Table 2). The mean and 
median age at diagnosis were close and suggested an 
approximate normal distribution. The median survival 
time was 87 months and ranged between 38-160 months 
for White non-Hispanic females. The majority of the 
females in the analytical sample were married (55%).

Best fit survival model and its parameters
 Khan et al. (2014b) discussed in details about three 
model selection criteria; Akaike Information Criterion 
(AIC), Deviance Information Criterion (DIC), and 
Bayesian Information Criterion (BIC). The DIC, a measure 
of fit is widely used for the comparison of different models. 
The Markov Chain Monte Carlo (MCMC) method is 
used to attain the posterior distribution of parameters 
for the sample. The DIC values can be either positive 
or negative, however, the model with smaller values is 
considered better than those with larger values. As with 
DIC and AIC, the model containing the lower Bayesian 
Information Criterion (BIC) values is considered better 
between any two estimated models. Bayesian Information 

Table 2. Descriptive Statistics for White Non-Hispanic 
Breast Cancer Cases
Characteristics Categories White
  non-Hispanic

Age at diagnosis (years) Mean 63.31
 SD 14.24
 Median 63
 Range 15-104
 Quartile (Q1, Q2 and Q3) 52, 63 and 75
 Variance 202.74
Survival time (months) Mean 84.17
 SD 35.01
 Median 87
 Range 38-160
 Quartile (Q1, Q2 and Q3) 60, 87 and 118
 Variance 1225.5
Marital status at diagnosis Single 182
 Married 1103
 Separated 29
 Divorced 153
 Widowed 464
 Unknown 69

Table 1. Frequency Distribution of Nine Selected States 
for White Non-Hispanic Breast Cancer Cases
States White non-Hispanic female
 Frequency     %

Georgia 148 7.4
Hawaii 25 1.3
Iowa 278 13.9
Michigan 327 16.3
New Mexico 96 4.8
Utah 139 7
Washington 348 17.4
California 273 13.6
Connecticut 366 18.3

Total 2,000 100
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Criterion (BIC) is an asymptotic result assumed that the 
distribution of data is an exponential family.
 We used log-likelihood function of the models in 
WinBugs (MRC Biostatistics Unit, 2013) and applied 
them for White non-Hispanic survival data. The AIC, BIC, 
and DIC values are calculated and the summary results of 
the measures of goodness of fits are reported in Table 3.
 Table 3 consists of AIC, BIC, and DIC values for the 
EE, EW, BGE, and BIW models. Comparing the estimated 
values of all AIC, BIC, and DIC for the models, the EWM 
fits better for the survival times because it produces the 
smallest values of AIC and DIC.
 Table 4 presents the summary results (Mean, SD, MC 
Error, Median, and Confidence Intervals) of the parameters 
in the case of best-fit exponentiated Weibull model for 
White non-Hispanic female breast cancer cases.
 Figure 2 displays the graphical representation of the 
parameters. It is noted that all the parameters produced 
skewed distributions. Parameter values when plotted 
showed that alpha and beta are negatively skewed, and 
lambda is positively skewed. The range (95% CI) of these 
parameter values are described in Table 4. After 50,000 
iterations, the kernel density appears smoothened.
 

Table 4. Summary Results of the Posterior Parameters 
in the Case of Exponentiated Weibull for White Non-
Hispanic Females Breast Cancer Cases (n=2,000; 
sample=50,000)
Node Mean SD MC error Median 95% CI

Alpha 7.25 0.1189 0.001082 7.28 (6.949, 7.385)
Beta 1.092 0.00643 1.74E-04 1.093 (1.076, 1.101)
Lambda 0.0189 5.34E-04 1.49E-05 0.01875 (0.01833, 0.02031)

Table 5. Future Inference Based on the EWM for White 
Non-Hispanic Breast Cancer Cases Survival Data
 Summary White non-Hispanic

 Mean 90.836
 Standard Error 0.860919
Raw moments m

1
 90.836

 m
2
 9733.54

 m
3
 1.214115106

 m
4
 1.737385108

Corrected moments m
1
 90.836

 m
2
 1482.36

 m
3
 60649.6

 m
4
 1.023165107

Skewness & Kurtosis b
1
 1.12925

 b
2
 4.65624

 g
1
 1.06266

 g
2
 1.65624

Survival intervals 90% (33.6239, 156.1253)
 95% (28.6290, 170.4252)
 98% (19.9019, 200.7740)
 99% (15.6533, 219.8770)

Survival inference
 We developed a predictive survival model using the 
results of the best-fit model to demonstrate the survival 
time of White non-Hispanic women with breast cancer 
patients. By using the values of model selection criterion 
found in Table 3, it is identified that the data follows the 
exponentiated Weibull model. Applying the Bayesian 
survival model, we assume the data set x=(x1, . . . , xn) 
represent n White non-Hispanic female breast cancer cases 
survival days that follow the exponentiated Weibull model, 
and let y be a future survival time, then following Khan et 
al. (2011), the predictive density of y given the observed 
White non-Hispanic survival data x, is given by p(y | x) = 
∫∫∫ p(y |α, β, λ) p(α, β, λ | x) dλ dβ dα, where, p(α, β, λ | x) is 
the posterior density function, and p(y | α, β, λ) represents 
the probability density function for a future survival time 
(y) that is defined from the best fit exponentiated Weibull 
model.
 Graphical representation of the predictive density is 
shown in Figure 3 based on the survival times of White 
non-Hispanic cases.
 Figure 3 presents the predictive survival density 
function. The predictive density (Figure 3) for the survival 

Figure 2. Kernel Density of the Posterior Parameters 
in the Case of Exponentiated Weibull for White Non-
Hispanic Females Breast Cancer Cases (n=2,000)

Figure 3. Predictive Density for White Non-Hispanic 
Female Breast Cancer Patient’s Survival Data

Table 3. Selection of the Models for White Non-
Hispanic Females on the Basis of AIC, BIC, and DIC 
Criterions
Model criterions AIC BIC DIC

Exponentiated exponential 19826.4 19837.001 19826.378
Exponentiated Weibull 19821.7 19838.102 19818.22
Beta generalized exponential 19828.5 19850.903 19824.524
Beta inverse Weibull  19866.3 19883.102 19860.298
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times appears to be unimodal and it is positively skewed, 
ranging from 28.629 to 170.4252 (95% CI).
 Table 5 contains summary statistics for future survival 
times of the patients. We identified that the survival times 
are higher for future patients compared with existing 
diagnosed patients. We obtained the raw and corrected 
moments for the survival inference for future White non-
Hispanic female breast cancer patients. Since Kurtosis is 
<3, we can assume that the future survival values follow 
a platykurtic distribution. The data points represent a flat 
distribution as compared to a normal distribution, which 
has a wider peak. Since Skewness is >0, majority of the 
data falls to the left of the mean, with extreme values to 
the right.

Discussion
For White non-Hispanic women diagnosed with breast 

cancer between the years 1973 to 2009 in the U.S., several 
statistical models were used to show the best-fit for the 
breast cancer survival data. The sample consisted of 2,000 
White non-Hispanic women; stratified random sampling 
was used at the state level and simple random sampling 
used within the nine states.

The Mean (SD), age (in years) at diagnosis for breast 
cancer cases was 63.31 (14.24), with age 15 being the 
minimum age at diagnosis for White non-Hispanic 
women. The highest mortality rates among women 
diagnosed with breast cancer are those that are 50 years 
or older (SEER, 2010). Survival time ranged from 38 to 
160 months, with a Mean (SD), 84.17 (35.01) months. 
The majority of these cases were married.

To speed up performance of the Bayesian posterior 
parameters and to draw their corresponding dynamic 
kernel densities, a reparameterization method was used 
for the exponentiated Weibull model. After running 50,000 
Monte Carlo repetitions reported with negligible MC 
errors we obtained posterior inference for the parameters.

Given the breast cancer survival model, we were able 
to determine the inference for posterior parameters using 
the Bayesian method. By using the Markov Chain Monte 
Carlo method, the inferences for the posterior parameters 
for the best-fit model are reported for White non- Hispanic 
females.

Based on the goodness of fit analysis, the breast cancer 
survival sample for White non- Hispanic women followed 
the exponentiated Weibull (EW) distribution. The lowest 
DIC value was 19818.220, indicating the best goodness 
of fit. In this case under the selection of EW distribution, 
Mean (SD) values for α, β, and λ are 7.25 (0.1189), 
1.092 (0.00643), and 0.0189 (5.34×10-4), respectively. 
The dynamic kernel density for each of the parameters is 
reported for White non-Hispanic females so that one can 
observe the shape of the kernel density. It was noticed that 
all parameters displayed skewed distributions.

In the case of the survival inference, the best fit 
statistical survival model and the Bayesian method were 
used to derive a predictive model for a single future 
survival time. A summary table for the predictive mean, 
standard error, and 95% future survival intervals are 
provided on the basis of the predictive density. According 

to the results, the shape of the future survival model for 
White non-Hispanic women is positively skewed.

Figure 3 shows the graphical representations of 
White non-Hispanic female future survival times using 
the exponentiated Weibull distribution in the Bayesian 
method. Higher survival times are identified for White 
non-Hispanic women compared to the existing survival 
times. For ethnicity, we report the predictive raw and 
corrected moments, predictive skewness, and kurtosis for 
future survival time in Table 5. The model is able to predict 
survival times accurately within 90%-99% confidence 
intervals while taking into account multiple parameters.

We identified a data-based statistical probability model 
from the 1973-2009 SEER database to demonstrate the 
effectiveness of predicting breast cancer survival data 
for White non- Hispanic women. Statistical probability 
models are important for posterior model parameters in 
order to predict survival times among ethnicity and for 
describing inferences for observations. To best determine 
a fitted model, methods for measuring the goodness of fit 
tests are imperative in the selection of the best statistical 
probability models for survival samples of ethnicity. AIC, 
BIC, and DIC model selection criterions were used to 
develop statistical probability model for ethnicity.

These findings will be beneficial to healthcare 
researchers and practitioners to aid in the prediction 
of a patient’s possible survival time given the patient’s 
current state and medical history. Therefore, the findings 
may work to improve knowledge, demonstrate scientific 
discovery, and innovation. This may improve the diagnosis 
and treatment of breast cancer cases within the United 
States and the world.
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