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Introduction

The most commonly diagnosed primary malignant 
tumor of the bone In humans is OSA. It is the third most 
frequent cause of cancer in adolescents and represents 
over 56% of all bone tumors. The estimated incidence rate 
worldwide is 4 cases per million people per year, with a 
bimodal age distribution with peaks at 15 to 19 years and 
70 years (Mirabello et al., 2009); approximately 60% of 
tumors occur in patients under 20 years of age, patients 
older than 60 years constitutes approximately 10% of the 
patient population. OSA has a high tendency to metastatic 
spread, eighty percent of all metastases arise in the lungs, 
especially the periphery of the lungs. Metastatic OSA 
exhibits resistance to conventional chemotherapy (Bacci et 
al., 2008; Bielack et al., 2008; Harting et al., 2006; Hughes, 
2009; Messerschmitt et al., 2009; Kager et al., 2003), 
more than 30% of them do not respond to chemotherapy 
(Mankin et al., 2004). Prognosis of non-metastatic 
OSA has improved dramatically since the invention of 
preoperative and postoperative chemotherapy in the 
1970s. Currently the five-year overall survival rate is 75% 
to 77% for patients diagnosed with primary nonmetastatic 
extremity OSA (Smeland et al., 2003; Ferrari et al., 2005). 
However, the prognosis for patients with metastatic OSA 
is poor with 5-year event-free survival (EFS) of no more 
than 20% (Mialou et al., 2004). 

In the pursuit of better treatment, recent years have 
witnessed exciting progress in the revelation of the nature 
and pathogenesis of OSA cells. The following discussion 
will focus on these important findings.

Progenitors of OSA Cells

Where does the OSA come from? The presence 
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of osteoid has led to the traditional viewpoint that the 
tumor is derived from osteoblasts. OSA has traditionally 
been believed to arise from an osteoblast, but the data 
supporting that assertion is rather limited (Dorfman et al., 
1995). Several lines of evidence suggest that OSA has a 
more pluripotent potential and may, in fact, arise from a 
more primitive precursor. Several studies have identified 
genetic and epigenetic changes that prevent normal 
osteoblastic differentiation from mesenchymal progenitor 
cells (Ritter et al., 2010; Hengartner, 2000; Barker et al., 
2006; Lin et al., 2006) as a major factor leading to the 
development of OSA (Weeraratna et al., 2002). It is also 
known that these tumors are capable of differentiating 
toward fibrous tissue, cartilage, or bone and can have 
chondroblastic, fibroblastic and osteoblastic components, 
suggesting that the cell of origin may be more pluripotent 
than an osteoblast (Dorfman et al., 1995). 

Regulation of Signal Pathways in the OSA

 Preoperative (neoadjuvant) plus postoperative 
(adjuvant) polychemotherapy should be preferred, because 
it allows preparation for safe surgery and preparation of the 
appropriate prosthesis for the individual patient (Ritter et 
al., 2010). Adjuvant therapies almost benefit the patients 
through affecting the apoptosis of OSA cells. Apoptosis 
is a programmed cell death event which occurs during 
embryogenesis, metamorphosis, endocrine-dependent 
tissue atrophy and normal tissue turnover. In multicellular 
organisms, it is responsible for development, tissue 
homeostasis, and the immune response via different signal 
pathways (Hengartner, 2000). 

The Wnt/catenin pathway is very important in OSA
Aberrant activation of Wnt signaling has been reported 
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in a variety of bone and soft-tissue sarcomas (Barker 
et al., 2006; Lin et al., 2006; Weeraratna et al., 2002; 
Wissmann et al., 2003). Haydon et al., (Haydon et al., 
2002) demonstrated that OSA harbors an accumulation of 
beta-catenin either in the cytoplasm or in the nucleus, a 
hallmark of Wnt signaling activation. The Wnt signaling 
pathway is initiated by a combination from 19 secreted 
Wnt ligands, 10 Frizzled receptors, and the co-receptor 
Lipoprotein Receptor-Related Protein 5/6 (LRP5/6). 
These ligand-receptor interactions then lead to activation 
of multiple intermediate Wnt effectors including beta-
catenin, JNK and calcium-channel regulators. The 
accumulation of beta-catenin in the cytoplasm and its 
translocation to the nucleus represent the hallmark of 
the canonical Wnt pathway activation. In the nucleus, 
beta-catenin forms a complex with lymphocyte enhancer 
factor/T cell factor family of transcription factors (LEF/
TCF) to activate many oncogenes, such as c-Myc, cyclin 
D1, metalloproteinases, c-Met, etc. Wnt/beta-catenin/
TCF activation are responsible for the FoxO3a mediated 
repression of syndecan-2, a key modulator of apoptosis 
and chemosensitivity in OSA cells (Dieudonne et al., 
2012), suggesting a role of Wnt signaling in chemotherapy 
resistance through  FoxO3a expression to modulate the 
activity of syndecan-2 and Wnt/beta-catenin/TCF together.

Secreted Wnt antagonists are divided into two classes 
according to their mechanisms of action. One class directly 
binds to Wnt ligands to cause inhibition and includes the 
sFRP family, Wnt inhibitory factor-1 (WIF-1) and Cerberus 
(Kawano et al., 2003). The second class including the Dkk 
family exerts inhibition by endocytosis of co-receptors 
LRP5/6 (Kawano et al., 2003). Several Wnt antagonists, 
including Frzb/sFRP3 and Dkk-3, function as tumor 
suppressors (Zi et al., 2005; Guo et al., 2008; Abarzua et 
al., 2005; Rubin et al., 2010; Gurney et al., 2012). WIF-
1 is a unique Wnt antagonist, structurally distinct from 
sFRP and Dkk families, which contains a WIF domain for 
Wnt binding activity and epidermal growth factor (EGF) 
repeats (Hsieh et al., 1999). The WIF domain has also 
been found in the Ryk orphan tyrosine kinase receptor (Lu 
et al., 2004). WIF-1 is down-regulated in a majority of 
OSA cell lines and tumor tissues through methylation of 
WIF-1 promoter and that WIF-1 re-expression markedly 
reduced both tumor growth rate and lung metastasis in 
mouse models of OSA by reducing MMP-9 and MMP-14 
protein expression (Rubin et al., 2010). 

Matrix metalloproteinases (MMPs) are a family 
of proteolytic enzymes that can degrade the ECM and 
facilitate cellular invasion and migration (Baldini et 
al., 1995). High MMP-9 expression was observed in 
pre-treatment OSA tumor samples and in a majority of 
metastatic lesions, leading to speculation that MMP-
9 expression is associated with the micrometastatic 
behavior of OSA (Himelstein et al., 1998). Membrane-type 
metalloproteinase (MT1-MMP), also known as MMP-14, 
has been shown to also play a critical role in metastasis 
(Itoh, 2006). MMP-9 and 14 are transcriptional targets of 
Wnt signaling (Wu et al., 2007) and have been correlated 
with poor disease-free survival in OSA (Foukas et al., 
2002; Kido et al., 1999; Heikkila et al., 2003; Uchibori 
et al., 2006). 

The role of GSK-3β/NF-kB activity in the differentiation, 
proliferation, and apoptosis of the OSA

Glycogen synthase kinase-3 plays a central role 
in at least four of these signaling pathways-the Wnt, 
Notch, Hedgehog, and nuclear factor-κB (NF-κB) 
pathways-with important roles in at least six more-the ras/
mitogen-associated protein kinase (RAS/MAPK), cyclic-
AMP, transforming growth factor-β/activin (TGF-β), 
phosphatidylinositol-3-kinase (PI3K), jun kinase/stress-
activated protein kinase (JNK/SAPK), and janus kinase/
signal transducer and activator of transcription (JAK/
STAT) pathways (James, 2012; McNeill et al., 2010). 

Glycogen synthase kinase-3β (GSK-3β), a serine/
threonine protein kinase, may function as a tumor 
suppressor or an oncogene, depending on the tumor type. 
Expression of active GSK-3β had an oncogenic effect on 
OSA cells. Silencing or pharmacological inhibition of 
GSK-3β resulted in apoptosis of OSA cells. Inhibition of 
GSK-3β resulted in inhibition of the NF-κB pathway and 
reduction of NF-κB-mediated transcription (Hoeflich et 
al., 2000). Similar results with other studies, combination 
treatments with GSK-3β inhibitors, NF-κB inhibitors, 
and chemotherapy drugs increased the effectiveness of 
chemotherapy drugs in vitro and in vivo (Tang et al., 2012). 
Patients whose OSA specimens had hyperactive GSK-3β, 
and nuclear NF-κB had a shorter median overall survival 
time (49.2 months) compared with patients whose tumors 
had inactive GSK-3β and NF-κB (109.2 months) (Tang 
et al., 2012). GSK-3β activity may promote OSA tumor 
growth, and therapeutic targeting of the GSK-3β and/or 
NF-κB pathways may be an effective way to enhance 
the therapeutic activity of anticancer drugs against OSA. 
However, NF-kB inhibitors could suppress the growth of 
OSA in U2OS cell lines but not in MG 63 cell lines, and 
that GSK-3β inhibition could enhance this effect both in 
vitro and in vivo (Rengan et al., 2012). Suggesting that 
we must pay more attention to the characteristics of the 
subtypes of OSA.

In addition to regulated by GSK-3beta, mammalian 
Rap1 forms a complex with IKKs (IκB kinases), and 
is crucial for the ability of IKKs to be recruited to, and 
phosphorylate, the p65 subunit of NF-κB to make it 
transcriptionally competent. Rap1-mutant mice display 
defective NF-κB activation and are resistant to endotoxic 
shock. Furthermore, levels of Rap1 are positively 
regulated by NF-κB, and human breast cancers with NF-
κB hyperactivity show elevated levels of cytoplasmic 
Rap1 (Hsiangling et al., 2010). 

Direct inhibition of NF-κB by expression of a dominant 
negative IκB mutant or siRNA to the p65 subunit of NF-
κB suppressed tumor cell growth, whereas silencing of 
IκB expression partially reversed the pro-apoptotic effects 
of lithium treatment (James, 2012). The nuclear factor-κB 
(NF-κB) transcription factor family has been considered 
the central mediator of the inflammatory process and a 
key participant in innate and adaptive immune responses. 
Coincident with the molecular cloning of NF-κB/RelA and 
identification of its kinship to the v-Rel oncogene, it was 
anticipated that NF-κB itself would be involved in cancer 
development. Oncogenic activating mutations in NF-κB 
genes are rare and have been identified only in some 
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lymphoid malignancies, while most NF-κB activating 
mutations in lymphoid malignancies occur in upstream 
signaling components that feed into NF-κB. NF-κB 
activation is also prevalent in carcinomas, in which NF-
κB activation is mainly driven by inflammatory cytokines 
within the tumor microenvironment. Importantly, 
however, in all malignancies, NF-κB acts in a cell type-
specific manner: activating survival genes within cancer 
cells and inflammation-promoting genes in components of 
the tumor microenvironment. Yet, the complex biological 
functions of NF-κB have made it an important therapeutic 
target.

CDKs play an import role in the pathogenesis of the OSA
Cyclin-dependent kinases (CDKs) are essential for cell 

cycle regulation and cell division. In the human OSA cell 
line U-2OS, combined depletion of CDK1 and CDK2 but 
not anyone alone by RNA silencing has been proved to 
arrest cells in G2-M phase and to induce apoptosis (Hu et 
al., 2001; Cai et al., 2006; Wei et al., 2011). 

In the past years, a number of CDKs inhibitors have 
become available for clinical use (Senderowicz, 2003). 
One of the most studied and promising of these inhibitors 
is roscovitine. Roscovitine is a purine analogue which 
binds to the catalytic subunit of kinase proteins that 
mainly targets CDK1 and CDK2 together with other 
CDKs (Senderowicz, 2003). Preclinical studies have 
shown a relevant efficacy of roscovitine in a broad range 
of human tumor cell lines (Senderowicz, 2003) and have 
also demonstrated positive interactions with conventional 
chemotherapeutic agents (Crescenzi et al., 2005; Lambert 
et al., 2008). Therefore, roscovitine appears to act both 
as an inhibitor of tumor cell growth and as an enhancer 
of conventional drug activity, with a consequent decrease 
of their toxicity to normal tissues and an increase of their 
therapeutic index. Toward the goal of developing new 
treatment options for OSA, the cyclin-dependent kinase 
(CDK) inhibitor SCH 727965 (SCH) was used to induce 
the apoptosis of several OSA cell lines including those 
resistant to doxorubicin and dasatinib.

Gene transcription requires the activity of CDK7 and 
CDK9. These CDKs phosphorylate the large subunit of 
RNA polymerase II (RNAP II) at distinct sites in its C 
terminus to facilitate promoter clearance (CDK7-cyclin 
H) and elongation of nascent transcripts (CDK9-cyclin 
T) (Wei et al., 2011; Dongpo et al., 2006). Cell-cycle 
progression requires the activity of CDK4 and CDK6 
(collectively referred to as CDK4/6), CDK2, and CDK1. 
CDK4/6 (with cyclin D1, D2 or D3) and CDK2 (with 
cyclin E) promote S-phase entry by phosphorylating and 
inactivating the retinoblastoma (Rb) protein; CDK2 (with 
cyclin A) and CDK1 (with cyclin A or cyclin B) propel 
cells through S phase and into mitosis, respectively (Chen 
et al., 1999; Santamarina et al., 2008; Scrace et al., 2008; 
Kim et al., 2011). SCH initiates the apoptosis of OSA by 
inactivating CDK1 and CDK2. The apoptotic proteins 
Bax and Bim accumulated in mitochondria-enriched 
fractions of SCH-treated cells, whereas amounts of the 
anti-apoptotic proteins Bcl-xL and Mcl-1 decreased (Wei 
et al., 2011). Suggesting that CDK inhibitors promote 
apoptosis by Bcl2-regulated mitochondrion cytochrome 

C releasing. Apoptosis induced by codepletion of CDK1 
and CDK2 was less than that induced by SCH (Wei et 
al., 2011). This may reflect inactivation of additional 
targets by SCH or the presence of residual amounts of 
CDK1 and CDK2 in depleted cells. CDK1 and CDK2 
can substitute for each other; thus, the need to suppress 
both to elicit apoptosis is not surprising. Suggesting 
that CDKs play an important role in the development of 
OSA by affecting many pathways, including cell cycle 
controlling, translation of Bcl-x, Mcl-1 and mitochondrion 
cytochrome C releasing.

Regulation downstream of the p53 gene also take part in 
the development of the OSA

Most chemotherapeutic agents induce apoptosis via 
the mitochondrial pathway (Strasser et al., 2000). The 
importance of p53 in the pathogenesis of the OSA was 
described previously. Regulators of this pathway include 
the Bcl-2 proteins and p53. There are 3 types of Bcl-2 
proteins: anti-apoptotic (e.g., Bcl-xL and Mcl-1), single-
domain apoptotic (termed as BH3-only) and multidomain 
apoptotic (e.g., Bax). When oligomerized, Bax perforates 
the outer mitochondrial membrane to release Cyt C. Anti-
apoptotic proteins block Bax oligomerization; BH3-only 
proteins such as Bim facilitate Bax oligomerization. p53 
accumulates in cells exposed to chemotoxic drugs and 
promotes apoptosis by 2 mechanisms. It transactivates 
genes that encoded apoptotic proteins, and it translocates 
to mitochondria where it interacts with Bcl-2 proteins 
(Moll et al., 2001). Many OSAs exhibit p53 abnormalities, 
and mice expressing p53-null osteoblast progenitor cells 
will develop OSAs (Lengner et al., 2006; Kansara et al., 
2007). Suggesting that Bcl-2 proteins are important for 
the regulation of the p53 in the OSA.

Down regulation of PI3K/AKT pathway induce anoikis 
of OSA cells

The phosphatidylinositol-3-kinase (PI3K)/AKT 
pathway plays an important role in various cellular 
processes including cell growth, survival and motility 
(Vivanco et al., 2002; He et al., 2013; Gong et al., 2012). 
Recently, accumulating evidence indicated that PI3K/
Akt pathway plays a crucial role in tumorigenesis and 
tumor progression by promoting cell proliferation and 
inhibiting apoptosis. AKT prevents apoptosis by activating 
anti-apoptotic signals through phosphorylating glycogen 
synthase kinase 3 (GSK3), Bad and caspase-9 and through 
activating transcriptional factors, such as forkhead 
(FOXO-1) and NF-kappa B (Yu et al., 2006; Cardone et 
al., 1998; Brunet et al., 1999; Romashkova et al., 1999). In 
addition, abnormal function of the PI3K/AKT pathway has 
been reported in many human tumors (Roy et al., 2002), 
including the OSA developed by PI3KCA gene mutation 
(Choy et al., 2012) and this signal pathway has been 
suggested to be a potential target for cancer chemotherapy.
Suppressing the phosphorylation of Akt and its substrates 
FOXO transcription factor and GSK3 in OSA cells 
cause the suppression of proliferation and induction of 
mitochondria- and caspase-dependent apoptosis, induced 
the release of cytochrome c accompanied by activation of 
caspase-9, caspase-3 and cleavage of poly (ADP-ribose) 
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polymerase (PARP) ( Jin et al., 2007). 
Therefore, inhibition of PI3K/AKT pathway may 

be a novel target for treating OSA, and many studies 
in vitro ware done to discover potential medicines, for 
example, cyclooxygenase-2 inhibitor, induces apoptosis 
in human OSA cells via down-regulation of PI3K/Akt 
(Liu et al., 2008). BMI-1 is a member of the polycomb 
family of transcriptional regulators that was originally 
identified as an oncogenic partner of c-Myc in murine 
lymphomagenesis (van Lohuizen et al., 1991). BMI-
1 was highly expressed in malignant OSA, and it is 
essential for cancer cell proliferation, migration and in 
vivo tumorigenicity (Wu et al., 2011). Inhibition of the 
PI3K/AKT pathway after BMI-1 knockdown was found 
to play a role in the sensitivity of SAOS-2 cells to cispatin 
treatment (Wu et al., 2011). BMI-1 could regulate the ratio 
of BCL-2 to Bid in SAOS-2 cells, which turn on to affect 
the apoptosis of OSA cells (Wu et al., 2011). Suggesting 
that PI3K/AKT pathway inhibition will induce apoptosis 
of OSA cells in many mechanisms.

GLI2 transcription factor accelerated the progression of 
OSA through Hedgehog pathway

The Hedgehog (Hh) pathway is a major regulator of 
many fundamental processes in vertebrate embryonic 
development including stem cell maintenance, cell 
differentiation, tissue polarity and cell proliferation. 
Paracrine Hh signaling from the tumor to the surrounding 
stroma was recently shown to promote tumorigenesis. This 
pathway has also been shown to regulate proliferation 
of cancer stem cells and to increase tumor invasiveness.

Binding of Hh to PTCH results in the loss of PTCH 
activity and the consequent activation of Smoothened 
(SMO) transmembrane receptor protein, which transduces 
the Hh signal to the cytoplasm (Taipale et al., 2002; Chen et 
al., 2002; Cooper et al., 1998). The Hh signal is transmitted 
via an alteration of the balance between the activator and 
repressor forms of the Ci (cubitus interruptus)/GLI family 
of zinc-finger transcription factors.  In mammals, the Hh 
signaling takes place in the nonmotile cilia to which the 
SMO and other downstream pathway components must 
need to transit to activate the Ci ortholog in mammals, the 
GLI transcription factors (Huangfu et al., 2003; Corbit et 
al., 2005; Huangfu et al., 2005; Rubin et al., 2006). The 
GLI transcription factors exist as three separate zinc-finger 
proteins, GLI 1 and GLI 2 functioning as transcriptional 
activators and GLI 3 as a transcriptional repressor (Ruiz, 
1997). GLI2 was aberrantly over-expressed in human 
OSA biopsy specimens (Hirotsu et al., 2010; Nagao et al., 
2011). GLI2 knockdown by RNA interferences prevented 
OSA growth and anchorage-independent growth (Hirotsu 
et al., 2010; Nagao et al., 2011). Knockdown of GLI2 
promoted the arrest of OSA cells in G (1) phase and was 
accompanied by reduced protein expression of the cell 
cycle accelerators cyclin D1, SKP2 and phosphorylated 
Rb (Nagao et al., 2011). On the other hand, knockdown 
of GLI2 increased the expression of p21 (cip1) ( Hirotsu 
et al., 2010). In addition, over-expression of GLI2 
promoted mesenchymal stem cell proliferation and 
accelerated their cell cycle progression. GLI2 knockdown 
inhibited the growth of OSA in nude mice (Nagao et al., 

2011). Suggesting that inhibition of GLI2 represent an 
effective therapeutic approach for patients with OSA. 
Although all mechanisms of the Hh signaling pathway 
are not completely understood, it is clear that aberrant 
Hh signaling causes tumor growth and proliferation, 
increases tumor aggressiveness and raises the frequency 
of metastasis.

The role of SPHK1/ASK1/JNK/CHK1, 2 in the 
differentiation, proliferation and apoptosis of the OSA

The lipid kinase sphingosine kinase 1 (SphK1) 
catalyzes the phosphorylation of sphingosine to 
sphingosine-1-phosphate (S1P) ( Shida et al., 2008; 
Vadas et al., 2008). In vivo and in vitro studies have 
proven that SphK1 is associated with cancer cell survival, 
proliferation, transformation, and prevention of apoptosis, 
the chemotherapy resistance and angiogenesis (Shida 
et al., 2008; Vadas et al., 2008). Evidence from clinical 
samples demonstrates that SphK1 is over-expressed in 
many tumor types and that inhibitors of SphK1 may 
sensitize tumors to chemotherapeutic agents (Shida et 
al., 2008; Vadas et al., 2008). SphK1 is over-expressed in 
multiple clinical OSA tissues. Over-expression of SphK1 
in OSA cell line U2OS promoted its growth and endorsed 
its resistance against doxorubicin, while knocking-down 
of SphK1 by shRNA inhibited U2OS cell growth and 
increased its sensitivity to doxorubicin. Co-administration 
phenoxodiol with doxorubicin synergistically inhibited 
SphK1 activity to trigger cellular ceramide accumulation, 
and achieved synergistic anti-OSA growth effect, 
accompanied with a significant increased of apoptosis and 
cytotoxicity. Increased cellular level of ceramide by the co-
administration induced the association between Akt and 
Protein Phosphatase 1 (PP1) to dephosphorylate Akt, and 
to introduce a constitutively active Akt (CA-Akt) restored 
Akt activation and diminished cell growth inhibition. 
Further, phenoxodiol and doxorubicin synergistically 
activated apoptosis signal-regulating kinase 1 (ASK1)/c-
jun-NH2-kinase (JNK) signaling, which also contributed 
to cell growth inhibition. Significantly, the role of SphK1 
in OSA cell growth and the synergistic anti-OSA effect 
of phenoxodiol and doxorubicin were also seen in a mice 
OSA xenograft model (Yao et al., 2012). Therefore, SphK1 
might be a critical oncogene of OSA as we discussed 
previously and co-administration phenoxodiol with 
doxorubicin synergistically inhibited the activity of SphK1 
to suppress OSA cell growth both in vivo and in vitro.

Therefore, sphk1 may affect the cell cycle via the 
regulation of the cell cycle checkpoint kinase, and then 
determine the fate of the cells. So sphk1 may be a good 
target for treating OSA.

The role of PEDF in the prevention of the OSA
PEDF expression changes in the course of progression 

of different tumor types (Halin et al., 2004). Researchers 
did a number of studies and showed that there is opposite 
relation between PEDF levels, grade and metastatic 
potential of prostate tumors (Halin et al., 2004), 
pancreatic adenocarcinoma (Uehara et al., 2004), prostate, 
melanoma, ovarian, OSA, glioma (Murray et al., 2010), 
hepatocellular carcinoma (Matsumoto et al., 2004) and 
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Wilm’s tumors (Abramson et al., 2003). PEDF not only 
reduces angiogenesis, but also can increase tumor cell 
apoptosis and differentiation (Dawson et al., 1999; Maik-
Rachline et al., 2005; Broadhead et al., 2009). 

Pigmented epithelium-derived factor (PEDF) is a 
50kDa glycoprotein, which is a member of the serine 
protease inhibitor family, and it has multifunctional 
properties (Murray et al., 2010) and is a potent inhibitor of 
angiogenesis, via its ability to decrease proliferation and 
migration of endothelial cells. It is found to be a potent 
inhibitor of angiogenesis, proliferation and migration 
of endothelial cells, retinal vascular permeability, and 
tumor activity (Broadhead et al., 2009). These significant 
antiangiogenic properties led the scientists to shift focus 
on to studies examining the potential antitumor activities 
of PEDF. Angiogenesis underlies the processes of bone 
growth, repair, and remodelling and may account at least 
in part for the aggressive nature of OSA. In vitro and 
in vivo studies have revealed that in the case of OSA, 
PEDF can induce both indirect and direct suppression of 
tumor growth and progression by potent antiangiogenic 
capability of PEDF targeting tumor vasculature and 
induction of OSA cell apoptosis, differentiation, and 
inhibition of cell cycling, respectively (Ek et al., 2006). 
And the resistance of epiphyseal cartilage to OSA invasion 
is likely to be due to the differential expression of PEDF 
and VEGF in the zones of the epiphysis (Ek et al., 2007). 

In addition to the pathways discussed before, many 
studies have also reported a lot of novel pathway in 
the pathogenesis of OSA. For example, U0126 blocks 
MAPK/ERK signaling and decreases cell proliferation 
in OS (Sasaki et al., 2011; Yu et al., 2011). Even though 
ERK5 silencing did not suppress the proliferation of OS 
cells. However, ERK5 silencing significantly reduced the 
number of invading cells in invasion assay. The expression 
of MMP-9 was specifically reduced after silencing ERK5. 
The zymography showed that the enzyme activity of 
MMP-9 was also reduced after ERK5 suppression. The 
expression of ERK5 regulates the invasion of OS cells 
by inducing MMP-9 expression (Kim et al., 2012; Jin 
et al., 2013). Moreover, Mitochondria-specific ERK 
activation might provide a key advantage to tumor cells 
during the oncogenic process, by placing the death/
survival mitochondrial rheostat in an anti-apoptotic mode. 
Mitochondrial ERK inhibition cause ATP depletion and 
apoptosis. Inhibition of ERK prompted block of ATP 
synthase and mitochondrial depolarization (Rasola et 
al., 2010). 

Cell growth and differentiation are usually antagonistic. 
Proteins of the basic helix-loop-helix (bHLH) family 
bind DNA and play important roles in the differentiation 
of specific cell types. Id proteins heterodimerize with 
bHLH transcription factors, blocking their activation of 
lineage-specific gene expression and thereby inhibiting 
cellular differentiation. Id-2 expression was able to reverse 
the inhibition of cellular proliferation and the block in 
cell cycle progression mediated by the product of the 
retinoblastoma tumor suppressor gene pRB (Iavarone 
et al., 1994). Id proteins inhibit differentiation by HLH-
mediated heterodimerization with basic HLH transcription 
factors (Florio et al., 1998). Enforced expression of Id3 

but not Id2 caused the MG-63 sarcoma cells to be more 
sensitive to CDDP-induced growth inhibition, through 
generation of ROS and caspase-3 activation (Koyama et 
al., 2004). The down regulation of poly (ADP-ribosyl)
ation of nuclear proteins (PARP) results in an increase 
in both the hypophosphorylated active form of Rb and 
pRb/E2F complexes (De Blasio et al., 2005). These 
effects are accompanied by G1 arrest, downregulation of 
gene products required for proliferation (cyclin D1, beta-
catenin, c-Jun, c-Myc and Id2) and upregulation of those 
implicated in the osteoblastic differentiation (p21/Waf1, 
osteopontin, osteocalcin, type I collagen, N-cadherins 
and alkaline phosphatase). PTH induction of c-fos proto-
oncogene transcription also appears to occur principally 
through activation of PKA that then targets CREB and 
the c-fos calcium/cAMP response element (Evans et al., 
1996). 

Mechanisms  of  OSA Res is tance  to 
Chemotherapy

 Elucidation of the mechanisms of chemotherapy 
resistance and implementation of strategies to overcome 
it will be pivotal to improve the survival for OSA 
patients. Here we will give some important pathways in 
the pathogenesis of the OSA when discovered by finding 
treatment to OSA.

Mechanisms of the chemotherapy resistance by ABCB1 
to doxorubicin

In the past 20 years, several studies have shown that 
OSA patients may be inherently resistant to doxorubicin 
or may become unresponsive to this drug during the 
chemotherapeutic treatment (Chou et al., 2006). Although 
resistance to doxorubicin in human tumor cells may be 
caused by different mechanisms, including increased 
efflux, more efficient intracellular detoxification, 
alterations of topo-isomerase II and increased DNA repair, 
the most relevant mechanism of doxorubicin resistance 
in OSA has been demonstrated to be the ATP-binding 
cassette (ABC) transporters mediated drug efflux (Chou 
et al., 2006). In particular, high expression of ABCB1 
protein (also known as MDR1 or P-glycoprotein) has bee n 
demonstrated to be responsible for doxorubicin resistance 
in human OSA cell lines and to be associated with an 
adverse clinical outcome in high-grade, non-metastatic 
OSA patients treated with conventional chemotherapy 
protocols (Baldini et al., 1995; Chan et al., 1997; Pakos 
et al., 2003; Serra et al., 2003). However, a few studies 
did not confirm this evidence (Gorlick et al., 1999; 
Schwartz et al., 2007) and have been recently discussed 
(Serra et al., 2007). A possible strategy to overcome the 
clinical doxorubicin resistance may, therefore, be based 
on the use of ABC transporter inhibitors (in particular, of 
ABCB1), with the aim of reverting tumor cells toward a 
drug sensitive phenotype.

Reversion of chemotherapy resistance by inhibition 
of P-glycoprotein (P-gp) expression may overcome the 
chemotherapy resistance observed in many cancer types 
and may allow for improved therapeutic ratio. SiRNA 
specific for ABCB1 (MDR1) mRNA might restore 
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sensitivity to chemotherapy in tumor cell lines known to 
overexpress the MDR1 gene (Perez et al., 2011). 

However, there are many other kinds of pathway or 
mechanisms that may affect the chemotherapy sensitivity, 
including Type-I insulin-like growth factor receptor 
(IGF1R), beta-catenin, calpain-6 levels (Luk et al., 2011; 
Zhang et al., 2011; Marion et al., 2012). 

HMGB1-mediated autophagy as a novel therapeutic 
resistance for OSA

Autophagy is a catabolic process critical to maintaining 
cellular homeostasis and responding to cytotoxic 
insult. Autophagy is recognized as “programmed cell 
survival” in contrast to apoptosis or programmed cell 
death. Upregulation of autophagy has been observed 
in many types of cancers and has been demonstrated 
to both promote and inhibit antitumor drug resistance 
depending to a large extent on the nature and duration 
of the treatment-induced metabolic stress as well as the 
tumor type. Cisplatin, doxorubicin and methotrexate 
are commonly used anticancer drugs in OSA, the most 
common form of childhood and adolescent cancer. 
Inhibition of both HMGB1 and autophagy increase the 
drug sensitivity of OSA cells in vivo and in vitro (Huang 
et al., 2012). 

The alkylating agents cisplatin and anthracycline, 
the antibiotic doxorubicin and the antimetabolite met 
hotrexate significantly increase protein and mRNA 
expression of HMGB1 in human p53-deficient OSA cell 
lines (e.g., MG-63 and SaOS-2 ). Aside from p53, the 
expression of HMGB1 is regulated by other transcription 
factors such as c-Myc and Kruppel-like factor (KLF)-4 in 
various cell types (Huang et al., 2012). Suggesting that 
targeting c-Myc and Kruppel-like factor (KLF)-4 may be 
a novel method to deal with the chemotherapy resistance 
of OSA.

The inflammasome regulates the release of caspase 
activation-dependent cytokines, including interleukin (IL)-
1β, IL-18 and high-mobility group box 1 (HMGB1). PKR 
deficiency significantly inhibited the secretion of IL-1β, 
IL-18 and HMGB1 in E. coli-induced peritonitis (Lu et al., 
2012). Anticancer agents including doxorubicin, cisplatin, 
and methotrexate each induced HMGB1 upregulation 
in human OSA cells, and RNA interference-mediated 
knockdown of HMGB1 restored the chemosensitivity 
of OSA cells in vivo and in vitro (Huang et al., 2012). 
Mechanistic investigation revealed that HMGB1 increased 
drug resistance by inducing autophagy, an intracellular 
self-defense mechanism known to confer drug resistance. 
HMGB1 bound to the autophagy regulator Beclin1 and 
regulated the formation of the Beclin1-PI3KC3 (PI3KC3, 
phosphatidylinositol-3-kinase class 3) complex that 
facilitates autophagic progression (Huang et al., 2012). 

The human high mobility group protein B1 (HMGB1) 
has attracted considerable interest among oncologists 
because it sensitises cancer cells to the anticancer drug 
cisplatin by shielding cisplatin-DNA adducts from 
nucleotide excision repair (Pil et al., 1992; Zamble et al., 
1996; He et al., 2000; Kartalou et al., 2001; Jung et al., 
2003; Kasparkova et al., 2003). 

High mobility group box 1 protein (HMGB1) is a 

significant contributor to drug resistance in OSA cells 
(Apetoh et al., 2004). Thus, these findings provide a novel 
mechanism of OSA resistance to therapy facilitated by 
HMGB1-mediated autophagy and provide a new target 
for the control of drug-resistant OSA patients.

What’s more, overexpression of plasma membrane 
multi-drug resistance protein 1 (MRP-1) can lead to 
multidrug resistance. The expression of mitochondrial 
MRP-1 in untreated human normal and cancer cells and 
tissues was examined by differential centrifugation and 
western blotting and immunofluorescence microscopy. 
The efflux activity of mitochondrial MRP-1 was more 
efficient (55-64%) than that of plasma membrane 
MRP-1 (11-22%; p<0.001) (Roundhill et al., 2012). 
Induced MRP-1 expression resulted in a preferential 
increase in mitochondrial MRP-1, suggesting selective 
targeting to this organelle. Therefore, the mechanisms of 
chemotherapy resistance of the OSA ware not as simple 
as we discussed before. And only with more studies can 
we find out the details of mechanisms in the resistance 
of the OSA. And we believe it will not take a long time 
in the future.

Mechanisms of the OSA Metastasis

Classical high-grade OSA of the extremity has 
more of a tendency to metastasize, unlike low-grade 
parosteal OSAs. Primary OSA is a highly aggressive 
tumor that metastasizes by hematogenous dissemination. 
At diagnosis, nearly all patients will have microscopic 
metastases (Wolf et al., 1999). Despite resection and 
chemotherapy, 30%-40% of patients with localized disease 
will experience relapse, usually within 3 years (Longhi et 
al., 2006). Thus, it’s very important for us to recover the 
mechanisms of metastatic of the OSA to help us improve 
the prognosis of the OSA. The lung is the most common 
site of metastatic disease, however, extrapulmonary sites 
are increasingly affected in treated patients. This may be 
because of change in the natural history of the disease 
by multiagent chemotherapy or longer survival times of 
these patients (Wolf et al., 1999; Kim et al., 2004; Akasbi 
et al., 2012). Novel strategies to improve treatment of 
metastatic patients require a better understanding of the 
processes involved, like angiogenesis, migration and the 
immune response.

Whole genome expression analysis of both the cells 
and the host showed that angiogenesis and migration-
related genes matrix metalloproteinase 19 (Mmp-19) and 
erythroblastosis virus E26 oncogene homologue 1 (Ets-1) 
were overexpressed in transformed MSCs compared to 
normal MSCs (Mohseny et al., 2012). 

 mRNA expression microarray and N-linked 
glycoproteomic analyses were performed on two 
commonly used isogenic pairs of human metastatic OSA 
cell lines, namely HOS/143B and SaOS-2/LM7 (Flores et 
al., 2012). CCL5 has been reported to stimulate directional 
migration and invasion of human cancer cells (Huang 
et al., 2009; Kulbe et al., 2004). CCL5 directed human 
OSA cell migration (U2OS and MG63 cells) (Wang et 
al., 2012). They also found that CCL5 increased invasive 
ability of human OSA cells through Matrigel basement 
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membrane matrix (Wang et al., 2012). Interaction of 
CCL5 with its specific receptor CCR on the surface of 
cancer cells has been reported to induce cancer migration 
(Luboshits et al., 1999; Chuang et al., 2009). Therefore, 
CCL5 and CCR5 interaction is very important in migration 
activity of OSA cells. According to their experiments 
results (Wang et al., 2012), αvβ3 integrin up-regulation, 
activated MEK and ERK signaling pathways and NF-κB 
activation are involved in the CCL5-mediated migration 
of the OSA cell lines cells.

Investigating the host response, embryos injected 
with transformed MSCs showed decreased expression 
of immune response-related genes, especially major 
histocompatibility complex class 1 (mhc1ze), as compared 
to embryos injected with normal MSCs (Mohseny et al., 
2012). 

The biological markers CXCR4, HER2 and CD44 are 
also involved in tumor growth and the homing of cancer 
cells to distant site s (Ma et al., 2012). CCN3 influence 
the ability of metastatic cancers to colonize and grow in 
bone (Ouellet et al., 2012). 

Summary

Past years have brought many new concepts regarding 
the pathogenesis and biology of metastatic OSA tumors. 
Some of them have been well studied, confirmed and 
widely accepted. Others are still under investigation. 
Combining the findings of studies concerning different 
mechanisms in the process of neoplastic cell dissemination 
and tumor growth prompts us to make new steps in our 
way of thinking about malignancy and is a prerequisite 
for improving treatment results.

Localised OSA will be cured in 50% of patients with 
cisplatin and doxorubicin (Whelan et al., 2012). Large 
randomised trials can be conducted in this rare cancer. 
Failure to improve survival over 20 years argues for 
concerted collaborative international efforts to identify 
and rapidly test new treatments.
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