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Introduction

	 Basal cell carcinoma (BCC), also called basalioma, 
basal cell epithelioma, rodent ulcer and Jacobs’ ulcer, is the 
most common cancer among Caucasians (Madan, 2010). 
BCC can grow aggressively, causing extensive tissue 
destruction, if left untreated.  Metastasis to lymph nodes, 
lung, liver and bone is very rare (<0.1%) (von Domarus 
et al., 1984; Elghissassi et al., 2009).
	 Recent insights into the molecular etiology and 
pathogenesis of BCC have uncovered environmental 
and other genetic factors that could account for the 
development of BCC. Genome-wide association studies 
(GWAS) have been used in the identification of loci 
associated with BCC in Caucasian populations. Recent 
meta-analyses of GWAS results on pigmentation and skin 
cancers have conclusively demonstrated and identified 
the genetic loci associated with skin cancer, mostly 
BCC in Caucasians (Gerstenblith et al., 2010). However, 
little is known about the genetic loci in non- Caucasian 
populations with lower BCC incidence.
	 Although BCC has become the most common type 
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Abstract

	 Aim: Little is known about the genetic associations with Basal cell carcinoma (BCC) risk in non-Caucasian 
populations, in which BCC is rare, as in Korea. We here conducted a pilot genome-wide association study 
(GWAS) in 12 patients and 48 standard controls.  Method: A total of 263,511 SNPs were analyzed with the 
Illumina HumanOmni1 Quad v1.0 DNA Analysis BeadChip for cases and Korean HapMap 570K for controls. 
Results:  SNP-based analyses, based on the allele genetic model with adjustment for sex and age showed 
suggestive associations with BCC risk for 6 SNPs with a P-value (P < 0.0005). However, these associations were 
not statistically significant after Bonferroni correction: rs1040503, rs2216491, rs13407683, rs4751072, rs9891263, 
and rs1368474. In addition, results from gene-based analyses showed suggestive associations with BCC risk 
for 33 candidate genes with a P-value (P <0.0005). Consistent with previous GWAS and replication studies in 
Caucasian populations, PADI6, RHOU and SLC45A2 were identified as having null associations with BCC (P > 
0.05), likely due to the smaller sample size. Conclusions: Although this was a small-scale negative study, to our 
knowledge, we have conducted the first GWAS for BCC risk in an Asian population. Further large studies in 
non-Caucasian populations are required to achieve statistical significance and confirm these findings.
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of skin cancer today, only 2,140 newly diagnosed cases 
were reported in 2011, from the Korean population of 
approximately 50 million people (KCCR, 2014). In the 
present study we conducted a GWAS, as an exploratory 
investigation, to identify the genetic association with BCC 
risk in Jeju Island, Korea.

Materials and Methods

Subjects
A total of 12 cases were recruited from patients who 

had been diagnosed with histologically confirmed BCC 
at the Jeju National University Hospital, from May 2010 
to April 2011. The province of Jeju is an island located 
apart from the southwest corner of the Korean Peninsula. 
It’s the number of population was 57 thousands in 2011. 
A total of 48 control subjects were obtained from Korean 
HapMap Project (http://sysbio.kribb.re.kr:8080/khapmap/
index.jsp), matched to cases by sex and age. The subject 
pools are shown in Table 1.

The GWAS of BCC protocol was approved by the 
Institutional Review Board of the Jeju National University 
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Hospital. Informed consent was obtained from all patients. 
The study was conducted according to the Declaration of 
Helsinki Principles.

Genotyping
Genotyping was performed on DNA extracted from 12 

cases using the Illumina HumanOmni1 Quad v1.0 DNA 
Analysis Bead Chip array containing 1,140,419 SNP loci 
with a marker distance of 1.2 kb (median) and a call rate of 
99.79% (Illumina, Inc., San Diego, CA, USA). However, 
Korean HapMap 570K was used for 48 controls with a 
call rate of 99.53%.

Genomic DNA quantitation
DNA samples were checked the quality using 

NanoDrop® ND-1000 UV-Vis Spectrophotometer. Then 
samples were electrophoresed on agarose gels and samples 
with intact genomic DNA showing no smearing on agarose 
gel electrophoresis were selected for experiment. Intact 
genomic DNA was diluted to 50 ng/ml concentration 
based on Quant-iT Picogreen (Invitrogen) quantitation. 
Concentrations were adjusted based on these results. All 
prepared samples were hybridized to Illumina Infinium 
Human-1 microarrays according to the manufacturer’s 
protocols.

Sample amplification and hybridization for BeadChips
The whole-genome amplification process requires 200 

ng of input gDNA and creates a sufficient quantity of DNA 
(1000X amplification) to be used on a single BeadChip 
in the Infinium assay (Illumina MP1 and AMM). 
After amplification, the product is fragmented using a 
proprietary reagent (FRG), precipitated with 2-propanol 
(plus precipitating reagent; PM1), and resuspended in 
formamide-containing hybridization buffer (RA1). The 
DNA samples are denatured at 95°C for 20 min, then 
placed in a humidified container for a minimum of 16 
h at 48°C allowing SNP loci to hybridize to the 50mer 
capture probes.

Single-base extension and staining on BeadChips
Following hybridization, the BeadChip/Te-Flow 

chamber assembly was placed on the temperature-
controlled Tecan Flowthrough Rack, and all subsequent 
washing, extension and staining were performed by 
addition of reagents to the Te-Flow chamber.

For the single-base extension (SBE) (Infinium II) 
assay, primers were extended with a polymerase and 
labeled nucleotide mix (TEM), and stained with repeated 
application of STM (staining reagent) and ASM (anti-
staining reagent). After staining was complete, the slides 
were washed with low salt wash buffer (PB1), immediately 
coated with XC4, and then imaged on the Illumina 
BeadArray Reader.
Imaging the BeadChip and data analysis

The Illumina BeadArray Reader is a two-color (543 
nm/643 nm) confocal fluorescent scanner with 0.84-µm 
pixel resolution. The scanner excites the fluorophors 
generated during signal amplification/ staining of the 
allele-specific (one color) extension products on the 
BeadChips. The image intensities are extracted using 

Illumina’s BeadScan software. SNPs were called using 
Illumina’s GenomeStudio V2009 (Genotyping Module 
1.19) (Illumina, Inc.).

Quality control
The number of identical SNPs was 970,342 with 

Illumina HumanOmni1 Quad v1.0 from cases, 576,292 
with Korean HapMap 570K from controls and 346,710 
as the overlapping contents between them. About 36% 
(124,744 SNPs) of these SNPs were located in introns, 
30% (104,444 SNPs) in flanking 5’UTR, 30% (102,710 
SNPs) in flanking 3’UTR, and the rest were functionally 
located in coding, 3’UTR, 5’UTR, and UTR. Out of the 
initial full set of 346,710 SNPs, we discarded 8,091 SNPs 
in the case and 1,809 SNPs in the control with SNP-wised 
call rate <95%, 564 SNPs solely in the control with allele 
frequencies deviating from Hardy-Weinberg equilibrium 
(HWE) (p<10-6), and 59,925 SNPs in the case and 
40,883 SNPs in the control with minor allele frequency 
(MAF) <0.01. Therefore, the final SNP set for the genetic 
association analyses contained 263,511 SNPs. The Results 
and Procedure of Quality Control (QC) in Subjects and 
SNPs on the GWAS are summarized in Table 2.

Statistical analyses
We calculated genotype frequencies for each 

individual polymorphism and evaluated Hardy-Weinberg 
equilibrium to check the data quality and genotype 
error using ‘genetics’ and ‘dgc.genetics’ packages in 
the R program. Fisher’s exact test statistic was used to 
compare the observed numbers of each genotype with 
those expected following chi-square distribution with a 
one degree of freedom (Weir, 1996).

Association analysis was performed for 263,511 
common SNPs that passed QC criteria for cases and 

Table 1. The Subject Pools
	 Cases	 Controls
	 Male	 Female	 Male	 Female

Number of subjects	 4	 8	 12	 12
Age (mean, yr.)	 63	 62	 60	 62

Table 2. The results and procedure of quality control 
(QC) in subjects and SNPs on the GWAS
	 No. of cases	 No. of controls
	 or SNPs	 or SNPs
	 in case group	 in control group

QC procedure in subjects
   Subjects at the start of QC	 12	 90
     Exclusion of subjects by
       Gender inconsistency	 0	 0
       Low call rate (Averaged call rate)
	 0 (99.79%)	 0 (99.53%)
     Final subjects 	 12	 48
QC in SNPs		
   SNPs at the start of QC in each group
	 346,710	 346,710
     Exclusion of SNPs by
       HWE <10-6		  564
       Call rate <95%	 8,091	 1,809
       MAF <0.01	 59,925	 40,883
     Final SNPs in total subjects	 263,511
*Not mutually exclusive



Asian Pacific Journal of Cancer Prevention, Vol 15, 2014 7445

DOI:http://dx.doi.org/10.7314/APJCP.2014.15.17.7443
Exploratory Investigation of Genetic Associations with Basal Cell Carcinoma Risk in Jeju Island, Korea

Table 3. Individual SNP-based Analyses: Associations between Skin Basal Cell Cancer and SNPs with a p-value 
(<5x10-4) from a Genetic Model
SNP	 Chromosome	 Gene	 Location	 *OR (95% CI)	 p-value

rs1040503	 1	 ATP1B1	 intron	 9.82 (3.12-30.90)	 9.4x10-5

rs2216491	 2	 LOC344371	 flanking_5UTR	 8.62 (2.70-27.50)	 2.7x10-4

rs13407683	 2	 LOC344371	 flanking_5UTR	 8.62 (2.70-27.50)	 2.7x10-4

rs4751072	 10	 MGMT	 flanking_5UTR	 10.18 (3.54-29.27)	 1.7x10-5

rs9891263	 17	 TOM1L1	 flanking_5UTR	 10.29 (3.26-32.50)	 7.0x10-5

rs1368474	 19	 LPHN1	 flanking_5UTR	 9.79 (3.01-31.86)	 1.5x10-4

*Allele OR adjusting for age and sex

Table 4. Individual Gene-based Analyses: Associations between Skin Basal Cell Cancer and SNPs with a p-value 
(<5x10-4)
Gene	 No. of SNPs per gene	 flanking_5’UTR	 5’UTR	 intron	 coding	 3’UTR	 flanking_3’UTR	 p-valuea

							     

LOC727819	 31	 16	 0	 1	 0	 0	 14	 2.94x10-10

ATOH1	 33	 9	 0	 0	 0	 0	 24	 3.32x10-9

LOC644681	 71	 38	 0	 0	 0	 0	 33	 9.62x10-9

C20orf23	 52	 15	 0	 36	 1	 0	 0	 6.49x10-8

LOC440337	 43	 4	 0	 0	 2	 0	 37	 3.63x10-7

KRT8P21	 30	 15	 0	 0	 0	 0	 15	 5.89x10-7

CYP3A7	 11	 0	 0	 7	 0	 1	 3	 9.98x10-7

HLA-DQB1	 48	 43	 0	 0	 0	 2	 3	 1.31x10-6

GPC6	 156	 28	 0	 126	 1	 0	 1	 2.48x10-6

ABCC2	 23	 0	 1	 18	 0	 0	 4	 5.64x10-6

FBN2	 35	 8	 0	 21	 4	 0	 2	 1.07x10-5

LOC645174	 36	 16	 0	 0	 0	 0	 20	 1.39x10-5

C10orf107	 26	 13	 0	 8	 0	 0	 5	 1.48x10-5

XCL2	 10	 4	 0	 0	 0	 0	 6	 2.36x10-5

C8orf34	 95	 8	 1	 47	 1	 0	 38	 2.41x10-5

CALD1	 29	 7	 0	 20	 1	 0	 1	 3.48x10-5

CDH13	 430	 71	 0	 358	 0	 0	 1	 3.79x10-5

TYRP1	 135	 129	 0	 3	 0	 0	 3	 3.90x10-5

LRP12	 20	 19	 0	 1	 0	 0	 0	 4.50x10-5

C9orf66	 12	 7	 0	 0	 1	 0	 4	 5.91x10-5

ELL2	 12	 2	 0	 8	 0	 0	 2	 5.91x10-5

TANC1	 26	 4	 0	 21	 0	 1	 0	 6.25x10-5

LOC728048	 50	 12	 0	 0	 0	 0	 38	 8.30x10-5

TMEM26	 22	 3	 0	 3	 0	 1	 15	 8.40x10-5

LOC132817	 64	 37	 0	 2	 0	 0	 25	 1.03x10-4

CLCN4	 23	 0	 0	 12	 0	 3	 8	 1.12x10-4

BARHL2	 34	 3	 0	 0	 0	 0	 31	 1.20x10-4

TFEC	 34	 3	 0	 7	 0	 1	 23	 1.20x10-4

MAPRE2	 19	 5	 0	 8	 0	 1	 5	 1.49x10-4

RNF130	 19	 1	 0	 13	 0	 0	 5	 1.49x10-4

LOC344371	 134	 129	 0	 0	 0	 0	 5	 1.84x10-4

ABO	 15	 3	 0	 5	 3	 0	 4	 1.87x10-4

PGRMC2	 25	 24	 0	 0	 0	 0	 1	 1.94x10-4

aFisher’s exact test

controls under an allele genetic model (one degree of 
freedom) of logistic regression with adjustment for age and 
gender in 12 cases and 48 controls. And we controlled false 
discovery rate (FDR) to deal with multiple testing problem 
(Sorin, 2003). We adopted the conservative Bonferroni 
correction, which is the most commonly used method to 
adjust type1 error, α, treats each single-SNP test as an 
independent test. The Bonferroni threshold for significance 
of association was 1.89x10-7 (α=0.05/263,511).

Results

The results for SNP-based analyses through allele 
genetic model with adjustment for sex and age showed 
suggestive associations with BCC risk for 6 SNPs with 
a p-value (p<5 x 10-4) in Table 3. However, these were 
not statistically significant after Bonferroni correction: 
rs1040503 (OR, 9.82;95% CI, 3.12-30.90; p=9.4x10-5), 

rs2216491 (A>G) (odds ratio (OR), 8.62; 95% confidence 
interval(CI), 2.70-27.50; p=2.7x10-4), rs13407683 (A>G) 
(OR, 8.62;95% CI, 2.70-27.50; p=2.7x10-4), rs4751072 
(OR, 10.18;95% CI, 3.54-29.27; p=1.7x10-5), rs9891263 
(OR, 10.29;95% CI, 3.26-32.50; p=7.0x10-5) and 
rs1368474 (OR, 9.79; 95% CI, 3.01-31.86; p=1.5x10-4). 
And the results for gene-based analyses showed suggestive 
associations with BCC risk for 33 suspected genes with a 
p-value (p<5 x 10-4) in Table 4.

Discussion

Using large populations with mostly Caucasian 
individuals, GWAS have produced sufficient evidence of 
the genetic associations with BCC risk (Stokowski et al., 
2007; Sulem et al., 2007; Brown et al., 2008; Han et al., 
2008; Stacey et al., 2008; Sulem et al., 2008; Falchi et al., 
2009; Gudbjartsson et al., 2009; Nan et al., 2009a; Nan et 



Asian Pacific Journal of Cancer Prevention, Vol 15, 20147446

Byung Min Yun et al

al., 2009b; Rafnar et al., 2009; Stacey et al., 2009; Duffy 
et al., 2010). However, a paucity of studies based on data 
from non-Caucasian deals with the genetic associations 
with BCC risk (Cho et al., 2001; Kim et al., 2002; Kang 
et al., 2007). This may be because BCC is rare among 
African, Asians, and Hispanic populations (Yakubu et 
al., 1993; Diepgen et al., 2002). Although in Korea there 
is a very low incidence of BCC, we conducted a pilot 
GWAS in patients with histology-confirmed BCC in Jeju 
Island, Korea. 

We performed a case control study comparing the 
frequency of SNP alleles between the Korean BCCs 
and the unaffected standard controls from the Korean 
HapMap Project. Since the controls were collected from 
the same ethnic background and geographical area as the 
case subjects, we could assume a good match between 
the genetic and environmental background of cases and 
controls (Lewis, 2002).

Single-SNP association tests were performed with 
logistic regression including sex and age as covariates. 
There were suggestive associations of the top six SNPs 
having a p-value (p<5 x 10-4) with BCC. These associations, 
however, were not significant after Bonferroni correction, 
our pilot GWAS was thus halted before the stage of 
replication. On the other hand, 33 putative genes showed 
suggestive associations with BCC risk from gene-based 
analyses. Although any of the ten genes identified as BCC 
risk factors by several previous GWAS and replication 
studies in Caucasian populations (PADI6, RHOU, 
SLC45A2, TERT/CLPTM1L, KLF14, CDKN2A/ B, 
TYR, KRT5, MC1R and ASIP) (Gerstenblith et al., 
2010) were not included among our results of 33 genes, 
PADI6, RHOU and SLC45A2 were consistently identified 
notwithstanding that they had null associations with BCC 
(p>0.05), perhaps due to the smaller sample size.

The gene PADI6, peptidylarginine deiminase type 
six, carrying rs7538876 and the gene RHOU, ras 
homolog gene family member u, carrying rs801114 
both are located in short arm 1p36 and long arm 1q42 
chromosome 1, respectively (Stacey et al., 2008). The 
mechanisms by which these two loci increase the risk for 
BCC are unknown (Gerstenblith et al., 2010). The gene 
SLC45A2, solute carrier family 45, member 2, carrying 
rs16891982 is located in short arm 5p13.3 chromosome 
5. This is a potassium dependent sodium/calcium 
exchanger (Fernandez et al., 2008; Guedj et al., 2008). 
It has been reported that the SLC45A2 SNP rs16891982 
has a significant association with subjectively measured 
skin color in a population of European ancestry (Graf et 
al., 2007).

GWASs have investigated that BCC develops by at 
least two pathways: one pigmentation-dependent and one 
pigmentation-independent. SLC45A2, TYR, MC1R and 
ASIP suggest that BCC and melanoma share a common 
development pathway via pigmentation (Fernandez et 
al., 2008; Nan et al., 2008; Gudbjartsson et al., 2009). 
An alternative possibility is they do not themselves bring 
to BCC development but predispose to BCC. Since 
replication studies adjusted for pigmentation did not show 
consistent associations for some SNPs on TYRP1, TYR, 
and ASIP genes with BCC (Nan et al., 2009a; Duffy et al., 

2010), these genes should be investigated later whether 
subjects carrying these SNPs are associated with the risk of 
BCC via pigmentation alone or via pathways independent 
of pigmentation.

Epidemiological studies also suggested that BCC 
tumorigenesis may not unique genetic alteration. 
Disparities in clinic-pathologic characteristics were 
shown between sun-exposed head/neck BCC and less-
exposed truncal BCC (Pelucchi et al., 2007; Betti et al., 
2010). And a direct relation between UV exposure and 
BCC development was found for head/neck BCC only 
(Ramos et al., 2004). In addition, the lower mean age at 
occurrence of truncal BCC appears to support that BCC of 
sun-protected anatomic sites may related with decreased 
DNA repair capacity (Wei et al., 1993).

In the near future, surgical excision resulting in 
mutilating defects may no longer be the first treatment 
option for BCC. A good substitute for it will exist with 
the availability of limited primary excision followed 
by adjuvant therapy using an immunomodulator, a 
proapoptotic agent and/or a cell-signaling modulator (Tilli 
et al., 2005; Sekulic et al., 2012; Tang et al., 2012; Macha 
et al., 2013). This better and novel treatments and tailored 
drug therapy is regarded the most likely short-term benefit 
from genetic association studies (Hirschhorn et al., 2002).

We explored the genetic loci showing a putative 
association with BCC risk. To our knowledge, this is the 
first GWAS for BCC risk in Asian populations. However, 
the sample size was too small to achieve any statistical 
significance. Although we conducted a null study, this 
might contribute to avoid publication bias in meta-
analyses later convincingly confirmed or refuted of all 
similar studies. Further larger studies in non-Caucasian 
populations are required to achieve statistical significance 
and to confirm the findings as independent replications 
(Zhang et al., 2012; Malik et al., 2014). And several 
important variables concerning gene should be considered 
such as family history of skin cancers and all other cancers, 
occupational sun exposure, smoking, and radiotherapy.
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