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Introduction

All over the ‘realm of History’, human beings relied on 
natural products as a primary source of medicine to cure 
many diseases and plants are vital source of novel natural 
medicines (Mukherjee et al., 2010). Natural medicines 
have been proven to be a central source of narrative agents 
with a pharmaceutical potential (Ji et al., 2009). Herbal 
medicine has held and still holds an important position 
in primary health care in China and western countries as 
a fertile source of novel lead molecules and constituted a 
pharmaceutical potential as part of modern drug discovery 
(Christen and Cuendet, 2012). One potential source of 
novel anticancer agents is natural plant products (Cragg 
and Newman, 2005). Flavonoids constitute a large family 
of the phytochemicals, including flavanols, flavones, 
flavonols, flavanones, anthocyanidins, proanthocyanidins 
and isoflavones (Leibowitz and Yu, 2010). The major 
sources of flavonoids are fruit and vegetables. This class 
of phytochemicals possesses various biological functions 
such as anti-cancer, anti-proliferative, antioxidant, 
pro-apoptotic, anti-inflammatory, and neuroprotective 
activities (You et al., 1998; Manosroi et al., 2005; Jiang 
et al., 2013; Zhu et al., 2013; Tan et al., 2014). 
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Abstract

 Casticin (3’, 5-dihydroxy-3, 4’, 6, 7-tetramethoxyflavone) is an active compound isolated from roots, stems, 
leaves, fruits and seeds of a variety of plants. It is well known for its pharmacological properties and has 
been utilized as an anti-hyperprolactinemia, anti-tumor, anti-inflammatory, neuroprotetective, analgesic and 
immunomodulatory agent. Recently, the anticancer activity of casticin has been extensively investigated. The 
resulkts showed that it exerts protective potential by targeting apoptosis, considered important for cancer 
therapies. In this article, our aim was to review the pharmacological and therapeutic applications of casticin 
with specific emphasis on its anticancer functions and related molecular mechanisms. Chemotherapeutic effects 
are dependent on multiple molecular pathways, which may provide a new perspective of casticin as a candidate 
anti-neoplastic drug. This review suggests that additional studies and preclinical trials are required to determine 
specific intracellular sites of action and derivative targets in order to fully understand the mechanisms of its 
antitumor activity and validate this compound as a medicinal agent for the prevention and treatment of various 
cancers. 
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Casticin (3’, 5-dihydroxy-3, 4’, 6, 7-tetramethoxyflavone) 
is one of the bioactive flavonoids obtained from polyphenol 
plants, which are composed of a wide variety of molecules 
that are classified into several categories, according to 
their chemical type, such as phenolic acids, flavonoids, 
stilbenes, and lignans (Siasos et al., 2013 ). Casticin is a 
main active compound in roots, aerial parts, seed, wood, 
stems, leaves and fruits of variety of plants (Figure 1 and 
Table 1), has been reported to be responsible for a wide 
spectrum of biological and pharmacological activities 
including immunomodulatory (Mesaik et al., 2009; 
Ling et al., 2012), anti-hyperprolactinemia (Hu et al., 
2007b; Ye et al., 2010), anti-tumor (Haidara et al., 2006; 
Shen et al., 2009; Ling et al., 2012; Zeng et al., 2012), 
neuroprotetective (Ling et al., 2012), anti-inflammatory 
(Lin et al., 2007b; Choudhary et al., 2009; Velpandian et 
al., 2013) and analgesic activities (Lee et al., 2012). 

In addition, recent studies also reported that casticin can 
enhance efficiency in combination with chemotherapeutics 
drugs (Xia et al., 2013). This review article is an attempt 
to cover recent information available on the development 
of biological and pharmacological potential of casticin 
in the scientific literature compiled from databases such 
as PubMed, SpringerLink, ScienceDirect, Oncology and 
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MEDLINE, further to provide comprehensive evidence 
insight into its natural sources, anticancer properties and 
mechanisms of action of this drug, which may provide 
a new perspective of casticin as a anti-neoplastic drug 
candidate for future cancer therapeutics.

Natural sources of casticin

Accumulated data indicate that casticin (Figure 1) has 
been isolated from many plants species, using ultra-high 
performance liquid chromatography diode array detector 
(UHPLC-DAD) in an ODS column under a mixed solvent 
system of acetonitrile and water, and microemulsion 
electrokinetic chromatography (MEEKC), structure 
was elucidated on the basis of NMR analysis and the 
compound was dissolved in dimethylsulfoxide (DMSO) 
to demonstrate the activities of casticin on various model 
system of different human diseases (Haidara et al., 2006; 
Hogner et al., 2013). 

Further casticin, being a flavonoid natural compound 
is located in fruits, vegetables, nuts, seeds, herbs, spices, 
stems, and flowers (Jiang and Morgan, 2004; Miyahisa et 
al., 2006). It has also shown a variety of pharmacological 
properties of therapeutic interest such as anti-inflammatory 
and anticancer activities (Manthey et al., 2001; Touil et 
al., 2009). The summary of plants containing casticin, 
parts used, and biological/pharmacological activities, is 
shown in Table 1. 

As shown in Figure 1, accumulated data indicate 
that casticin was isolated from many plant species such 
as, namely Vitex agnus castus (Choudhary et al., 2009; 
Mesaik et al., 2009; Webster et al., 2011; Righeschi et 
al., 2012; Hogner et al., 2013), Daphne genkwa (Xie et 
al., 2011), Achillea millefolium (Haidara et al., 2006; 
Csupor-Loffler et al., 2009), Ficus microcarpa (Wang 
et al., 2010), Vitex rotundifolia (Ono et al., 2002; Hu et 
al., 2007b; Shen et al., 2009; Ye et al., 2010; Koh et al., 
2011), Fructus viticis (Hu et al., 2007b; Guan et al., 2010; 
Chen et al., 2011b; Yang et al., 2011; Zeng et al., 2012; 
Zhou et al., 2013a), Vitex negundo (Diaz et al., 2003; 
Kunwar et al., 2010; Velpandian et al., 2013), Crataegus 
pinnatifida (Kao et al., 2005), Pavetta crassipes (Mali and 
Dhake, 2011), Nelsonia canescens, Butea frondosa Koen 
, Dalbergia odorifera (Mali and Dhake, 2011), Bryonia 
laciniosa (Aggarwal et al., 2011), Citrus unshu (Mali and 
Dhake, 2011; Nagoor et al., 2011), Centipeda minima 

(Mali and Dhake, 2011), Clausena excavate (Manosroi et 
al., 2005), Croton betulaster (de Sampaio e Spohr et al., 
2010; Freitas et al., 2011), Dimorphandra mollis (Freitas 
et al., 2011), Artemisia abrotanum L. (Hernandez et al., 
1999), Artemisia annua L (Han et al., 2007), Camellia 
sinensis (Kunwar et al., 2010), and Vitex trifolia (Remberg 
et al., 2004; Ling et al., 2012). 

Biological activity of casticin
Biological activity is the ethno-pharmacological 

approach’s leading thread, its evaluation is necessary to 
validate traditional use of casticin. Based on the evidences 
related to casticin in vitro and in vivo activities have been 
made to investigate the biological properties ascribed to 
casticin. In the momentum it was held that, casticin has 
sound medicinal importance. Studies on casticin showed 
significant suppressive effect on the chemotaxic action 
at higher concentrations on fMLP (10-8M) stimulated 
neutrophils. It also showed a potent suppressive effect on 
PHA stimulated T-cell (PMBC) (Mesaik et al., 2009). It 
inhibited eosinophil migration and activity of chemokines 
and adhesion of molecules involved in the inflammatory 
process of asthma by suppressing the NF-κB pathway 
(Koh et al., 2011). Casticin’s biological effects have 
been reported in wide spectrum of indications (Table 1), 
including inflammation (Lin et al., 2007b; Koh et al., 2011; 
Lee et al., 2012), asthma (Koh et al., 2011), tumor (Ono 
et al., 2002; Hu et al., 2007b; Shen et al., 2009; Ye et al., 
2010; Koh et al., 2011),  pre-menstrual syndrome (Hu et 
al., 2007b; Webster et al., 2011), immunomodulation (You 
et al., 1998), headache (Choudhary et al., 2009; Mesaik 
et al., 2009; Webster et al., 2011; Righeschi et al., 2012; 
Hogner et al., 2013), rheumatoid arthritis (You et al., 
1998), conjunctivitis (Remberg et al., 2004), trachoma, 
gonorrhoea, and toothache (Diaz et al., 2003; Kunwar et 
al., 2010; Velpandian et al., 2013). 

On the basis of previous in vitro, in vivo and 
epidemiological studies, it has demonstrated that casticin 
have a great anticancer potential by targeting various 
signaling pathways related to the initiation, progression 
and metastasis of cancer. It appears that casticin hold 
great promise for cancer chemoprevention and treatment 
through anti-proliferation, blockage of the cell cycle, 
induction of apoptosis, inhibition of angiogenesis and 
elimination of drug resistance. This review summarizes 
the emerging data concerning bioactive compound with 
multidirectional mechanisms of action including caspase-
mediated pathway and regulation of apoptosis-related 
proteins. 

Targeting apoptosis pathways in cancer with 
casticin

Apoptosis is defined as an extremely synchronized 
mode of cell death. It is characterized by distinct 
morphological features, including chromatin condensation 
and nuclear fragmentation (Hengartner, 2000; Elmore, 
2007a). The importance of signaling has been recognized 
in cell regulation during normalcy and disease (Hanahan 
and Weinberg, 2000; Evan and Vousden, 2001). 
Chemopreventive agents are apoptotic and induce death 

Figure 1. Chemical Structure and Natural Sources of 
Casticin
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in cancerous cells (Rasul et al., 2011a; Rasul et al., 
2011b; Shi et al., 2011; Rasul et al., 2012a; Rasul et al., 
2012b; Rasul et al., 2012c; Rasul et al., 2012d; Rasul et 
al., 2013). Casticin induced early or late apoptosis in a 

dose dependent manner. Sub-G1 accumulation is usually 
considered as an apoptotic death profile, this evidence is 
in sync with mode of cell death and characterized by a set 
of physiological phenomena, including mitotic catastrophe 

Table 1. Plants Containing Casticin with their Biological Functions

Name of plant

Botanical name Common name Chinese name Part used/extract Disease/function References

Vitex agnus castus Chaste Tree (Vitex) -- Fruit/whole plant Pre-menstrual 
syndrome, 
inflammation, 
headache, anxiety, 
immunomodulation, 

 (Choudhary et al., 2009; 
Mesaik et al., 2009; Webster 
et al., 2011; Righeschi et al., 
2012; Hogner et al., 2013)

Daphne genkwa -- -- Aqueous Edema, asthma, 
anticancer

 (Xie et al., 2011)

Achillea millefolium yarrow -- Aerial part, Whole 
plant

hardness of the 
uterus, anti-tumor

 (Haidara et al., 2006; 
Csupor-Loffler et al., 2009)

Ficus microcarpa Chinese Banyan -- Aerial/roots/leaves Chronic bronchitis, 
enteritis

 (Wang et al., 2010)

Vitex rotundifolia Beach vitex Dan ye manjing Fruit/Aqueous Inflammation, 
asthma, antitumor

 (Ono et al., 2002; Hu et 
al., 2007a; Hu et al., 2007b; 
Shen et al., 2009; Guan et 
al., 2010; Ye et al., 2010; 
Chen et al., 2011a; Koh et 
al., 2011; Zeng et al., 2012; 
Zhou et al., 2013a)

Fructus viticis Chaste tree Mang Jing Zi Fruit Anticancer, 
inflammation

 (Hu et al., 2007b; Guan et 
al., 2010; Chen et al., 2011a; 
Zeng et al., 2012; Zhou et 
al., 2013a)

Vitex negundo Five-leaved chaste 
tree

Huang jing zi leaves Rheumatoid arthritis, 
conjunctivitis, 
trachoma, 
gonorrhoea, 
toothache

 (Diaz et al., 2003; Kunwar 
et al., 2010; Velpandian et 
al., 2013)

Crataegus pin-
natifida

Chinese Haw -- Leaves/Fruit Declining cardiac 
performance, 
Deficiency in 
coronary blood 
supply

 (Kao et al., 2005)

Pavetta crassipes Chiwowo -- Leaves/Aqueous Asthma  (Mali and Dhake, 2011)

Nelsonia canescens Blue Pussyleaf -- Leaf -----  (Mali and Dhake, 2011)

Butea frondosa Koen Forest flame -- Leaves/Aqueous -----  (Mali and Dhake, 2011)

Dalbergia odorifera Dalergia , dalbergia Jiang xiang 
huangtan

Heart wood -----  (Mali and Dhake, 2011)

Bryonia laciniosa Native bryony -- Leaves/Chloroform 
extract

Inflammation  (Aggarwal et al., 2011)

Citrus unshu Tangerine Wenzhou Migan Peels Cancer and inflam-
mation

 (Mali and Dhake, 2011; 
Nagoor et al., 2011)

Centipeda minima Spreedind sneeze-
weed

-- Aerial parts -----  (Mali and Dhake, 2011)

Clausena excavata Clausena Jia juang pi Wood/Aqueous -----  (Manosroi et al., 2005)

Croton betulaster ---- ---- Leaves Cerebral Cortical 
Progenitors, cancer, 
constipation, diabetes

 (de Sampaio e Spohr et al., 
2010; Freitas et al., 2011)

Dimorphandra 
mollis

---- ---- Seeds vascular disorders;
hypertension

 (Freitas et al., 2011)

Artemisia abrota-
num L.

Lad’s love, Old 
Man, Maiden’s 
Ruin

---- Allergic rhinitis  (Remberg et al., 2004)
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(Shen et al., 2009), cell membrane blabbing, chromatin 
condensation, and nuclear fragmentation (Hengartner, 
2000; Haidara et al., 2006; Elmore, 2007b). The positive 
impact of this phenomenon signaling has been recognized 
in cell regulation (Hanahan and Weinberg, 2000; Evan 
and Vousden, 2001). 

Casticin’s inhibitory effects on cell proliferation 
(Song et al., 2010) and induction of apoptotic cell death 
of human cervical cancer HeLa cells (Zeng et al., 2012) 
are primarily mediated by mitochondrial dependent ROS 
generation and activation of caspase -3 and -9 (Chen 
et al., 2011a). Apoptotic cells characteristics such as 
translocation of phosphatidylserine (PS) from internal 
cell surface to external cell surface, in the early stage of 
apoptosis (Jiang et al., 2013). Further, after activation of 
a cascade of various caspases, caspase-3, and PARP are 
cleaved and activated, followed by DNA fragmentation, 
nuclear fragmentation, the appearance of apoptotic bodies 
and cellular shrinkage are considered essential features of 
apoptosis (Shen et al., 2009). In the late stage of apoptosis, 
major DNA with formation of typical DNA ladder of 180 
– 220 bp can be seen (Collins et al., 1997). 

Casticin inhibits the growth of PANC-1 cells by 
arresting the cell cycle at G2/M phase and inducing 
apoptosis through upregulation of Bax protein expression, 
down-regulation of Bcl-2 protein expression and cleavage 
of caspase-3 (Ding et al., 2012). Casticin triggers anti-
proliferative effects and apoptosis in various cancer cells 
including human prostate (Diaz et al., 2003), colon (Tang 
et al., 2013), oral epidermoid carcinoma (Kobayakawa et 
al., 2004), breast cancer (Song et al., 2010), and leukemia 
cells (Diaz et al., 2003; Shen et al., 2009; Righeschi et 
al., 2012). 

Targeting cancer cells by mitochondria-mediated 
apoptosis

Disruption of mitochondrial integrity is an important 
component of the apoptosis execution machinery. It is also 
one of the early events leading to apoptosis, which contain 
pro-apoptotic proteins such as cytochrome c. Extensive 
studies have revealed a rapid release of cytochrome c 
from the mitochondria to the cytoplasm triggered by 
casticin and activation of its signaling in activation of 
mitochondrial signaling in a ROS-dependent manner in 
HeLa cells (Zeng et al., 2012). It has no significant effect 
on Bcl-2 expression but caused decreases in Bcl-XL 
and XIAP (Elmore, 2007b; Chen et al., 2011a). Further, 
apoptosis can be initiated through two alternative signaling 
pathways: the death receptor-mediated extrinsic apoptotic 
pathway and the mitochondrial-mediated intrinsic 
apoptotic pathway (Kok et al., 2005; Reuter et al., 2008). 
It is increasingly becoming apparent that the mitochondria 
play critical roles in the regulation of various apoptotic 
processes leading to cell death (Birt et al., 2001), including 
drug-induced apoptosis (Cory and Adams, 2002). 

It is considered that the mitochondrial, death pathway 
is controlled by members of the Bcl-2 family (Brunelle 
and Letai, 2009; Leibowitz and Yu, 2010), which play 
a central regulatory role to decide the fate of the cells 
via the interaction between pro- and anti-apoptotic 
members. Casticin triggers mitochondrial permeability 

transition (Bradham et al., 1998; Reed et al., 1998; Yang 
and Cortopassi, 1998a; Yang and Cortopassi, 1998b; 
Antonsson and Martinou, 2000), which is required for 
the complete release of cytochrome c. Casticin resulting 
in production of ROS in a caspase-dependent through 
reduction of the ratio Bcl-2/Bax and thus favor apoptotic 
pathways; that are mean Bax, a pro-apoptotic protein in the 
Bcl-2 family, are up-regulated and this induction of Bax, 
release cytochrome c in the cytosol, caspase-3 activation 
and PARP cleavage. In addition, the research carried out 
by (Chen et al., 2011a) reports that the downregulation of 
XIAP likely reflects an increase in protein degradation and 
concluded casticin-induced apoptosis of human cervical 
cancer cells via the mitochondrial death pathway.

Targeting cancer cells by ROS-mediated apoptosis
ROS, active, transitory and oxygenic compounds are 

known mediators of intracellular signaling of cascades, 
including H2O2, O2, and hydroxyl radicals, are metabolites 
of biochemical processes in the body. In the genesis, 
ROS is the result of disordered mitochondria function 
and metabolite augmentation, and there may be ways 
to regulate ROS selectively in cancer cells (Kim et al., 
2010). It is an integrated system to clear ROS in the 
body to maintain balance. Oxidation of cell membrane 
phospholipids, enzymes and DNA (Lin et al., 2007a; 
Appierto et al., 2009) by excessive generation of ROS 
can induce oxidative stress, alter the function of signal 
transduction pathways, platelet aggregation, immune 
control, and the regulation of cell growth, and in some 
cases can also cause necrosis or apoptosis (Chen and 
Chan, 2009; Wei et al., 2010). Moreover, casticin generates 
ROS in human cervical cancer cells and places special 
emphasis that NAC suppressed the apoptosis of HeLa 
cells by casticin which indicated that its apoptotic effect 
is dependent on ROS generation (Chen et al., 2011a). 

Targeting cancer cells by caspase-mediated apoptosis
Caspases play important role in apoptosis via 

triggering of the death receptors and mitochondrial 
pathways to emit various pro-apoptotic signals to 
accomplish the programmed cell death (Nunez et al., 
1998; Thornberry and Lazebnik, 1998). For the overall 
functional aspect of caspases, the activation of the caspase 
cascade requires both initiator caspases, such as caspase-8, 
and -9, and effector caspases, such as caspase-3. It is 
generally recognized that there are two major apoptotic 
pathways: one involves death signals transduced through 
death receptors, and the other relies on a signal from 
the mitochondria (Nunez et al., 1998; Thornberry and 
Lazebnik, 1998; Woo et al., 2003; Li et al., 2005). 

Several studies reveal that both pathways are involved 
in an ordered activation of a set of caspases, which in turn 
cleave cellular substrates leading to the morphological 
and biochemical changes of apoptosis (Woo et al., 2003; 
Yang et al., 2010). The dissipation of ∆Ψm, rapid release 
of cytochrome c from the mitochondria to the cytosol, 
activated caspase-9, -8 and -3 and DNA fragmentation are 
triggered by casticin (Chen et al., 2011a). Furthermore, 
the presence of the inhibitors such as z-VAD-FMK for 
caspase-8 and z-LEHD-FMK for caspase-9 attenuated the 
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apoptosis induced by casticin in human cervical cancer 
PLC-PRF-5 cells (Yang et al., 2011). 

The chemotherapeutic agents cause the dissipation 
of ΔΨm, along with cytochrome c release from the 
mitochondria and the subsequent activation of caspase-9 
through binding to the protein Apaf-1 mediates apoptosis 
(Li et al., 1997; Thornberry and Lazebnik, 1998). Casticin 
is an effective apoptosis-inducing agent in human 
hepatocellular carcinoma (HCC) cells, which acts through 
depleting intracellular GSH content and up-regulating 
DR5, and subsequent activation of caspase-3, -8 and -9. 
It has been shown that that casticin can inhibit the growth 
of HCC cells independent of p53 status and thus can be 
suggested as a good candidate for additional evaluation 
as a cancer therapeutic agent for human HCC as well as 
other types of cancer (Yang et al., 2011). 

Targeting cancer cells by regulating apoptosis related 
proteins 

p53: The cancer suppressor p53, considered as a 
guardian of the genome, is an important factor affects 
the cell response to drug effects on growth inhibition and 
apoptosis induction (O’Connor et al., 1997; Pirollo et al., 
2000). It has also been demonstrated that casticin induced 
apoptotic cell death in p53 mutant or null breast cancer 
cell lines (Haidara et al., 2006) and in p53 mutated human 

cervical cancer HeLa cells (Csupor-Loffler et al., 2009; 
Chen et al., 2011a). Many studies have been carried out to 
supports the notion that cells with wild-type p53 exhibit 
increased sensitivity to radiation or chemotherapeutic 
agents and revealed that cells with mutant p53 sequence 
tends to exhibit less growth inhibition in the screen than 
the wild-type p53 cell lines when treated with the majority 
of clinically used anticancer agents including DNA 
cross-linking agents, anti-metabolites, and topoisomerase 
I and II inhibitors (O’Connor et al., 1997). Whereas, 
cells lacking wild-type p53 expression still undergoes 
apoptosis but need a relatively high doses of radiation or 
chemotherapeutic drugs (Bae et al., 1996). 

Casticin acts in a p53-independant manner with 
regards to its interaction with tubulin, cell cycle arrest 
in G2/M, p21 induction, Cdk1 activity inhibition, cyclin 
A down-regulation and finally induction of apoptotic 
death (Hofseth et al., 2004). As a multi-tasking and 
multi-directional agent in different cells, it is important 
for the suppression of tumor formation. The suppressing 
mechanism of casticin for malignant tumors occurs 
through c-Myc in p53 mutated Hs578T cells (Song et al., 
2010). Furthermore, striking apoptosis was also confirmed 
in human glioma cells, accompanied by the up-regulation 
of caspase-3, p53 and pro-apoptotic protein Bax. These 
effects were absent when the caspase inhibitor z-VAD-
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Table 2. Molecular Targets of Casticin in Different Cancer Types

Type of cancer Cell lines EC50/Concent Targets References
Cervical HeLa, CasKi, SiHa 4µM or 2µM - 

4µM
ROS#, JNK#, Bcl-2$, 
Caspace-3- 9#, Cyclin B1$, 
Bax#, Bcl-xL$, XIAP$, 
MMP#

 (Yang et al., 2010; Chen et 
al., 2011a; Xie et al., 2011; 
Zeng et al., 2012)

Pancreatic PANC-1 40µM or 20µM-
40µM

Bcl2$, Bax#, Caspace-3#  (Ding et al., 2012)

Colon Col2 8.6 +/- 0.3 ng/ml TRAIL#, Bcl-xL$, Bcl-2$, 
survivin$, XIAP$, cFLIP$, 
DR5#

 (Tang et al., 2013)

Breast MCF-7, Hs578T 0.25 and 0.53 
µM/L

c-Myc$, p21#, Bcl-2$  (Song et al., 2010)

Lung A549, H460, H157 1.8 to 3.2 and 
10.32 μM/L

DR5#; NF-kB$, MMP#, 
cytochrome c$, IκB-α$, 
procaspase-9 and -3#, 
XIAP$, Bcl-XL$, Bax#, 
Bid#

 (Koh et al., 2011; Zhou et 
al., 2013a)

Gastric BGC-823, SGC-
7901 and MGC-
803

1 or 5.6 µM  DR5#, ROS#, cFLIP$, 
Bcl-2$, XIAP$, survivin$

 (Wang et al., 2010; Zhou et 
al., 2013b)

Hepatocellular 
carcinoma

HepG2, PLC/
PRF/5

2.0 µM/L CDK1$, cdc25B$, cyclin 
B$, FOXO3a$, FoxM1$, 
CDK1$, p27KIP1#, DR5#

 (Yang et al., 2011; He et al., 
2013)

Glioma U251, GL-15, 
U87, U373

50-100 µM p53#, Bax#, Caspace-3#  (Freitas et al., 2011; Feng et 
al., 2012; Liu et al., 2013)

Leukemia CCRF-CEM; 
CEM/ADR5000, 
K562, Kasumi-1, 
HL-60 

1.57 µM;
10μM; 5.95, 4.82 
and 15.56μM

NF- κ B$, p21waf1#, p27kip1#, 
PI3K/Akt$, caspace-3#, 
PAPR#

 (Shen et al., 2009; Righeschi 
et al., 2012)

Prostate KB, LNCaP, Lu1, 
PC3

0.5-0.7μM , 
28.8μM

ROS#, Bcl-2$, Caspace-3#, 
Bax#

 (Diaz et al., 2003; Meng et 
al., 2012)
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fmk or p53 inhibitor PFTα were applied, suggesting that 
casticin could trigger cell apoptosis in a caspase-3 and 
p53-dependent manner (Liu et al., 2013). Accumulated 
data support that casticin can induces in p53-dependent 
and –independent manner in various cancer cells. Further 
studies are required to confirm these effects on p53 
signaling pathways.

NF-κB: Detail study of literature validated that casticin 
may act in part by affecting NF-κB signaling pathway 
(Gillet et al., 2004; Nam, 2006). The expression of the 
inflammatory mediators is regulated by NF-κB (Ghosh et 
al., 1998). It has been described to inhibit NF-κB along 
with many other flavonoids known as NF-κB inhibitors 
(Gillet et al., 2004; Nam, 2006). NF-κB plays critical 
role in wide variety of physiological and pathological 
processes, such as regulating immune response, cell 
proliferation and apoptosis. They go on to say that 
a number of proteins in case (NF-κB1 and NF-κB2, 
each with two alternatively spliced forms, and REL-A, 
REL-B and c-REL) can form dimers, which are able 
to bind specific DNA motifs in the promoters of target 
genes (Brasier, 2006; Gilmore, 2006; Nam, 2006). These 
heterodimers can activate the transcription of about 200 
target genes (Perkins, 2007). Inactive NF-κB1 or NF-κB2 
proteins are complexes with IκBα (inhibitory κB) proteins 
in the cytosol and the phosphorylation of IκBα by IκBα 
kinase (IKK) leads to IκB degradation and translocation 
of NF-κB1 and NF-κB2 into the nucleus (Kobayakawa 
et al., 2004). 

Further, the ROS-mediated NF-κB pathway is required 
for activation of endothelial cell adhesion molecules (Chen 
et al., 2003). Casticin significantly downregulated vascular 
inflammation, through inhibition of ROS–NF-κB pathway 
in vascular endothelial HUVEC cells (Lee et al., 2012). In 
clinical point view, NF-κB activation is involved in many 
chronic disease conditions, mainly in the development 
of atherosclerosis (Kanters et al., 2003). Nuclear NF-κB, 
p65 translocation and phosphorylation of IκB-α lead to 
the activation of specific target genes including VCAM-1, 
ICAM-1, and E-selectin (Liang et al., 2004). Furthermore, 
the expression of eotaxin, RANTES, VCAM-1, ICAN-1 
and activation of eosinophilic inflammation involved in 
the pathogenesis of asthma is known to be mediated by 
the NF-kB signaling cascade (Wong et al., 2002; Kuldo et 
al., 2005; Zerfaoui et al., 2008; Li et al., 2009). 

PI3K-Akt: Phosphatidylinositol 3-kinase/Akt 
signaling pathway is implicated to be one of the most 
important pathways for cell survival and inhibition of 
apoptosis (Carnero et al., 2008). It has been demonstrated 
that Akt can regulate a number of cellular processes, 
such as cell proliferation and cell growth (Klippel et al., 
1996). Inhibition of phosphate-Akt (pAkt) will induce 
acute myeloid leukemia apoptosis (Papa et al., 2008). 
Inactivating Akt is a key mechanism for apoptosis induced 
by various anti-leukemia drugs (Lee et al., 2005; Loges et 
al., 2006). The PI3K/Akt signaling pathway can override 
G2/M cell cycle arrest induced by anti-cancer agents 
(Lee et al., 2005). Casticin inhibited PI3K/Akt signaling 
pathway in K562 cells and PI3K/Akt inhibitor enhanced 
casticin-induced cell death (Shen et al., 2009). Another 
complementary element ERK and PI3K/Akt signal 

pathway are two important signal pathway associated 
with cell survival (Xia et al., 1995; Kennedy et al., 1997). 

Casticin and its synergistic activity with other 
chemotherapeutic drugs

Casticin is a multi-targeting molecule that enhances 
TRAIL-induced apoptosis and triggers G2/M growth 
arrest through the downregulation of cell survival proteins 
and the upregulation of DR5 receptors through actions on 
the ROS-ER stress-CHOP pathway (Zhou et al., 2013b). 
It is also shown that casticin potentiates TRAIL-induced 
apoptosis through downregulation of cell survival 
proteins and induction of DR5 mediated by ROS (Tang 
et al., 2013). In other hand, a direct effect of casticin on 
cyclin-A could also be involved in Cdk1 inhibition. The 
same author also reported that the anti-apoptotic protein 
Bcl-2 is down regulated, leading to apoptotic cell death 
(Haidara et al., 2006). 

Conclusions and future perspectives 

Casticin, naturally occurring compound, has been 
shown a good pharmacological potentially promising 
therapeutic effect including anti-inflammatory and anti-
tumor effects. Casticin is located in fruits, vegetables, 
seeds, herbs, stems, roots, wood, and flowers of the 
many plants. The previous in vitro and in vivo studies 
demonstrated the potential applications of casticin to 
inhibit the growth of several human cancers by targeting 
cancer cells through a number of parameter including 
ROS, and capase-mediated apoptosis or by regulating 
apoptosis related proteins such as NF-κB, p53, and PI3K-
Akt. Furthermore, casticin has synergistic activity with 
other chemotherapeutic drugs such as TRAIL, which 
enhance to induce apoptosis and triggers G2/M growth 
arrest through the downregulation of cell survival proteins 
and the upregulation of DR5 receptors through ROS-ER 
stress-CHOP pathway (Tang et al., 2013; Zhou et al., 
2013b). 

Having regard to the foregoing investigations, this 
review suggests that casticin may represent a novel 
therapeutic agent for the treatment of human cancers. 
This review elaborates the current understanding of the 
chemopreventive effects of casticin through its multiple 
molecular pathways and highlights its therapeutic value in 
the treatment and prevention of a wide range of cancers. 
To support our remarks of the anti-cancer potential of 
casticin, additional studies and preclinical trials are 
required to determine its specific intracellular sites of 
action and derivative targets in order to fully understand 
the mechanisms of its antitumor activity to validate this 
compound as medicinal agent in the prevention and 
treatment of various diseases including cancer.
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