RESEARCH ARTICLE

PLCE1 rs2274223 Polymorphism and Susceptibility to Esophageal Cancer: a Meta-analysis

Li-Yan Guo¹, Ning Yang², Die Hu¹, Xia Zhao³, Bing Feng⁴, Yan Zhang¹, Min Zhai^{1*}

Abstract

Purpose: To investigate and study the relationship between the PLCE1 rs2274223 gene polymorphism and susceptibility to esophageal cancer by meta-analysis. Materials and Methods: The literature was searched in Wanfang, CNKI, PubMed, CBM, Web of Science, MEDLINE, EMBASE, Springer, Elsevier and Cochrane databases from the date of January 1st 2004 to April 1st 2014 to collect case-control studies on the PLCE1 polymorphism and susceptibility to esophageal cancer. For the population genotype distributions of both esophagus cancer and control groups, their odds ratios (ORs) and 95% confidence intervals (CIs) were taken as effect indexes. Disqualified studies were excluded. Odds ratios of PLCE1 rs2274223 genotype distributions in the group of patients with esophageal cancer and the group of healthy control were calculated. The metaanalysis software, RevMan5.0, was applied for heterogeneity test, pooled OR and 95% confidence intervals. Sensitivity analysis and publication bias were also explored. Results: A total of twelve case-control studies were included, covering a total of 9, 912 esophageal cancer cases and 13, 023 controls were included. The pooled odds ratio of PLCE1 rs2274223 genotype GA vs AA was 1.29 (95%CI=1.17~1.43), p<0.01, GG vs AA was 1.65 (95% CI=1.32~2.05), p<0.01, GG/GA vs AA was 1.30 (95% CI=1.16~1.46), p<0.01 and GG vs GA/AA was 1.48 (95% CI=1.22~1.80), p<0.01. The PLCE1 rs2274223 polymorphism was thus associated with risk of esophageal cancer in all genetic models. In the stratified analysis by ethnicity, and source of controls, no significantly increased risk was observed for white persons. There was no obvious publication bias detected. Conclusions: This meta-analysis showed there was a significantly association between PLCE1 rs2274223 polymorphism and esophageal cancer in yellow race populations. Due to some minor limitations, our findings should be confirmed in further studies.

Keywords: Esophageal cancer - PLCE1 rs2274223 - gene polymorphism - meta-analysis - case-control study

Asian Pac J Cancer Prev, 15 (21), 9107-9112

Introduction

Esophageal carcinoma (EC) is one of the most common cancers worldwide and ranks as the sixth cause of cancer-related death. It has been estimated that there were nearly 400 thousand new diagnosed cases worldwide per year (Han et al., 2012). It has been suggested that Esophageal carcinoma is a combined effect of multiple factors, which contains both environmental factors and genetic defects. Phospholipase C epsilon1 (PLCE1) may regulate cell growth, The PLCE1 gene is a unique member of the phospholipase family. PLCE1 encodes the phospholipase C epsilon 1 (PLCe1) that catalyses the hydrolysis of phosphatidylinositol-4, 5-bisphosphate into the secondary messengers inositol 1, 4, 5-trisphosphate and diacylglycerol (DAG), which participate in cell growth, differentiation and gene expression. Recent studies have reported that PLCE1 plays crucial roles in carcinogenesis (Zhao et al., 2014) and progression of

several types of cancer, and it has been a hot topic to investigate and study the relationship between PLCE1 rs2274223 polymorphism and susceptibility to esophageal cancer (Yu et al., 2013). Numerous case-control studies and cohort studies on the association of PLCE1 rs2274223 polymorphisms with esophageal cancer susceptibility have been conducted. However, the association PLCE1 rs2274223 polymorphism and esophageal cancer risk has not been elucidated. Therefore, a system review and meta-analysis was performed. Recent studies indicated that rs2274223 was associated with an increased risk of esophageal cancer. Interestingly, another study proved that rs2274223 was associated with a protective effect against esophageal cancer. To date, the association between the rs2274223 polymorphism and the susceptibility of esophageal cancer are inconclusive, partially because of the different effects of the polymorphism on variants of esophageal cancer risk and the relatively small sample size in each of published studies. At home and abroad, there is

¹Department of Public Health, ⁴International Cooperation Department, Jining Medical University, ²Department of Physical Examination Center, the Affiliated Hospital of Jining Medical University, ³Department of Cardio-Thoracic Surgery, The First People's Hospital of Jining City, Jining, China *For correspondence: zmpljyhj@163.com

Li-Yan Guo et al

no special quantitative comprehensive study on esophageal carcinoma and PLCE1 rs2274223 gene polymorphism. Therefore, we performed a meta-analysis on these eligible studies to investigate the precise relationship PLCE1 rs2274223 polymorphism and susceptibility to esophageal cancer, which would have a much greater possibility of reaching reasonably strong conclusions.

Materials and Methods

Identification and eligibility of relevant studies

Wanfang, CNKI, PubMed, CBM, Web of Science, MEDLINE, EMBASE, Springer, Elsevier and Cochrane databases were carried out to find relevant papers using the following search equation (PLCE1 or phospholipase CE1 or PLCE1 rs2274223 or phospholipase or phospholipase C epsilon 1) and (genetic polymorphism or susceptibility or carcinoma of the head and neck or SCCHN) and (esophageal cancer or esophagus or esophageal neoplasm or digestive tract cancer or carcinoma of the esophagus or esophageal carcinoma). The selection was done without restriction on language, but they only included published articles written in English or Chinese. We used the PubMed option "Related Articles" for each study to get additional potentially relevant articles. Reference lists were checked and researchers were contacted for additional literatures.

Selection criteria

Studies were selected if they met the following criteria: (1) the study investigated the association between PLCE1 rs2274223 polymorphism and the risk of esophageal cancer, (2) association study with a case-control design, (3) contained available genotype frequency or data sufficient to compute these values, (4) odds ratios (ORs) or available data for their calculation were reported, (5) genotype distribution in the control population consistent with HWE, (6)genotypes must be confirmed through Molecular biological technology. Relevant articles published were from January 1st 2004 to April 1st 2014. Studies excluded if conference abstracts, narrative reviews.

Data extraction and quality assessment

According to pre-established selection criteria, relevant data were systematically extracted by observer using a standardized form. The researcher collected the following data: the first author, year of publication, ethnicity of the study population, cancer type, the genotypes frequencies of the PLCE1 rs2274223 polymorphism between patients and controls, language of publication, source of country, design of study, sample size, source of control, genotyping method, evidence of HWE, etc.

The quality of studies was assessed according to the Strengthening the Reporting of Genetic Association Studies (STREGA) criteria (Little et al., 2009), and studies according with STREGA criteria were defined as highquality studies.

Statistical analysis

Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were employed to estimate the strength of

association between the PLCE1 rs2274223 polymorphisms and esophageal cancer susceptibility. Heterogeneity among the studies included in the meta analysis was evaluated by the chi-square based Q test and quantified by the I² metric. When no statistical heterogeneity was found (I²<40% or P(Q)>0.10), the ORs and 95%CI would be estimated for each study in the fixed-effect model. Otherwise, the random-effect model was applied (Ding et al., 2011; Pan et al., 2013; Wei et al., 2013; Wang et al., 2013). Statistical tests were performed using the program Review Manager 5.0 software. We also performed subgroup analysis to investigate potential sources of heterogeneity. The funnel plot was drawn to evaluate publication bias and the unsafe coefficient were also done to check the publication bias. Sensitivity analysis was carried out by sequential omission of individual studies. The Hardy-Weinberg equilibrium (HWE) in the controls was evaluated in our meta analysis and p < 0.05was considered representative of a departure from HWE. All statistical tests were two-sided. The recessive genetic model, dominant genetic model and additive genetic models were used to calculate the pooled ORs and 95%CIs for performed by ethnic group and source of controls. In addition, allelic G was assumed to be a risk factor of esophageal cancer.

Results

The flow diagram illustrates the main reasons for studies searching and selecting (Figure 1), and the selected study characteristics were summarized in Table 1. A total of 12 eligible publications (Bye et al., 2012; Dura et al., 2012; Gu et al., 2012; Hu et al., 2012; Palmer et al., 2012; Song et al., 2012; Zhou 2012 (unpublished); Chen et al., 2013; Cui et al., 2013; Duan et al., 2013; Piao et al., 2013; Wang et al., 2013) concerning the PLCE1 rs2274223 polymorphisms and 9912 cases and 13023 controls were included in the meta-analysis. The genotype distribution of the controls in all the studies was consistent with Hardy-Weinberg equilibrium. Among the 12 studies, there were 6 studies of population-based population and 6 studies of hospital-based population. The 12 studies included 9 studies of yellow race, 2 studies of white race and 1study of black race. Among the 12 studies, there were 10 studies of English and 2 Chinese.

Quantitative synthesis

The evaluation of the association between the

Figure 1. Flow Diagram Summarizing the Search Strategy

DOI:http://dx.doi.org/10.7314/APJCP.2014.15.21.9107 PLCE1 rs2274223 Polymorphism and Susceptibility to Esophageal Cancer: a Meta-analysis

PLCE1rs2274223 polymorphism and the susceptibility to esophageal cancer is presented in Table 2 and Figure 2. Heterozygote comparison, GA vs AA, GG vs AA, GG/ GA vs AA and GG vs GA/AA have high probabilities of statistical heterogeneity (*P value* =0.05, 0.003, 0.002 and 0.01 respectively, I²=47%, 64%, 68% and 58% respectively). So the random-effect model was applied. Overall, the variant G allele of rs2274223 could increase the risk of esophageal cancer in all genetic models (GA vs AA: OR=1.29, 95%CI=1.17~1.43, *p*<0.01; GG vs AA:OR=1.65, 95%CI=1.32~2.05, *p*<0.01; GG/GA vs AA:OR=1.30, 95%CI=1.16~1.46, *p*<0.01, GG vs GA / AA:OR=1.48, 95%CI=1.22~1.80, *p*<0.01).

Additionally, in the analysis stratified by source of control (Table 2 and Figure 3), the PLCE1 rs2274223 polymorphism was not linked to a higher risk for esophageal cancer in GG/GA *vs* AA of the studies based on population, but it was linked to a higher risk for esophageal cancer in other models, their OR and 95%CI: GA *vs* AA: 1.21 (1.08, 1.35), GG *vs* AA: 1.40 (1.14, 1.73), and GG *vs* GA/AA: 1.31 (1.06, 1.60), respectively. However, the PLCE1 rs2274223 polymorphism was linked to a higher risk for esophageal cancer in the studies based on hospital. OR and 95%CI: GA *vs* AA: 1.38 (1.29, 1.48),

GG vs AA:1.98 (1.38, 2.84), GG/GA vs AA:1.47 (1.29, 1.67) and GG vs GA/AA:1.71 (1.22, 2.38), respectively. In the analysis stratified by ethnicity, the PLCE1 rs2274223 polymorphism was significant linked to a higher risk for esophageal cancer in the studies based on yellow race, their OR and 95%CI: GA vs AA:1.38 (1.30, 1.47), GG vs AA: 1.92 (1.60, 2.29), GG/GA vs AA: 1.39 (1.24, 1.57) and GG vs GA/AA:1.68 (1.46, 1.94) respectively; But the PLCE1 rs2274223 polymorphism was not linked to a higher risk for esophageal cancer in the studies based on white race, their OR and 95%CI: GA vs AA: 0.93 (0.64, 1.35), GG vs AA: 1.02 (0.68, 1.54), GG/GA vs AA: 0.96 (0.74, 1.26) and GG vs GA/AA: 1.04 (0.71, 1.54), respectively.

Analysis of source of heterogeneity

When evaluating the association between the PLCE1 rs2274223 polymorphism and the susceptibility to esophageal cancer, we found that there was significant heterogeneity. Thus, we assessed the source of heterogeneity for the dominant model comparison by examining ethnicity, source of controls, genotyping method and year. Subgroup analysis showed that none of these concomitant variables could account for the

Table 1. Characteristics of Literatures Included in the Meta-analysis

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Author year		country	Ethnicity	Source	Cancer	Genotyping			Cases			Controls		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					of controls	type	meth	nod	AA	GA	GG	AA	GA	GG	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bye	2012	South Afri	can Black race	Hospital	EC	TaqMA	N	218	338	116	612	819	276	0.943
Cui 2013 China Yellow race Hospital EC MALDLTOFMS 108 193* 114 133* Duna 2013 China Yellow race Hospital EC PCR-LDR 193 154 30 279 247 54 0 Gu 2012 China Yellow race Hospital EC RTPCR 160 154 30 279 247 54 0 Gu 2012 China Yellow race Population EC TaqMAN 594 400 67 754 399 58 0 Palmer 2013 South Korea Yellow race population EC TaqMAN 74 68 17 0 313 175 263 0 Song 2013 China Yellow race Population EC RTPCR 63.147 10.195* 203 233 253* 253* 254 0 313 175 263.0 233 253* 191 28 0 313 1795 264.0 175	Chen	2013	China Yellow race Ho		Hospital	EC MÁLI		-TOFMS	97	84	19	178	111	11	0.211
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cui	2013	3 China Yellow race I		Hospital	tal EC M		-TOFMS	108	193*		114	4 133*		-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Duan	2013	China Yellow race Hos		Hospital	EC PCR-LE		DR	193	150	38	281	123	16	0.582
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dura	2012	2 Netherlands White race Po		Population	pulation EC		RT-PCR		154	30	279	247	54	0.95
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gu	2012	2 China Yellow race Hosp		Hospital	EC	EC MALDI-TOFM		202	147	30	233	119	19	0.457
Palmer 2012 America White race Population EC TaqMAN 74 68 17 86 107 17 0 Piao 2013 South Korea Yellow race Population EC TaqMAN 74 68 17 86 107 17 0 Song 2013 China Yellow race Population EC TaqMAN 74 68 17 86 107 17 0 Wang 2013 China Yellow race Population EC TaqMAN 74 68 17 86 107 0 0 313 175 263 0 Wang 2012 China Yellow race Population EC PCR-LDR 217 249 203 23 253 253 Table 2. Stratified Analyses of the PLCE1 rs2274223 Polymorp ison of Escale geal Cancer Fiss. Variables Total 50 Race 50 700 713 217 410 1.35 1.38 1.35 1.38 1.3	Hu	2012	China	Yellow race	Population	EC TaqMAN			594	400	67	754	399	58	0.577
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Palmer	2012	2 America White race Popul		Population	EC TaqMAN			74	68	17	86	107	17	0.187
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Piao	2013	South Kor	ea Yellow race	population	1 EC 1BTPCR		ł	153	140	29	909	684	107	0.148
Wang 2013 China Yellow race Population EC RT-PCR 6.3 10.195* 20.3 20.3 253* *Is represent for sum of people with genotype GA and GG; EC, esophageal cancer G; G, We, Hardy Weinberg coulibrium 25.0 25.0 Table 2. Stratified Analyses of the PLCE1 rs2274223 Polymorphism.on Esogene geal Cancer Risk Variables Total 50.8 9 2 66.3 747 0 31.3 Hospital Number of comparisons 12 9 2 50.3790 50.3790 93 (0.64, 1.33) 1.34 Hospital Number of comparisons 12 9 2 50.3790 0.33(0.64, 1.33) 1.35 1.33 1.38 (1.29, 1.27) P(z) <0.01	Song	2012	China	Yellow race	Hospital	ospital EC Sequ		nom 27		2172	_449	3133	1795	263	0.776
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Wang	2013	China	Yellow race	Population	EC	RT-PCR		5.3 147	3 147 10.1		20323	2	53*	-
*Is represent for sum of people with genotype GA and GG; EC, esophageal canc 75 ; HO 'E, Hard – Weinberg equilibrium Table 2. Stratified Analyses of the PLCE1 rs2274223 Polymorphism on Esaggle geal Cancer Risk Variables Total Total Total Total Total Number of comparisons 12 GA vs AA OR 1.29 (1.17, 1.43) P(2) 0.05 P(2) <0.01 P(2) 0.01 P(2) 0.03 P(2) <0.01 P(2) 0.03 P(2) <0.01 P(2) 0.03 P(2) <0.01 P(2) 0.03 P(2) <0.01 P(2) 0.003 P(2) <0.01 P(2) 0.003 P(2) <0.01 P(2) 0.003 P(2) <0.01 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) 0.002 P(2) 0.003 P(2) 0.002 P(2) $P(2)$ 0.003 P(2) 0.003 P(2) 0.002 P(2) $P(2)$ 0.002 P(2) $P(2)$ 0.003 P(2) $P(2)$ 0.002 P(2) $P(2)$	Zhou	2012	China	Yellow race	Population	EC	PCR-LI	DR 🗌	248	227	42	291	191	28	0.646
Table 2. Stratified Analyses of the PLCE1 rs2274223 Polymorphism on E sagle geal Cancer Risk Variables Total 50.0 E sagle geal Cancer Risk Number of comparisons 12 9 2 50.3790 31.3 Hospital Number of comparisons 12 9 2 50.3790 50.3790 31.3 Hospital Number of comparisons 12 9 2 50.3790 50.3790 6 7267/8236 GA vs AA OR 1.29 (1.17, 1.43) 1.38 (1.30, 1.47) 0.93 (0.64, 1.358.0 1.21 (1.08, 1.35) 1.38 (1.29, 1.38) P (z) <0.01	*Is repres	sent for su	m of people	with genotype GA and	I GG; EC, esop	hageal ca	nc 715HO /E	, Hardy–W	Veinberg e	quilibriu	m		25.	0	
Table 2. Stratified Analyses of the PLCE1 rs2274223 Polymorphism on E souther can be apply and the plane of the plane															
Variables Total 50.0 Bace 50.0 White 54.2 ontrol source Number of comparisons 12 9 2 50.0 S $9012/13023$ $8737/10526_{50}$ $508/790$ $9012/13023$ $8737/10526_{50}$ $508/790$ $930.0.64$ 1.35 1.21 $(1.08, 1.35)$ 1.38 $(1.20, 1.47, 1.43)$ $1.38(1.30, 1.47)$ $0.93(0.64, 1.35)$ 1.21 $(1.08, 1.35)$ 1.38 $(1.29, 1.29, 1.27)$ $(1.08, 1.35)$ $1.38(1.29, 1.29, 1.29)$ $P(z)$ <0.01 <0.01 0.14 0.01 0.22 0.16 0.16 0.01 0.01	Table	2. Stra	tified An	alyses of the P	LCE1 rs2	274223	3 Polym	orphis	m.on E 6.3	s angh g	ageal	Cance	r R isk		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Variable	es		Total			EO Rac	e i				54 20	ntrol so	urce	
Number of comparisons 12 9 2 50 3770 6 6 726 78236 GA vs AA OR 1.29 (1.17, 1.43) 1.38 (1.30, 1.47) 0.93 (0.64, 1.33) 1.21 (1.08, 1.35) 1.38 (1.29, 1.37) $P(z)$ <0.01					_	Yellow	50.0	W	/hite	1	Po	pulation	31.	3 Hos	oital
$\begin{array}{cccc} case/control & 9912/13023 & 8737/10526 & 503/790 \\ GA vs AA & OR & 1.29 (1.17, 1.43) & 1.38 (1.30, 1.47) \\ P(z) & <0.01 & <0.01 & 0.731.3 \\ P(Q) & 0.05 & 0.59 & 0.14 \\ F'(\%) & 47 & 0 & 0 \\ GG vs AA & OR & 1.65 (1.32, 2.05) & 1.92 (1.60, 2.29) \\ P(z) & <0.01 & <0.01 & 0.91 \\ P(Q) & 0.003 & 0.24 & 0.69 \\ F'(\%) & 64 & 25 & 0 \\ F'(\%) & 64 & 25 $	Numbe	r of co	mparisons	12	9			2			6		6	5	
GA vs AA OR $1.29 (1.17, 1.43)$ $1.38 (1.30, 1.47)$ $0.93 (0.64, 1.35)$ $1.21 (1.08, 1.35)$ $1.38 (1.29, 1.35)$ $P(z)$ <0.01 <0.01 $0.731.3$ 0.14 0.14 $1.21 (1.08, 1.35)$ $1.38 (1.29, 1.35)$ $P(Q)$ 0.05 0.59 0.14 0.22 0.01 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22	case/co	ntrol	1	9912/13023	8	737/104	526	503/7	790		2645	4787	7	267/82	36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GAVS	ΔΔ	OR	1 29 (1 17 1 4	(3) 1 ⁻¹	8 (1 30	25-0	0.93	(0.64.1	35)	1 21	(1.08	35)	38 (1	29 1 48)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	011 151		$P(\tau)$	-0.01	-00)1	, 1.17)	0.73	13	38.0	-0.01	(1.00,	31	R 01	2, 1.10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$P(\Omega)$	0.05	<0.0 0.5	30		0.14			0.1/	23.7			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$I^{2}(Q)$	0.05	0.2	19		52			42		21		
GG vs AA OR 1.65 (1.32, 2.05) 1.92 (1.60, 2.29) 1.02 (0.68, 1.54) 1.40 (1.4, 1.73) 1.98 (1.38, 2.45) $P(z)$ <0.01 0.91 $=$ <0.01 $=$ $=$ 0.01 $=$ $=$ 0.01 $=$ $=$ 0.01 $=$ $=$ 0.01 $=$ $=$ 0.01 $=$ $=$ 0.01 $=$ $=$ 0.02 $=$ $=$ 0.02 $=$ $=$ $=$ 0.02 $=$ $=$ $=$ 0.02 $=$ <	00		1 ⁻ (%)	4/	5) 10	0 (1 (0	0	1.02	(0 (0 1	5.4)	<u>4</u> 0 1 40	(1 1 4 1		09.(1	20 2 0 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GG vs A	AA	OR	1.65 (1.32, 2.0	5) 1.9	92 (1.60	, 2.29)	1.02	(0.68, I	.54) E	1.40	⁽¹ , ⁴ , ¹		.98 (1.	38, 2.84)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			P(z)	<0.01	<0.0)]		0.91	Jer	٦e	<0.01	ene	- ₹	0.01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			P(Q) = 0.003		0.24		0.69 5		atu	. 50 . 51		j <u>1</u> ,002			
GG/GA vs AA OR 1.30 (1.16, 1.46) 1.39 (1.24, 1.57) $0.96 \textcircled{(0)}{(0)}.74, 1.26)$ $1.13 (0 \textcircled{(0)}{(0)}5, 1.34)$ $1.47 (1.29, 7)$ $P(z)$ <0.01 $0.79 \oiint (0, 10)$ 0.16 0.01 $0.79 \oiint (0, 10)$ 0.16 0.01 0.02 0.00 $P(Q)$ 0.0003 0.009 0.25 0.02 0.08 0.02 0.08 $P(Q)$ 68 61 25 9 0.62 500°			$I^{2}(\%)$	64	25			0	tre	tre	0	ec		7	
$P(z)$ <0.01 0.79 $\stackrel{\text{e}}{\text{cl}}$ $\boxed{\times}$ 0.16 $\stackrel{\text{e}}{\text{cl}}$ <0.01 $P(Q)$ 0.0003 0.009 0.25 $\stackrel{\text{e}}{\text{cl}}$ $\boxed{0.02}$ $\boxed{0.08}$ $P(Q)$ 68 61 25 $\stackrel{\text{H}}{\text{H}}$ $\boxed{0.22}$ $\boxed{0.02}$ $\boxed{0.08}$	GG/GA	A vs AA	OR	1.30 (1.16, 1.4	6) 1.3	39 (1.24	, 1.57)	0.96	₩ .74, 1	.26)Ę	1.13	(0.මු5, 1	.34) 1	.47 (1.	29, 1.67)
$P(Q) = 0.0003$ 0.009 0.25 \overline{E} $\overline{D} = 0.02$ \overline{E} 0.08			P(z)	< 0.01	<0.0)1		0.79	tho tho	Ň	0.16	e e	<(0.01	
			P(Q)	0.0003	0.0)09		0.25	wit	ed	0.02	e De	(0.08	
			$I^2(\widetilde{\%})$	61	61			eq	nos	63	sist	50%			
GG vs GA/AA OR 1.48 (1.22, 1.80) 1.68 (1.46, 1.94) 1.04 (2.71, 1.54) 1.31 (1.26, 1.60) 1.71 (1.22, 1.20)	GG vs	GA/AA	OR	1.48 (1.22, 1.8	0) 1.6	68 (1.46	, 1.94)	1.04	Ø.71.1	.54) <u>6</u>	1.31	(1. 56. 1	.60) 1	.71 (1.	22, 2.38)
P(z) <0.01 <0.83 P			P(z)	<0.0	<0.01			agi	۲ م	0.01	/	0.002			
$P(Q) = 0.01$ 0.37 0.38 \bigcirc \fbox 0.61 0.003			$P(\vec{O})$	0.01	0.3	37		0.38	di.	¹ N ²	0.61		(0.003	
$I^{2}(\tilde{\%})$ 58 8 0 $\tilde{\Xi}$ 0 76			$I^{2}(\tilde{\%})$	58	8			0	(IN)	Ne			76		

30.0

30.0

30.0

None

Li-Yan Guo et al

substantial heterogeneity observed (Table 1).

Sensitivity analysis

Sensitivity analysis was performed to assess the influence of each individual study on the pooled OR by sequential removal of individual studies. But the corresponding pooled ORs were not altered materially e.g. Bye, 2012; Palmer, 2012; Dura, 2012; Gu, 2012; Hu, 2012; Wang, 2013; Zhou, 2012; Song, 2012; Chen, 2013; Cui, 2013; Duan, 2013 and Piao, 2013 sequential were removal: GG/GA *vs* AA, OR (95%CI) and *p* value was: 1.32 (1.16, 1.49), p<0.05; 1.34 (1.19, 1.49), p<0.05; 1.30 (1.14, 1.48), p<0.05; 1.29 (1.13.1.46), p<0.05; 1.29 (1.14, 1.45), p<0.05; 1.29 (1.14, 1.46), p<0.05; 1.26 (1.12, 1.41), p<0.05; 1.29 (1.14, 1.45), p<0.05; 1.20 (1.12, 1.41), p<0.05; 1.20 (1.14, 1.45), p<0.05; 1.20 (1.12, 1.41), p<0.05; 0.20

	е	Cont	rol		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Bye 2012	454	672	1095	1707	10.3%	1.16 [0.96, 1.41]	+
Chen 2013	103	200	122	300	6.0%	1.65 [1.08, 2.22]	-
Cui 2013	193	301	133	247	6.4%	1.53 [1.09, 2.16]	
Duan 2013	188	381	139	420	7.7%	1.97 [1.48, 2.62]	-
Dura 2012	184	344	301	580	8.1%	1.07 [0.82, 1.39]	+
Gu 2012	177	379	138	371	7.5%	1.48 [1.11, 1.98]	
Hu 2012	467	1061	457	1211	10.9%	1.30 [1.10, 1.53]	+
Palmer 2012	85	159	124	210	5.1%	0.80 [0.53, 1.21]	-+
Piao 2013	169	322	791	1700	8.9%	1.27 [1.00, 1.61]	-
Song 2012	2621	5334	2058	5191	13.2%	1.47 [1.36, 1.59]	
Wang 2013	95	242	253	576	7.2%	0.83 [0.61, 1.12]	-
Zhou 2012	269	517	219	510	8.7%	1.44 [1.13, 1.84]	-
Total (95% CI)		9912		13023	100.0%	1.30 [1.16, 1.46]	•
Total events	5005		5830				
Heterogeneity: Tau ² =	0.03; Ch	i ² = 34.	83, df= 1	1 (P = 0.	0003); P	= 68% H	
Test for overall effect	Z = 4.38	(P < 0.0)	001)			0	1.01 0.1 1 10 100

Figure 2. Forest Plot from the Meta-Analysis of PLCE1 rs2274223 Polymorphism ("GG/GA *vs* AA") and the Risk of Esophageal Cancer using Dominant Genetic Model

	COS	e	Odds Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
2.1.1 Yellow race							
Chen 2013	103	200	122	300	6.0%	1.55 [1.08, 2.22]	
Cui 2013	193	301	133	247	6.4%	1.53 [1.09, 2.16]	+
Duan 2013	188	381	139	420	7.7%	1,97 [1,48, 2,62]	-
Gu 2012	177	379	13B	371	7.5%	1.48 [1.11.1.98]	+
Hu 2012	467	1081	457	1211	10.9%	1.30 [1.10, 1.53]	+
Piao 2013	169	312	791	1700	8.9%	1.27 [1.00, 1.81]	+
Song 2012	2621	5334	205B	5191	13.2%	1,47 [1.36, 1.59]	
Wang 2013	95	242	253	676	7.2%	0.83 [0.61, 1.12]	+
Zhou 2012	269	517	219	510	8,7%	1,44 [1.13, 1.84]	+
Subtotal (95% CI)		8737		10526	76.5%	1.39 [1.24, 1.57]	+
Total events	4282		4310				
Heterogeneity: Tau ² :	= 0.02; Ch	P = 20.	37, df = B	(P = 0.0	09); P = 6	31 %	
Test for overall effect	Z= 5.43	(P < 0.0	0001)				
2.1,2 White race							
Dura 2012	184	344	301	580	8.1%	1.07 [0.82, 1.39]	+
Palmer 2012	85	159	124	210	5.1%	0.80 [0.53, 1.21]	
Subtotal (95% Cl)		503		790	13.2%	0.96 [0.74, 1.26]	•
Total events	269		425				
Heterogeneity: Tau ² : Test for overall effect	= 0.01; Ch Z = 0.26	P = 1.3 (P = 0.7	3, df= 1 ('9)	P = 0.25	i); I*= 259	Б	
2.1.3 Black race							
Big 1012	154	672	1095	1707	10.3%	1 18 0 96 1 411	· · · · ·
Subtotal (95% Cl)	404	672	1000	1707	10.3%	1.16 (0.96, 1.41)	•
Total exents	154		1095				
Heterogeneity Not as	onlicable		1000				
Test for overall effect	Z=1.57	(P = 0.1	2)				
Total (95% CI)		9912		13023	100.0%	1.30 [1.16, 1.46]	•
Total events	5005		6830				
Heterogeneity, Tau ² :	= 0.03; Ch	P = 34.	83. df= 1	1 (P = 0.	00031; P	= 68%	terre de la construcción de la c
Test for overall effect	Z= 4.38	(P < 0.0	(100				0.01 0.1 1 10 100
Test for subarrup dif	Terences:	Not an	alicable			1	avours experimental Favours control

Figure 3. Forest Plot from the Meta-Analysis of PLCE1 rs2274223 Polymorphism ("GG/GA vs AA") and the Risk of Esophageal Cancer Stratified by Ethnicity Using Dominant Genetic Model

Figure 4. Funnel Plots Under the Dominant Genetic Model to Identify the Publication Bias

p<0.05; and 1.30 (1.15, 1.48), P<0.05, suggesting that our results were statistically robust.

Publication bias

The funnel plot and the unsafe coefficient were performed to assess the publication bias of the literature. The shape of the funnel plots did not reveal any evidence of obvious asymmetry (Figure 4 shows the funnel plot of the overall GG/GA *vs* AA comparison). Then, the unsafe coefficient was used to provide statistical evidence of funnel plot symmetry. Results still did not show any obvious evidence of publication bias ($N_{fs0.05}$ =421 and $N_{fs0.01}$ =202).

Discussion

The relationship between PLCE1 rs2274223 gene polymorphism and susceptibility to esophageal cancer has caused wide public concern over the recent years. Several studies have shown that relevant genetic loci were rs2274223, rs11187870, rs753724, rs3765524, rs3781264 and rs11187842 and so on. The rs2274223 locates in the 26 exon and causes histidine transfer to arginine (Ma et al., 2011; Zhou et al., 2011; Yu et al., 2013). It has been a hot topic to study the relationship between PLCE1 rs2274223 gene polymorphism and susceptibility to head and neck cancer and the relationship between PLCE1 rs2274223 gene polymorphism and susceptibility to esophageal cancer has caused wide public concern (Gbadegesin et al., 2009; Ma et al., 2011; Abnut et al., 2012; Mai et al., 2012; Cui et al., 2014).

In the current meta-analysis, we ascertained that the PLCE1 rs2274223 polymorphism was significantly associated with increased esophageal cancer risk. To our knowledge, this is the first study to specially investigate the association between the PLCE1 rs2274223 polymorphism and the risk of esophageal cancer across different ancestries.

Most literatures reported the strong association of the susceptibility locus rs2274223 with the increased risk of esophageal cancer, however, it was unlikely that the PLCE1 rs2274223 SNP played a role in esophageal cancer susceptibility. Although many epidemiological studies regarding the PLCE1 rs2274223 polymorphism on the risk of variants of esophageal cancer had been conducted, the results were conflicting and inconclusive because of various reasons, such as different ethnicities, resident countries, sample size, environmental factors, diet habits and genotyping method. To provide a more comprehensive analysis on the association, we carried out this meta-analysis based on 12 case control studies with 9912 cases and 13023 controls and indicated that the PLCE1 rs2274223 polymorphism was associated with increased risk of esophageal cancer.

In the analysis stratified by ethnicity, we observed increased susceptibility to esophageal cancer in the four genetic models, except for 2 studies about esophageal cancer in white race. Although the exact mechanism for these ethnic differences is still unknown, one possible reason is due to differences in genetic backgrounds and in the environmental and lifestyle context. Esophageal cancer is the result of diverse gene-environment interactions (Wu et al., 2006; Tang et al., 2011; Wang et al., 2011; Zhao et al., 2011; Zhao et al., 2012; Yang et al., 2013). In addition, because of the gene-gene interaction, the influence of the PLCE1rs2274223 polymorphism might be masked by the presence of other genes which were unidentified yet in the development of cancer. Other factors such as selection bias, different selection criteria and limited number of studies with available data may have insufficient statistical power to detect a difference and may also generate a fluctuated risk estimate.

Some limitations of this meta-analysis may have affected the objectivity of the conclusions and should be considered in interpreting the results. Firstly, the quantity of selected studies was not sufficiently large for a comprehensive analysis, and these studies include yellow race, white race and black race, however, only a study is about black race; Secondly, we only focused on the PLCE1 rs2274223 polymorphism, and did not cover the other polymorphisms of genetic locus. It is possible that the potential role of the examined polymorphism is diluted or masked by other gene-gene or gene-environment interactions; Thirdly, potential published bias cannot be completely ruled out, because we only retrieved studies published articles. Fourthly, because of limitation in language, we only retrieved studies from English and Chinese journals; Fifthly, esophageal cancer is the result of diverse gene-environment interactions, we could not retrieve more detailed individual data which were available, such as occupation, histological types and so on; Sixthly, there are two Chinese literatures among these selected literatures. Overall, in spite of these limitations, our present meta-analysis also had some advantages. Firstly, we estimated the association conclusively between the PLCE1 rs2274223 polymorphism and esophageal cancer susceptibility, and further showed the significant association especially among Asians rather than Europeans; Secondly, funnel plot and unsafe coefficient were used to test the publication bias of the included studies. Both the shape of funnel plot and unsafe coefficient's results show no obvious publication bias; Thirdly, we pooled a substantial number of cases and controls from different studies and avoid limitation of resident location, which greatly increased the statistical power of the analysis. This suggests that the publication bias have little effect on the results in our study and the results of our meta-analysis are relatively stable.

In conclusion, our meta-analysis suggests that the PLCE1 rs2274223 polymorphism was obviously associated with esophageal cancer susceptibility, however, the PLCE1 rs2274223 polymorphism was not linked to susceptibility of esophageal cancer in the studies based on white race. There were relationship between many genetic locus polymorphism with esophageal cancer susceptibility (Peng et al., 2004; Wu et al., 2006; Zhao et al., 2011; Wang et al., 2011; Tang et al., 2011; Zhao et al., 2012; Yang et al., 2013).

This meta analysis only addressed the association of PLCE1 rs2274223 polymorphism with esophageal cancer susceptibility, however, we believe that further studies assessing the effect of gene-gene or geneenvironment interactions may eventually achieve a more comprehensive understanding. This meta-analysis provides an anchoring point for better understanding of the pathogenesis of esophageal cancers and a more sufficient and reliable evidence.

Acknowledgements

This study was funded by Jining Medical University key research project funding, the number of fund project was JY2013KJ001.

References

- Abnet CC, Freedman ND, Hu N, et al (2012). Genomewide association studies of gastric adenocarcinoma and esophageal squamous cell carcinoma identify a shared susceptibility locus in PLCE1 at 10q23. *Nat Genet*, **44**, 1090-7.
- Bye H, Prescott N J (2012). Distinct genetic association at the PLCE1 locus with oesophageal squamous cell carcinoma in the South African population. *Carcinogenesis*, **33**, 2155-61.
- Chen YZ, Cui XB, Pang XL, et al (2013). Relationship between rs2274223 and rs3765524 polymorphisms of PLCE1 and risk of esophageal squamous cell carcinoma in a Kazakh Chinese population. *Chin J Pathol*, **42**, 795-801.
- Cui XB, Chen YZ, Liu L, et al (2014). Heterozygote of PLCE1 rs2274223 increases susceptibility to human papilloma virus infection in patients with esophageal carcinoma among the kazakh populations. *J Medical Virol*, **86**, 608-17.
- Cui XB, Chen YZ, Pang XL, et al (2013). Multiple polymorphisms within the PLCE1 are associated with esophageal cancer via promoting the gene expression in a Chinese Kazakh population. *Science Direct*, **530**, 315-22.
- Duan F, Xie W, Cui L, et al (2013). Novel functional variants locus in PLCE1 and susceptibility to esophageal squamous cell carcinoma: based on published genome-wide association studies in a central Chinese population. *Cancer Epidemiol*, **37**, 647-52.
- Dura P, Bregitha CV, Te Morsche RH, et al (2012). GWASuncovered SNPs in PLCE1 and RFT2 genes are not implicated in Dutch esophageal adenocarcinoma and squamous cell carcinoma etiology. *Eur J Cancer Prev*, **61**, 69-90.
- Ding JH, Wu JZ, Li SP, et al (2011). Polymorphisms of aldehyde dehydrogenase- 2 genotypes and alcohol consumption for the susceptibility of the liver cancer, stomach cancer and esophageal cancer. *Jiangsu Inst Cancer Res*, **38**, 579-83.
- Gbadegesin R, Bartkowiak B, Lavin P J (2009). Exclusion of homozygous PLCE1 (NPHS3) mutations in 69 families with idiopathic and hereditary FSGS. *Pediatr Nephrol*, 24, 281-5.
- Gu HY, Ding GW, Zhang WB, et al (2013). Replication study of PLCE1 and C20orf54 polymorphism and risk of esophageal cancer in a Chinese population. *Springer Science Business Media*, **39**, 9105-11.
- Han ST, Wei WQ, Zhang ST, et al (2012). Risk factors of esophageal cancer in a high-risk area in China. *Chinese General Practice*, **15**, 3745-8.
- Hu HC, Yang JM, Sun YH, et al (2012). Putatively functional PLCE1 variants and susceptibility to esophageal squamous cell carcinoma (ESCC): A case-control study in eastern Chinese populations. *Ann Surg Oncol*, **19**, 2403-10.
- Little J, Higgins JP, Ioannidis JP, et al (2009). Strengthening the reporting of genetic association studies (STREGA) an extension of the STROBE statement. *Genet Epidemiol*, **33**, 581-98.

Li-Yan Guo et al

- Ma HX, Wang LE, Liu ZS (2011). Association between novel PLCE1 variants identified in published esophageal cancer genome-wide association studies and risk of squamous cell carcinoma of the head and neck. BMC Cancer, 11, 1105-9.
- Mai RQ, Cheng YB, Huang YS, et al (2012). Esophageal squamous cell carcinoma and gastric cardia: A denocarcinoma shared susceptibility locus in PLCE1: a meta-analysis. *Plos One*, **8**, 69-214.
- Palmer A J, Lochhead P, Hold G L, et al (2012). Genetic variation in C20orf54, PLCE1 and MUC1 and risk of upper gastrointestinal cancers in caucasian populations. *Eur J Cancer Prev*, 21, 541-4.
- Pan QF, Chen YZ, Liu CX, et al (2012). Real-time fluorescent quantitative PCR assay for detection of ESCC tissue the PLCE1 gene expression. J Nongken Medicine, 34, 385-8.
- Peng XE, Shi XS, Zhou ZJ, et al (2004). Relationship between esophageal cancer and interactions of genes and environmental factors. *World Chin J Digestol*, **12**, 2531-3.
- Piao JM, Shin MH, Kim HN, et al (2013). Replication of results of genome-wide association studies on esophageal squamous cell carcinoma susceptibility loci in a Korean population. *Dis Esophagus*, 1-4.
- Song X, Zhou FY, Zhang LQ, et al (2012). Correlation of PLCE1 gene polymorphism in the smoker/non-smokers, drinking /non-drinking, and BMI subgroups with esophageal squamous cell carcinoma. *J Henan University*, **31**, 186-90.
- Tang WF, Sun B, Gu HY, et al (2011). COX-2 polymorphism and susceptibility to esophageal cancer: A meta-analysis. *Chin J Evid-based Med*, **11**, 1391-4.
- Wang GL, Yan M, Ba YF, et al (2011). MTHFR C677T polymorphism and esophageal cancer susceptibility: a metaanalysis. *Modern Preventive Medicine*, 38, 1103-7.
- Wang J, Dong WG, Guo XF, et al (2013). Association between polymorphisms of epidermal growth factor 61 and susceptibility of esophageal carcinoma: A meta-analysis. *Chin J Evid-based Med*, **13**, 1209-14.
- Wang LD, Bi XL, Song X, et al (2013). A Sequence variant in the phospholipase C epsilon C2 domain is associated with esophageal carcinoma and esophagitis. *Molecular Carcinogenesis*, **52**, 80-6.
- Wei F, Han P, Luo K, et al (2013). P27val109Gly polymorphism and cancer risk: a systematic review and meta-analysis. *Chin J Cancer Prev Treat*, **20**, 1360-5.
- Wu KS, Li K (2006). Meta-analysis on the relationship between genetic polymorphism of cytochrome P450 2E1 and the susceptibility to esophageal cancer. *J Basic Clinical Oncol*, **19**, 13-6.
- Yang JZ, Wang JS, Ji AF, et al (2013). p53 polymorphisms and susceptibility to esophageal cancer in Chinese population: a meta-analysis. *Modern Preventive Medicine*, 40, 808-14.
- Yu S, Guan TP, Tao HQ (2013). Research progress in the relationship between PLCE1 and gastrointestinal cancers. *J Chinese Oncol*, **19**, 809-13.
- Zhao GX, Chai YR, Wang P, et al (2011). Meta-analysis on the relationship between genetic polymorphism of GSTM1and the risk to esophageal cancer. *Chin J Public Health*, **27**, 241-3.
- Zhao L, Wei ZB, Yang CQ, et al (2014). Effects of PLCE1 gene silencing by RNA interference on cell cycling and apoptosis in esophageal carcinomacells. *Asian Pac J Cancer Prev*, 15, 5437-42.
- Zhao XK, Zhou FY, Zhang LQ, et al (2012). Expression of PLCE1 protein in esophageal multistage carcinogenesis. J Henan University, 31, 203-5.
- Zhou RM, Li Y, Wan N, et al (2012). PLC-ε1 gene polymorphisms significantly enhance the risk of esophageal squamous cell carcinoma in individuals with a family history of upper gastrointestinal cancers. *Arch Med Res*, **43**, 578-84.

9112 Asian Pacific Journal of Cancer Prevention, Vol 15, 2014

100.0

75.0

50.0

25.0

0