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Introduction

Survival analyses (Breslow, 1975; Altman, 1992; 
Klein and Moeschberger, 2003; Kleinbaum and Klein, 
2005; Taib et.al. 2008) deals with the application of 
various methods in order to assess the prognosis of a 
patient suffering from a particular disease over a time 
period. With the increased use of computers powered with 
automated tools, storage and retrieval of large volumes of 
cancer data are possible for evaluating the effectiveness 
of a given treatment. Survival estimates largely depend 
on the extent of follow-up information of individual 
patients. A typical problem encountered in survival studies 
is the subjects who are lost during follow-up. Survival 
estimates lack reliability due to loss to follow-up (LFU). 
Incomplete follow-up information was available on LFU 
patients. Standard technique such as the Kaplan-Meier 
(K-M) (Kaplan and Meier, 1958) method assumes LFU 
as random loss and having the same survival probability 
as those on the remaining follow-up. LFU is considered 
as non-random if associated factors for loss influence 
the study outcome. The probability of survival of these 
patients will be different from those who remain on follow-
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up. Hence, the bias in survival estimates largely depends 
on the degree of LFU. If the proportion of LFU is high, 
survival estimates may be over-estimated (Ganesh, 1995; 
Mathew, 1996).

Log-rank test (Mantel, 1966) is the commonly used 
test to assess significant difference between groups of 
survival data containing censored observations. Its test 
statistic is based on comparing expected number of 
deaths under the null hypothesis of no difference between 
groups with the observed number of deaths at each of the 
successive distinct death times under proportional hazards 
assumption. Cox-proportional hazards regression model 
(does not assume a specific mathematical distribution for 
observed survival time) (Cox, 1972) is widely used to 
assess the effect of various prognostic factors on cancer 
survival (conversely failure) after adjusting each for the 
other factors. The model measures hazard ratio (effect of 
an explanatory variable on the hazard or risk of an event) 
of the outcome under the assumption that the hazard is 
constant over the follow-up period. 

Before using log-rank test and Cox-model, proportional 
hazard (PH) assumption needs to be checked as these 
methods will lose power if PH assumption violates. 
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Statistical tests such as Schoenfeld global test (Schoenfeld, 
1980) as well as K-M plots can be used for checking 
PH assumption. Renyi or Supremum test (Renyi, 1953; 
Gill, 1980; Wei, 1984; Davis and Xie, 2011), modified 
Kolmogorov-Smirnov test (Fleming et al. 1980), modified 
log-rank test (Lin and Wang, 2004; Liu et al., 2007; Lin 
and Xu, 2010), two stage test procedure by Qiu and Sheng 
(2008) are a few among the alternate test to log-rank in 
testing the significance of survival probability in presence 
of non-PH. Li et al., (2015) compared various tests for 
checking the significance of survival probabilities and 
showed that for large sample data with more than 60% 
censoring of non-PH variables, Renyi test is one of the 
best alternatives to log-rank test. Similarly, Cox-model 
(Cox, 1972) provides biased inference when survival 
probabilities are non-proportional or the covariates 
depends on time. Time-dependent Cox-model (Fisher 
and Lin, 1999), an extension of Cox-model can be used 
in such situation.

In the present paper, the bias in survival estimates due 
to a high proportion of LFU and presence of a factor with 
non-proportional hazards were illustrated using realistic 
data and provided alternate methods to derive unbiased 
estimates and inferences.

Materials and Methods

Two sets of realistic data, one with a low 5-year LFU 
(<15%) and the other with a high LFU (>40%), of breast 
cancer (BC) patients reported in the Regional Cancer 
Centre (RCC), Trivandrum for the years 2006-2008 and 
2009-2011 respectively were used for illustration. Date of 
diagnosis of BC was considered as the starting date of the 
study or the entry time of patients in to study. Age, stage, 
follow-up time and status at last follow-up were obtained 
from the cancer registry database. Age (a non-PH factor) 
was grouped into <45 years, 45-54 years and >54 years 
and stage (a non-PH factor) was grouped into I, II, III and 
IV based on TNM (Sobin et al., 2009; Gospodarowicz 
and Wittekind, 2009). Subjects who died during the 
course of their follow-up were accounted as ‘event’. All 
other patients were considered as ‘censored’. Five-year 
follow-up time was calculated by subtracting the date of 
last follow-up from the date of diagnosis. Based on the 
two data sets of high vs. low LFU, the bias in survival 
estimates were assessed using K-M plots. 

The data set with low LFU was used for assessing the 
bias in inference for the non-PH factor (age) using log-rank 
test. The log-rank test statistic is based on comparing 
expected number of deaths (Ei) under the null hypothesis 
of no difference between groups with the observed number 
of deaths (Oi) at each of the successive distinct death times 
t1<t2<...<tn and is calculated as:

                                                   

Non-proportionality by age was assessed using 
Schoenfeld statistic, in which residuals on functions of 
time provides non-zero slope for non-proportional hazards 
(Schoenfeld, 1980; Abeysekara and Sooriyarachchi, 2009; 
Xue et al., 2013). Renyi statistic was used (Renyi, 1953) 

for assessing statistical significance in survival by age. 
Its test statistic is derived from a collection of data points 
(X11, C11), (X12, C12), …, (X1N, C1N); . . .; (Xk1, Ck1), (Xk2, 
Ck2), …, (XkN, CkN) from the set (Xki, Cki) where X is the 
survival time and C is the right censoring time from the 3th 
individual in kth group. Associated with each (k,i) will be 
the indicator variable ∆ji=I(X<C) which equals one if event 
occurred and zero otherwise. Yk denotes the number of 
people at risk in group k. The survival time for each group 
k at time t can be represented as:

Instead of taking the sum of the overall time points, 
the numerator of the Renyi statistic is simply

M=Max(Zk (t)) ,

where W is a weight function  and the variance of this 
estimate is 

For a single time point t, the corresponding test 
statistic is                  , where the distribution of B can be 
approximated by a standard Brownian motion process. 
The corresponding p-value (Billingsly, 1968) can be 
computed as:

Further, hazard-ratio corresponding to age (considered 
as continuous variable) was assessed using Cox-regression 
model (PH assumption) and time dependent Cox-regression 
model (need not be satisfied PH assumption), where 
time-dependent variables are those that can change value 
over the course of time. The time dependent Cox model 
(Ata and Sozer, 2007) is given by:

where k* is the product of the levels of the variables 
that do not satisfy the proportional hazards assumption.

The survival analysis using K-M plot, log-rank 
test, Cox- model and time-dependent Cox-model were 
employed using SPSS 11 software. Suitable modification 
in the SAS program (Abeysekera and Sooriyarachchi, 
2009 and Borucka, 2013) for Renyi test and Schoenfeld 
global test were made in the present analysis.

Results

Over-estimated 5-year BC survival of 90% was 
observed for 2009-11 data “with 5-year LFU>40%” 
compared to 67% for 2006-2008 data (with 5-year LFU 
<15%). Not much difference in 5-year survival for early 
stage BC (stage I & II) when the above two data sets 
were used, whereas over-estimated survival probability 
was observed for late stage BC corresponding to 2009-11 
data with higher proportion of LFU. Five-year survival 
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45-54 years: 68% and >=55 years: 66%) showed only 
borderline significance (p-value: 0.069). Hazard ratios 
(HR) for age (continuous variable) were significant when 
Cox-model and time-dependent Cox-model were used, 
however in different directions. HR was 1.012 (95% CI: 
1.004 -1.019) when Cox-model was used and 0.997 (95% 
CI:  0.997- 0.998) when time-dependent Cox-model was 
used (Table 4). 

Discussion

In the present study, we illustrated the bias in survival 
estimates using two large data sets of BC patients treated 
in the RCC, Trivandrum with varying degree of LFU. 
Data with lower follow-up showed over-estimated BC 

for stage III was 58% using 2006-2008 data (5-year LFU: 
10%) and 82% using 2009-2011 data (5-year LFU: 70%) 
and the same for stage IV was 15% (5-year LFU: 5%) 
using 2006-2008 data and 59% (5-year LFU: 62%) using 
2009-2011 data (Tables 1 and 2). 

K-M plot by stage was found to be proportional to 
each other (log-rank p-value <0.001) (Figure 1). Survival 
by age was non-proportional (Figure 2). Survival curves 
for age groups 45-54 years and above 54 years crossed 
at different time points (Table 3) and correspondingly, 
Schoenfeld global test was statistically significant 
(p-value: 0.036). Even though PH assumption was not 
satisfied for survival by age, log-rank test (p-value: 
0.026) showed statistical significance. Renyi statistic 
with respect to age (censoring for age<45 years: 74%, 

Year I II III IV Overall
06-08 09-11 06-08 09-11 06-08 09-11 06-08 09-11 06-08 09-11

1 100.0 100 99.6 99.2 100 97.8 100.0 87.2 99.8 98.4
2 100.0 95.2 97.2 96.1 97.6 89.0 98.6 73.6 97.8 93.4
3 98.7 90.3 94.9 92.0 95.6 81.3 97.6 64.0 95.8 87.7
4 96.1 51.0 91.9 55.2 92.7 49.4 96.3 45.6 92.9 48.5
5 87.8 29.0 86.7 31.2 90.2 30.0 95.0 37.6 88.3 26.0

Table 1. Breast Cancer Follow up Proportion (In %) By Stage 2006-2008 Vs. 2009-2011

Year Stage
I II III IV

06-08 09-11 06-08 09-11 06-08 09-11 06-08 09-11
1 98.7 100 98.4 99.1 94.8 97.9 73.1 88.3

(1.3) 0 (0.5) (0.3) (0.9) (0.6) (3.2) (0.3)
2 97.4 99.3 94.5 97.4 80.9 92.5 42.2 72.4

(1.8) (0.7) (0.8) (0.5) (1.7) (1.1) (3.8) (4.4)
3 96.1 98.6 91.1 96.1 70.2 88.6 27.9 65.1

(2.2) (1) (1) (0.6) (2) (1.3) (3.3) (5.1)
4 94.8 97.2 88 94.3 62.9 84.5 21.1 63.1

(2.5) (1.7) (1.2) (0.8) (2.1) (1.6) (3) (5.1)
5 93.5 97.2 86.1 93.2 58.3 81.9 15.3 59.2

(2.8) (1.7) (1.3) (0.9) (2.1) (1.9) (2.6) (6.1)

Table 2. Breast Cancer Survival (%) [Standard Error: SE (%)] by Stage 2006-2008 vs. 2009-2011

Figure 1. Survival Curve for Breast Cancer Survival 
with respect to Stage (2006-2008)

Figure 2. Survival Curve for Breast Cancer Survival with 
Respect to Age (2006-2008)



Jagathnath Krishna KM et al

Asian Pacific Journal of Cancer Prevention, Vol 181496

survival. Several studies have been reported the bias 
in survival estimates when the proportion of LFU was 
comparatively high (Ganesh, 1995; Mathew, 1996; 
Kristman et., 2004, Manno and Côté, 2004). In the present 
study, it was observed that the bias in survival estimates 
was minimal for early stage BC patients even though the 
LFU proportion was very high in one data set. However, 
overestimated values were observed for late stage BC 
patient survival for the dataset with higher proportion of 
LFU. Several studies have been reported that the prognosis 
of early stage (I and II) BC is better than the late stage 
(III and IV) (SEER). The present study highlighted the 
importance of obtaining adequate follow-up in survival 
analysis when the disease prognosis is poor. 

In order to reduce the bias in survival estimates 
due to LFU, Ganesh (1995) computed breast cancer 
survival using actuarial method by assuming the extreme 
assumptions for all LFU patients as dead or alive. 
Mathew (1996) provided another method for estimating 
loss-adjusted cancer survival using logistic regression 
model and prognostic factors associated with the disease. 
Kristman et al. (2004) reported another method using 
logistic regression model by including a binary exposure 
and confounders in the cohort and a simulation was done 
to identify the optimum LFU proportion which gives least 
bias. Even though several statistical methods have been 
provided to reduce the bias in survival estimates, it was 
suggested to obtain a minimum of 80% follow-up for 
diseases with poor prognosis. 

In the present illustration, hazards by stage were found 
to be proportional during the entire five-year follow-up 
period and hazards by age were non-proportional using 
K-M plot. To support this graphical evidence, Schoenfeld 
global tests also showed significant p-values. Abeysekera 
and Sooriyarachchi., (2009) compared Schoenfeld global 
test with classical methods including Cox-Snell residuals 
and recommended Schoenfeld global test as the most 
reliable method in validating the PH model. 

Li et al., (2015) compared the power of different 

alternative test for log-rank. It was showed that for large 
survival data with more than 60% censoring, Renyi test is 
one of the best alternatives to log-rank test. In the present 
study about 70% of the cases were censored. Hence Renyi 
statistic was useful in estimating the survival in presence 
of non-PH estimates and higher proportion of censored 
observations. In the present illustration, it was observed 
that while PH assumption failed, log-rank test has given a 
significant p-value and Renyi test showed an insignificant 
p-value. Hence when survival data are non-PH in nature, 
appropriate test needs to be employed.

Without checking PH assumption, Cox-model is 
widely used in survival analysis. Xue et al., (2013) 
extended the Schoenfeld residual test for testing the PH 
assumption of Cox model in a case-cohort analysis. Ata 
and Sozer., (2007) discussed time dependent Cox-model 
as an alternative to Cox model in presence of non-PH 
using lung cancer data. In the present study, we obtained 
hazard ratio for the non-PH factor age higher than one  
(null value) using Cox-model whereas the same using 
time-dependent Cox-model was less than one. The hazard 
ratios were significant in both the models. Hence the 
evaluation of PH assumption is essential since its violation 
raises the question regarding the validity of Cox model 
and could result in erroneous results. 

In conclusion, the present illustration showed the 
importance of adequate follow-up to carry out survival 
analysis with a specific degree of precision particularly for 
diseases with poor prognosis and associated risk factors 
are non-proportional. Appropriate methods in survival 
analysis are to be employed to obtain accurate estimates 
and inference and proper checking of assumptions 
before using a statistical test needs to be employed. For 
survival data with non-PH factors, Renyi statistic and 
time dependent Cox model are some alternate methods 
to obtain unbiased inference and estimates.
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Time in Months < 45 Years 45 - 54 Years > 55 Years P-Value
(SE %) (SE %) (SE %) Schoenfeld Global Test Log-Rank Test Renyi Test

1 99.8 (0.2) 99.5 (0.3) 99.7 (0.2)
2 99.6 (0.3) 99.1 (0.4) 98.7 (0.4)
9 97.3 (0.7) 96.7 (0.7) 94.7 (0.9)
15 93.9 (1.1) 90.9 (1.2) 91.2 (1.1) #*0.036 *0.026 0.069
17 92.4 (1.2) 89.9 (1.3) 89.6 (1.2)
24 88.2 (1.5) 81.6 (1.6) 82.7 (1.5)
40 78.2 (1.9) 74.2 (1.8) 73.7 (1.8)

Table 3. Time Points at which Survival Probability (in %) for Age Cross (2006-2008)

#Slope is significantly different from zero (Schoenfeld, 1980); *Statistically Significant

Model Hazard 
Rate (HR)

95.0% CI for HR

Lower Upper
Cox Model 1.012 1.004 1.019
Time Dependent Cox Model 0.997 0.997 0.998

Table 4. Cox Proportional Hazards with Respect to Age

*Statistically significant
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