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Introduction

Colorectal cancer (CCR) is a great health problem 
worldwide, with more than 1.2 million new cases per 
year. It is the third most common cancer and the first in 
the gastrointestinal tract (Allemani et al., 2015). 

Cancer cells secrete various factors including matrix 
metalloproteinases, which degrade the basal lamina, 
releasing tumor cells. The cells are then guided by specific 
molecules to invade blood from endothelial cells, that is 
a barrier to reach the bloodstream. The vascular system 
serves as a path for the migrant cells to reach a target organ 
where they pass again through the barriers of endothelial 
cells. Upon entering these sites, they are lodged in the basal 
lamina and begin to proliferate leading to the formation 
of a tumor. Cell membranes are closely involved in these 
steps and are mainly composed of lipids and proteins. 
The lipids are responsible for at least 50% of the total 
membrane mass (Chiang and Massagué, 2008; Hunter 
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Many studies look for methods that can improve 

the accuracy in diagnosis, prognosis and therapeutic 
strategies, searching for precise molecular markers 
tailored for each patient. Noninvasive methods are also 
required for the diagnosis and follow-up of CRC patients 
(Alexander et al., 2016; Mirnezami et al., 2012).

The advances in genomics, with the understanding 
that not only the knowledge of the DNA sequence but 
also the direct analysis of the products encoded by these 
genes and their metabolites, has led to the development of 
omics. They allow the characterization of global changes 
associated with disease conditions and, consequently, the 
identification of new biomarkers and metabolic pathways 
(Laterza et al., 2006; Weckwerth et al., 2004). 

Recent advances in analytical technologies such as 
mass spectrometry (MS), which emerged as an analytical 
detection tool, supporting the profile determination of 
biologically active substances such as lipids, enabled 
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the lipidomic research. As a branch of metabolomics, 
lipidomics aims the complete analysis of lipid species and 
their biological roles that has attracted increasing attention 
in recent years as a promising area for the detection of new 
biomarkers in CRC (Donato et al., 2015; Li et al., 2014).

The aim of this study was to establish the lipid 
profile of patients with locally advanced, unresectable or 
metastatic colorectal cancer and to identify prognostic lipid 
biomarkers for colorectal cancer using MALDI / TOF-MS 
mass spectrometry techniques.

Materials and Methods

A prospective cohort study in CRC patients with 
advanced tumors (T4, unresectable or metastatic) of both 
genders, aged between 20 and 80 years on treatment by 
the Oncology Group of the complex Hospital São Paulo 
and Universidade Federal de São Paulo was done. The 
study was approved by a local committee and the patients 
and controls signed an informed consent prior to their 
inclusion. 

The individuals who participated in the study were 
divided into 2 groups: the control group and the colorectal 
cancer group .

All patients in the control group had a normal 
colonoscopy. Blood was collected after 12 hours of 
fasting. In the control group before the colonoscopy and 
in the cancer group before the surgical procedure. In 18 
patients with CRC, group blood was collected 30-60 days 
after colorectal cancer resection.

After centrifugation for 15min at 3,000 rpm, for 
plasma separation, the lipids were extracted according to 
the protocol described by Bligh-Dyer. The samples were 
resuspended in 8μL of methanol, placed in duplicate of 
1μL per spot on MTP 384 plate (Bruker Daltonics, Bremen, 
Germany) and topped with 1μL of 2,5-dihydroxybenzoic 
acid (DHB) and 4-hydroxycinnamic acid (CHCA), both 
at the concentration of 7mg/ml, 0.01% trifluoroacetic acid 
(TFA), dissolved in 70% methanol and 30% water. The 
spectra acquisition was performed in the AUTOFLEX 
SPEEDY MALDI TOF / TOF equipment (Bruker 
Daltonics, Bremen, Germany) in a positive mode in the 
range of 700-1200 Da, with frequency 500 u.a., 1,000 
shots / second and 90% power.

Statistical Analysis
Statistical processing was done in MetaboAnalyst 3.0 

software (http://www.metaboanalyst.ca).
For multivariate analysis, the principal component 

analysis (PCA) and the least squares discriminant analysis 
(PLS-DA) were used. The values of R2 and Q2, found 
through cross-validation, were used to determine the 
quality of the models formed by PLS-DA. The parameter 
R2 was a representation of how much variation within 
the set was explained by the components of the model 
and the parameter Q2 indicates the power of projection 
of the model. The PLS-DA models were constructed and 
the importance of the variable in the projection was used 
to identify the 10 ions that had the greatest discriminatory 
effect between the groups in the component with the 
highest projection power.

ROC curves were built to evaluate the performance 
of potential biomarkers, using univariate and multivariate 
analysis. For each lipid survival curves of Kaplan Meir 
was done according to the cutoff value found by the ROC 
curve.

Results

Thirty-seven subjects had been included in the control 
group and 36 patients in the cancer group. The CRC group 
had a great number of males (66.67%). The mean age 
was similar between the groups. Most of the tumors were 
located on the left side (left colon, sigmoid or rectum) and 
were well or moderately differentiated (44.44%). Most of 
the patients had distant metastases (66%) (Table 1).

From the data matrix generated by the MS of the 73 
samples of lipids, 371 Ions was obtained. PLS-DA was 
used to evaluate whether there was a difference between 
the groups. Supervised methods such as PLS-DA try to 
find components that separate the observations considering 
the previously known classes (Figure 1)

Figure 2 shows the ROC curves of the eight first VIP 
lipids listed in Table 3 in cancer patients. The accuracy, 
sensitivity, and specificity of each lipid for detecting 
cancer patients were shown in Table 2. In addition, the 
OR was performed and the association between the higher 
and lower ions expression and the presence of CRC were 
evaluated. The ions 881, 882, 907 and 707 presented 

Group Control (n = 37) Group Cancer (n = 36)

Gender

     Male 15 33.33% 24 66.67% p=0.01

     Female 22 66.67% 12 33.33%

Age

     (mean +/- SD) 58.24 (14,49) 61.69 (12,27)  p=0.13

     Max 84 85

     Min 28 36                

BMI

     Underweight 2 5.56%

     Normal weight 21 58.33%

     Overweight 13 36.11%

Location of the tumor

     Colon right 4 11.11%

     Colon left 32 88.89%

Degree of differentiation

     Well-differentiated 10 27.78%

     Moderately differentiated 16 44.44%

     Poorly differentiated 10 27.78%

Metastasis

     Regional lymph nodes 6 16.67%

     Distant 24 66.67%

     Without metastasis 6 16.70%

Pretreatment

     Without pretreatment  17 47.22%

     QT e/ou RT 19 52.78%

Table 1. Descriptive Analysis of the Cancer and Control 
Groups
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4D) and GP (m / z = 1031.54773 ) p = 0.04 (Figure 4H).

higher strength of association for CRC were increased 
whereas the ions 704, 857, 876 and 1031 had a higher 
binding strength for CRC were lower, when compared 
between groups.

The identification of the ions was done through the 
online database Lipid Maps (http://www.lipidmaps.
org). Hydrogen (H+), sodium (Na+) and potassium (K+) 
adducts were identified and accepted since they are in the 
composition of the solvents and the mass error determined 
as the maximum of 50 parts per million (ppm).

Using the ions with a high contribution to identify the 
difference between the groups we build a multiple logistic 
regression model to calculate the logit test performance 
(P) = log (P / (1-P) = -3.578 + 0.111 704.82635 + 0.354 
857.11525 + 0.329 (Figure 5). Through this equation 
we observe AUC= 0.87, sensitivity 83.33%, specificity 
83.78% (Figure 3) and for a validation test with 1000 
permutations a statistically significant result of p<0.001.

A survival curve was calculated according to the 
concentration (above or below the cut off) for each of 
the eight ions with the greatest contribution to group 
separation (Figure 4). We observed statistically significant 
differences for the lipids: SP (m = z 857.11525) p = 0.04 
(Figure 4C), PK (m / z = 876.20796) p = 0.02 (Figure 

Ion [cut-off] Cancer (%) Control (%) Odds Ratio ( IC 95%) P SEN. ESP.  AUC
704.82635 < cut-off 26 (35.62) 9 (12.33) 0.12 <0.001 0.757 0.722 0.718
[825] ≥ cut-off 10 (13.70) 28 (38.36)  (0.04 - 0.35)
857.11525 < cut-off 31 (42.47) 24 (32.88) 0.3 0.033 0.22 0.778 0.702
[1130] ≥ cut-off 5 (6.85) 13 (17.81)  (0.09 -  0.95)
876.20796 < cut-off 33 (45.21) 28 (38.36) 0.28 0.06 0.541 0.917 0.732
[918] ≥ cut-off 3 (4.11) 9 (12.33)  (0.07 - 1.15)
1031.54773 < cut-off 23 (31.51) 10 (13.70) 0.21 0.001 0.73 0.611 0.693
[486] ≥ cut-off 13 (17.81) 27 (36.99)  (0.08 -  0.57)
882.39725 < cut-off 15 (20.55) 25 (34.25) 2.92 0.025 0.62 0.694 0.669
[866] ≥ cut-off 21 (28.77) 12 (16.34)  (1.12 -  7.58)
907.41589 < cut-off 15 (20.55) 28 (38.36) 4.36 0.003 0.73 0.694 0.731
[743] ≥ cut-off 21 (28.77) 9 (12.33)  (1.60 -  11.86)
881.39308 < cut-off 21 (28.77) 30 (41.10) 3.06 0.033 0.73 0.75 0.745
[1420] ≥ cut-off 15 (20.55) 7 (9.59)  (1.06 - 8.80)
707.91816 < cut-off 19 (26.03) 30 (41.10) 3.83 0.009 0.784 0.611 0.701
[912] ≥ cut-off 17 (23.29) 7 (9.59)  (1.34 10.97)

Table 2. Analysis of the Protection and Risk of Colorectal Cancer According to the Intensity of Each Ion

SEN., Sensitivity; ESP., Specitivity; AUC, area under curve (accuracy)

m/z Categoria Formula Sub Classe
907.41589 Sphingolipids (SP) C79H140N4O37 Gangliosides (SP0601)
857.11525 Sphingolipids (SP) C114H201N5O58 Galβ1-4GlcNAcβ1-3Galβ1-4Glc- (Neolacto series) [SP0505] 
704.82635 Sphingolipids (SP) C64H117NO27 GalNAcβ1-3Galα1-4Galβ1-4Glc- (Globo series) [SP0502]
881.39308 Glycerophospholipid (GP) C76H133O38P Diacilglicerofosfoinositolglicano (GP1501)
876.20796 Policetidios (PK) C36H43O25 Anthocianidina (PK1201)
1031.54773 Glycerophospholipid (GP) C50H89O18P Diacilglicerofosfoinositolglicano (GP1501)
707.91816 Sphingolipids (SP) C64H125NO25P2 Ceramida fosfoinositol (SP0303)
882.39725 Glycerophospholipid (GP) C76H135O38P Diacilglicerofosfoinositolglicano (GP1501)

Table 3. Ions Identified Through the Analysis of PLS-DA

Figure 1. PLS-Da Score Plot Shows Groups Separation 
According to the Principal Components 1 (6.3%) and 2 
(5.2%). The PCA analysis indicates intrinsic differences 
between the groups, which could be observed by the 
MALDI-TOF MS metabolomic profiling.
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Figure 2. A. The ROC Curve Analysis and Box-Plot Shows AUCs, Variable that Indicates the Accuracy of the Each 
Biomarker for CRC Group (A,B, C and D) and Classification in Controls (E,F,G and H). Note that the ROC curve 
analysis was performed only considering the biomarkers selected by PLS analysis

Figure 3. Predictive Model ROC Curve - The blue line in the graph is the ROC curve for the predictive model. The 
AUC values, sensitivity and specificity of the predictive model obtained through the multiple logistic regression 
analysis were 87.80%, 83.33% and 83.78%, respectively, and the optimum cut-off value was 0.41.
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Discussion

The association between lipid metabolism and CRC 
has been revealed in recent decades (Agnoli et al., 2014), 
Lipids not only serve as an energy source, structural 
components of several cell membranes but play an 
important role in cytokine biosynthesis, cell signaling, 
energy metabolism, material transport, proliferation, 
differentiation and development (Lands, 2012; Wüstner, 
2007).

In this study, we investigate the plasma lipid profile 
in patients with advanced CRC. An analytical system 
composed of MALDI - TOF mass spectrometry in order 

to find biomarkers of lipid metabolites that allow the 
diagnosis, prognosis, and follow-up of more advanced 
colorectal cancer cases.

We observed that the spectra obtained from MALDI 
spectrometry clearly had different profiles for the studied 
groups. The lipid profiles of body fluids may reflect the 
general condition of the whole body and indicate the 
existence of certain diseases, such as cancer (Jelonek et 
al., 2013).

Data processing involved multivariate statistical 
analysis such as PCA main component analysis, 
discriminant analysis with PLS-DA partial least squares 
multivariate calibration, which are useful for the 

Figure 4. Kaplan Meier Curve Comparing Groups According to [Cut off] of the Lipids with Greater Contribution to 
Separation of the Groups. Lipids and (m / z): SP (704.82635), SP (707.91816), SP (857.11525), PK (876.20796), GP 
(881.39308), GP (882.39725), SP (907.41589) and GP (1031.54773) corresponding to Figures A, B, C, D, E, F and 
G respectively.
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identification of correlations between lipid metabolites 
and between lipid patterns that are associated with a 
phenotype physiological The PLS-DA method showed 
better separation between groups than the PCA method. 
This superiority was already expected since the PCA 
method is an unsupervised method in which each of the 
main components detects the directions of greater variance 
in the data matrix, while the PLS-DA is a supervised 
method in which data is provided identifying the samples, 
which optimizes the separation between the groups by 
rotating the components of the PCA in order to obtain the 
maximum separation between the classes (Wishart, 2008). 

ROC curves of the eight lipids of greater significance 
were performed to separate the groups. As a way of 
improving these results we propose a multiple logistic 
regression model composed of the 8 selected metabolites 
and we obtain the following predictive model: logit 
(P) = log (P / (1-P) = -3.578 + 0.111 (SP) 704.82635 
+ 0.354 (PD) 857.11525 + 0.329 (PK) 876.20796 + 
0.191 (GP) 1031.54773 - 0.369 (SP) 907.41589 - 0.083 
(GP) 881.39308 - 0.219 (SP) 707.91816 + 0.081 (GP) 
882.39725, which showed high sensitivity and specificity 
in the population of AUC 0.87, sensitivity 83.33% and 
specificity 83.78% and for a validation test with 1,000 
permutations a statistically significant result. Our results 
formed the basis of future prospective studies for other 
cohorts, therefore, its performance should be prospectively 
validated in other populations where blood samples should 
be collected through the same methods.

The ions were higher 881, 882, 907, 707 were higher 
and the others lower 704, 857, 876 and 1,031 was 
associated with CRC, showing that these lipids may play 
role in CRC carcinogenesis.

The lipid classes identified in this study were 
sphingolipids (SP), glycerophospholipid (GP) and 
polyketides (PK). These lipids are present in mammalian 
cells, whose membranes consist mainly of sterols. The SP 
with m/z 704.82635 and 857.11525 were hyper represented 
in the control group, while the SPs with m/ z 907.41589 
and 707.91816 were overrepresented in the CRC group. 
Sphingolipids constitute a class of lipids that are essential 
for the cellular structural integrity and play a role in 
regulating lipid bilayer fluidity. Although the mechanisms 
by which the deregulated metabolites of glycosylated 
ceramide contribute to drug resistance and/or metastasis 
are undefined, such changes are widely observed and 
warrant investigation. Sphingolipids constitute a class of 
lipids that are essential for the cellular structural integrity 
and play a role in regulating lipid bilayer fluidity. Although 
the mechanisms by which the deregulated metabolites of 
glycosylated ceramide contribute to drug resistance and/
or metastasis are undefined, such alterations are widely 
observed and warrant investigation (Byrnes et al., 2009; 
Saltz et al., 2008).

Similar results were observed for GP, the m/z 
1031.54773 were overrepresented in the control and 
the m/z 882.39725 and 881.39308 in the CRC group. 
Glycerophospholipids, also called phospholipids, are 
the main lipids of cell membranes and key components 
in cell metabolism and signaling. In vitro and in vivo 
studies suggest that cyclic phosphatidic acid (cPA), a 

bioactive phospholipid, inhibits the mitosis process and 
prevents invasion and metastasis. Cyclic nucleotide 
phosphodiesterase 3B (PDE3B) activity, that contributes 
to the cleavage of phosphodiester bonds, is also inhibited 
by cPA. The increase of intracellular cAMP and reduction 
of PDE3B activate the cAMP-dependent protein kinase 
A pathway (PKA), which leads to inhibition of CRC 
growth, and proliferation (Kurabe et al., 2013; Tsukahara 
et al., 2013). 

Another lipid class identified with greater contribution 
to the separation of the groups in our study were the PK 
that constitute a great class of secondary metabolites 
(Schümann and Hertweck, 2006). The antitumor 
mechanisms described for anthocyanins (a subclass of 
PK) are attributed to their antioxidant capabilities. A 
study in vitro described by Zhang et al., (2005) showed 
inhibition of the growth of cancer cells in the stomach, 
colon, lung, and breast in more than 60%.

In a recent review, Zhang et al., (2017) showed that 
different studies have observed consistent changes in 
metabolite concentrations of CRC patients regardless of 
the heterogeneity of the groups studied.

Uehara et al., (2016) compared the lipid content 
of gastric cancer tissue to the adjacent non-neoplastic 
mucosa using the MALDI-IMS technique. The authors 
focused on the signal in the m/z 798.5 representing 
16: 0/18: 1 PC, which was higher in the cancer tissue. 
In contrast, the signal intensity in m/z 496.3, 16: 0 LPC 
lysophosphatidylcholine, was lower in cancer lesions.

To determine if LPC class lipids can be used as markers 
in CRC, Zhao et al., (2007) analyzed plasma LPCs from 
133 CRC cancer patients and 125 healthy controls using 
LC-MS. Plasma levels of different LPC forms, including 
18:1 and 18:2, were significantly reduced in patients with 
CRC, suggesting that these lipids could represent potential 
biomarkers. The multivariate analysis in the validation 
set found specificity of 93% and a sensitivity of 82% in 
the development of cancer patients in contrast to healthy 
controls. They proposed a predictive model capable of 
adequately classifying 89% of the T1 tumor,  suggesting 
that may be a marker of early CRC detection.

Dobrzyńska et al., (2005) looking for changes in the 
concentration of PL in the pT3 stage of CRC membranes, 
using qualitative HPLC and the quantitative composition 
of PLs on the membrane observed that the transformation 
of cancer was associated with an increase in the total 
concentration of PL.

The relationship between CRC and lipids will 
be essential to understand the complex system of 
tumorigenesis, to understand the metabolic alterations, 
to identify the main lipid structures, functions, and 
interactions with other lipids, proteins and metabolites. 
However, it is still a difficult and long-term task to 
understand how lipid profiles can be used as biomarkers 
for diagnosis and prognosis of CRC. The standard of 
preparation and extraction, analysis protocols and the 
database of lipid metabolomes is not well established 
yet, which will inevitably lead to different results. The 
progression of cancer involves differential regulation 
of multiple lipids which amplifies the complexity to 
investigate the lipidome in CRC. Despite these challenges, 
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the integration of lipid metabolic strategies in cancer 
research may generate new opportunities to obtain 
information on the diagnosis, prognosis, and prediction 
of individualized therapies (Lee et al., 2012; Yang et al., 
2009).

We consider this study an exploratory research that 
must be continued in a high number of patients, to better 
understand the differences in different stages of the disease 
and also in different part of the colon.

In conclusion, we observed a different lipid profile 
among patients with locally advanced, unresectable 
or metastatic colorectal cancer compared with healthy 
volunteers. These eight ions presented in this study could 
have a greater contribution to become possible biomarkers 
of diagnosis or therapeutically targets for the future. 
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