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Introduction

Disease mapping is defined as the spatial analysis, 
estimation and presentation of disease incidence, 
prevalence, survival or mortality data. It has seen 
a tremendous growth in the last few decades that have led 
to the use of complex models enabling the study of possible 
associations between the disease rates and spatially 
varying covariates (Lawson et al., 2000; Lawson et al., 
2003). 

However most of the work in the field of disease 
mapping studies has been carried out at the univariate 
level considering spatial modelling of a single dis- ease. 
Nevertheless many diseases share common risk factors 
and it can be advantageous both from the epidemiological 
and the statistical point of view to apply models which 
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combine information from related diseases (Knorr-Held 
and Best, 2001). Therefore, multivariate disease mapping 
has emerged, which is defined as the joint modelling of 
the spatial occurrence of two or more diseases or health 
outcomes (Assunção and Castro, 2004). 

Employing this approach we can expect more 
information is available com- pared to considering 
each disease separately. This can lead to benefits like 
the ability to highlight shared and divergent geographical 
patterns of the different diseases. The precision and 
efficiency of estimates can be improved, leading to 
a better identification of hot-spots for less prevalent 
diseases and improved prediction of those diseases. Joint 
disease models allow to suggest possible risk factors 
associated with the diseases, providing stronger and 
more convincing evidence for the underlying risk surface. 
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Finally, the understanding of relationships among diseases 
and ease of interpretation can be increased (Dabney and 
Wakefield, 2005; Dreassi, 2007; Downing et al., 2008, 
Held et al., 2005; Knorr-Held and Best, 2001).

The shared component model has become more 
popular in recent years and several types of this model 
for different data structures have been introduced. This 
model is a Bayesian hierarchical latent variable model 
where the relative risk of each of the two or more diseases 
is split into some different spatially structured latent 
components. Each component is shared by different 
subsets of diseases and the area-specific values of these 
shared components as well as the relative contribution 
(weight) of the component to each relevant disease may be 
estimated (Downing et al., 2008; Dabney and Wakefield, 
2005; Mahaki et al., 2011).

Another recent advance to strengthen inference in 
the subject of disease mapping has been the extension of 
purely spatial models to include time and also space-time 
interaction (Jafari-Koshki et al., 2014; Knorr-Held and 
Besag, 1998; Oleson et al., 2008; Rastaghi et al., 2015). 
Such analyses may have additional benefits over purely 
spatial disease mapping. The ability to study and identify 
the persistence or systematic evolvement of geographical 
patterns over time provides more convincing evidence 
of true variations than a single cross-sectional analysis 
(Bernardinelli et al., 1995; Knorr-Held and Besag, 1998)

However, only a few proposed spatio-temporal models 
could address analyzing multiple diseases jointly. There is 
a growing need to combine methods for spatial-only and 
temporal-only analysis of multivariate data, to enable 
simultaneous investigation of space-time variations in 
multiple health outcomes (Oleson et al., 2008; Richardson 
et al., 2006). 

In this study we aim to combine the idea of multivariate 
shared components with spatio-temporal modelling 
in a joint disease mapping model. To this end, each of 
the shared components in the proposed model considers 
spatial and temporal dimensions. Each component is 
shared between a subset of the diseases and therefore 
represents a different latent variable. The model can be 
applied for any desired number of diseases, time periods 
and spatial areas. 

Cancer is the third cause of mortality after 
cardiovascular disease and car accident in Iran. The rate of 
cancer is expected to be increased in future due to improve 
in life expectancy and changing in the lifestyle (Khoshkar 
et al., 2015). Hence, cancer is an important problem in 
public health in Iran and knowledge about the temporal 
trend and spatial pattern of its incidence, prevalence and 
mortality rates, will lead to better health policies.

According to the last cancer registry reports by 
Iran Ministry of Health, esophagus, stomach, bladder, 
colorectal, lung, prostate and breast cancers are amongst 
the 10 most prevalent cancers in Iran and together account 
for approximately 50% of all cancers (Iran Cancer Registry 
Report, 2005-2006, 2006-2007, 2007-2008, 2009-2010).

A lot of studies with different methods have been 
conducted about the mapping of cancers in Iran (Mahaki 
et al., 2011; Rastaghi et al,. 2018; Nasrazadani et al,. 
2018; Asmarian et al., 2013). These studies have mainly 

used traditional models to estimate the relative risk of 
cancer and a few of them take time aspect into account 
(Jafari-Koshki et al., 2014; Ahmadipanahmehrabadi et 
al., 2018).

Considering the shared risk factors between the seven 
mentioned cancers and due to ageing process of Iranian 
population, increase in the cancer rates, considerable 
geographical variation in differing provinces, it is 
necessary to provide knowledge about the geographical 
distribution at provincial level to recognize the regions with 
high incidence to improve prevention process applying 
advanced statistical models. The present study aims to 
use joint spatio-temporal shared component model to 
investigate shared and distinct temporal and spatial shared 
components regarding the seven prevalent cancers.

In the present study we focus on applying joint 
spatio-temporal shared component model for incidence 
rates of the mentioned seven prevalent cancers in Iran to 
explore their spatial and temporal patterns, and to estimate 
the relative weight of the four shared component for each 
cancer in time periods and geographical areas.

We outline the data, joint spatio-temporal shared 
component models, assignment of prior distributions 
and finally computation and model comparison in 
section 2. We then describe the model comparison 
results and also estimates obtained for the best model in 
the section 3. Finally in section 4, we present statistical 
and epidemiological conclusion and discussion.

Materials and Methods 

Data 
Incidence data for seven cancers including esophagus 

(ICD10 code C15), stomach (C16), bladder (C67), 
colorectal (C18-C20, C26), lung (C34), prostate (C61) 
and breast (C50) cancer in 30 provinces of Iran in 5 years, 
2005-2009, were considered in this analysis. The data have 
been collected and made available by the Iranian Ministry 
of Health and Medical Education (Iran Cancer Registry 
Report, 2005-2006, 2006-2007, 2007-2008, 2009-2010).

Joint Spatio-temporal Shared Component Models 
Let Yijk be the observed number of index cases for 

cancer type k=1,...,7, grouped within province i=1,...,30 
and time period j = 1,…, 5. The expected number of cases 
Eijk in each province and each year were calculated by 
multiplying the national crude incidence rate and the 
estimate of the province population for the corresponding 
year. The latter was based on 2006 census conducted by 
Statistical Center of Iran.

We propose a Bayesian hierarchical model to provide 
improved estimates of area and time period-specific cancer 
relative risks (RR). In this, similarities and differences 
in risk profiles of the diseases were captured by the 
shared and disease-specific components using a shared 
component model, with space-time interactions (Held et 
al., 2005; Downing et al., 2008). As an initial step, it is 
convenient to assume that the number of incidences Yijk 
are conditionally independent Poisson random variables:

7,...,1   ,5,...,1   ,30,...,1           )( ~)(  === kjiEPoissonY ijkijkijkijk θθ
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Model D: Space-time interaction terms, common to all 
diseases (   ) are added to model B

Specification of Priors
In a Bayesian framework prior distributions must 

be defined on all unknown parameters, whether fixed or 
random. We require priors that combine the framework 
introduced by (Besag et al., 1991) (known as BYM model) 
to link risk in space at every time period and time series 
techniques to link risk in time at every area. In this study, 
we assume conditional autoregressive (CAR) normal 
prior distribution to capture local dependence in space 
for the shared spatial random effects λi = (λi1,…, λi30) 
i.e., λl ̴ N(0, Q−1) (Oleson et al., 2008; Richardson et al., 
2006). Similarly, for the shared temporal effects tj , in 
order to capture local dependence in time, we use first 
order random walk priors, that is, the one dimensional 
version of the CAR normal prior distribution, where 
the neighborhood matrix is defined by the temporal 
neighbors of period j as periods j1 and j + 1 near 1 and 
none of them were significant. For the disease specific 
heterogeneity terms, we assign a zero-mean multivariate 
normal distribution with covariance matrix Σ to allow 
for correlation between the relevant diseases in each 
space-time unit.

For the disease specific intercepts αk we use 
a non-informative flat prior and for the logarithm of spatial 
and temporal scale parameters (log(δ) and log(ψ)) we 
assign multivariate normal distribution with mean 0 and 
variance 5 (Oleson et al., 2008; Richardson et al., 2006).

For all the precision parameters of the spatial 
and temporal CAR priors we follow Wakefield 
(Wakefield et al., 2001) and use weakly informative 
independent hyper- prior Gamma (0.5, 0.0005) 
distributions. The inverse of the covariance matrix Σ-1 is 
given a Wishart (S, 7) prior distribution, where the scale 
parameter S is a 7- dimensional identity matrix. There are 
various choices of prior distributions for the space-time 
interaction effects. In the present study, we only have 
5 periods; too few to show any reliable space-time jumps 
in risk of long latency chronic disease such as cancers. 
Thus, we assume a simple exchangeable hierarchical 
structure for the interaction terms       (Oleson et al., 2008; 
Richardson et al., 2006).

Computation and model comparison
In order to estimate the parameters, we employ 

Markov Chain Monte Carlo (MCMC) techniques, using 
the software WinBUGS (Lunn et al., 2000). Posterior 
inference is based on a total of 50,000 simulated 

where ϴijk represent the true, but unknown underlying 
relative risks. This Poisson model is widely used for 
cancer mapping, and arises as an approximation to the 
binomial distribution for rare and noninfectious diseases. 
Then following Richardson et al., (2006), we modeled 
the variability of the observed incidence counts around 
the relative risks:

With αk the intercept for cancer k. The cancers used 
here are esophagus (k = 1), stomach (k = 2), bladder 
(k = 3), colorectal (k = 4), lung (k = 5), prostate (k = 6) 
and breast (k = 7) cancers, respectively.

We introduce a space-time structure on the log 
scale by considering different hypotheses on the joint 
structure of μijk. 

We consider four variations of the joint spatio-temporal 
shared component model to estimat̴e relative risks of 
the diseases in space and time. The models differ in their 
assumption of the space- time structure and the inclusion 
or not of a heterogeneity term. We start with a simple 
additive decomposition of the shared part without 
heterogeneity and space-time interaction terms (model A),

Model A: It contains no spatio-temporal interaction terms 
and no heterogeneity either:

 

with λli and tlj with l = 1, 2, 3, 4 represent the spatial 
and temporal effects of shared smoking component 
(l = 1) common to esophagus, stomach, bladder and 
lung cancers, overweight and obesity component (l = 2) 
relevant to esophagus, colorectal, prostate and breast 
cancers, inadequate fruits and vegetables consumption 
(l = 3) for esophagus and stomach cancers and low 
physical activity factors (l = 4) common to colorectal and 
breast cancers respectively which capture the differential 
spatial and temporal effects among the relevant cancers. 
The unknown parameters δ and ψ are included to allow for 
different risk gradients of the shared spatial and temporal 
components for the relevant diseases and they represent 
the relative weight of the contribution of the shared 
terms to the risk of the relevant cancers, and are set to 
zero if the component is not relevant to the specific cancer.

In model B we include cancer-specific heterogeneity 
(                    ) to capture possible variations not explained 
by the terms included in model A. In model C we add 
space-time interaction terms common to all diseases (      ) 
to model A. The shared space-time interaction effects 
capture deviations from space and time main effects and 
may highlight space-time clusters of risk. Finally we build 
Model D by combining models B and C.
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draws keeping every 10th, after discarding the first 
20,000 iterations as a burn-in sequence. To assess 
the convergence of our MCMC sampler, we use 
the diagnostics of Gelman and Rubin (1992) as well as 
graphical checks of the sample paths. Also, to produce 
the maps we use geographical information system (GIS).

Models comparison is done via the Deviance 
Information Criterion (DIC). DIC is computed 
as sum of deviance D¯ and number of effective parameters 
pD. The deviance is the Bayesian model fit, computed 
as the estimated expected posterior of minus two 
times log-likelihood of the observed data. Hierarchical 
models always have a high number of (correlated) 
parameters. However, due to the correlation between 
parameters, the true complexity is usually much lower, 
for examples when parameters are estimated to be zero, 
i.e., are not needed in the model. The number of effective 
parameters pD is an estimate of the number of parameters 
effectively used in the model, that is, it estimates 
the complexity of the model. More details can be found 
in (Spiegelhalter et al., 2002).

Results

Table 1 provides a brief summary of the data on 
incidence of the seven considered cancers in each year. 
Among the seven cancers considered in this study, 
the most and least common cancers were breast and lung 
cancers.

In Table 2 model comparison criteria for the four 
models and also for the multivariate spatial shared 
component are presented. The first column of the table 
D¯ can be considered as a Bayesian measure of fit gives 
the expectation of the posterior deviance. The second 
column pD is the number of effective parameters and can 
be considered as a measure of complexity. Among the 
models, Model A had the poorest overall fit and the lowest 
complexity. Great improvements in the DIC values are 
seen by including heterogeneity or space-time interaction 
parameters. Model D, which includes both space-time 
interaction and heterogeneity terms has the best absolute 
model fit, but at the expense of many more effective 
parameters. Interestingly, this model has more effective 
parameters than the model B resulting in a slightly larger 
DIC. This suggests that the heterogeneity and interaction 
terms are competing to explain the space-time structure 
not captured by the main effects. For reasons of brevity, 
we only present maps and graphs resulting from model B. 
In Table 2 we also reported sum of the DIC values from 
the corresponding multivariate spatial shared component 
model in each year. This model was worse than all the 
models except model A. This suggested that the model 
can indeed be improved by considering the temporal 
structure of the data.

The map of the smoothed RRs for the cancers 
corresponding to model B is presented in Figure 1. 
The maps for other cancers are available in the online 
appendix. According to the maps for esophagus and 

Cancer 2004 2005 2006 2007 2008 Total
Esophagus 2,584 3,046 3,176 3,164 3,859 15,829
Stomach 5,209 5,836 5,903 6,235 7,710 30,893
Bladder 3,301 3,936 4,053 4,417 4,833 20,540
Colorectal 3,407 4,056 4,493 4,887 6,178 23,021
Lung 1,508 1,788 1,922 2,066 3,048 10,332
Prostate 2,072 2,722 2,815 3,164 3,732 14,505
Breast 4,683 5,981 6,675 7,192 8,589 33,120

Table 1. Registered Number of the Cancers in Years 2004-2008

Model D¯ pd DIC

Model A: no interaction + no heterogeneity 13327.40 119.01 13446.40
Model B : heterogeneity 7318.99 764.68 8083.67
Model C: interaction 7360.73 788.166 8148.90
Model D: interaction + heterogeneity 7314.78 774.97 8089.75
Spatial shared component model 7318.54 891.96 8210.49

Table 2. DIC for Comparing the Models

Posterior median (95% CI) in year:
Component 2004 2005 2006 2007 2008
1 0.99 (0.94-1.05) 1.00 (0.97-1.04) 1.01 (0.98-1.05) 1.00 (0.97-1.04) 1.00 (0.94-1.04)
2 1.01 (0.96-1.06) 1.00 (0.97-1.04) 1.00 (0.97-1.03 1.00 (0.97-1.04) 0.99 (0.94-1.03)
3 1.00 (0.95-1.06) 1.00 (0.95-1.03) 1.00 (0.96-1.03) 1.00 (0.97-1.05) 1.00 (0.95-1.05)
4 0.99 (0.93-1.04) 1.00 (0.96-1.04) 1.00 (0.96-1.03) 1.01 (0.97-1.05) 1.01 (0.96-1.06)

Table 3. Estimated Relative Risks for the Temporal Effects of the Four Components in each Time Period
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stomach cancers the northern part of Iran was the area of 
high risk. For bladder cancer Gilan, Semnan, Fars, Isfahan, 
Yazd and Eastern Azerbaijan were found as the provinces 
with higher risk. For bladder and lung cancer, the areas 

Figure 1. Posterior Median Relative Risk for Esophagus 
Cancer in Iran Provinces between 2004 and 2008

Figure 2. Estimated Relative Risks for the Spatial 
Effects of the Four Components. A: Sharing for esophagus, 
stomach, bladder and lung (representing smoking), 
B: Sharing for esophagus, colorectal, prostate and breast 
(representing overweight and obesity), C: Sharing for 
esophagus and stomach (representing inadequate fruit 
and vegetables consumption), D: Sharing for colorectal 
and breast (representing low physical activity).

Esophagus Stomach Bladder Colorectal Lung Prostate Breast

Spatial Esophagus 1 1

2 1

3 1

Stomach 1 0.36 (0.18-0.62) 1

3 0.88 (0.40-1.91 ) 1

Bladder 1 0.58 (0.26-1.17) 1.61 (1.26-2.14) 1

Colorectal 2 0.31 (0.15-0.62) - - 1

Lung 1 0.63 (0.28-1.39) 1.75 (1.19-2.91) 1.08 (0.74-1.77) - 1

Prostate 2 0.50 (0.22-1.07) - - 1.00 (0.50-1.95) - 1

Breast 2 0.54 (0.24-1.23) - - 1.09 (0.53-2.26) - 1.68 (0.85-3.44) 1

4 - - - 0.93 (0.35-2.28) - - -

Temporal Esophagus 1 1

2 1

3 1

Stomach 1 1.03 (0.35-3.04) 1

3 0.88 (0.40-1.91 ) 1

Bladder 1 0.97 (0.33-2.93) 0.97 (0.34-2.79) 1

Colorectal 2 0.95 (0.32-2.82) - - 1

Lung 1 0.94 (0.32-2.77) 0.94 (0.32-2.74) 0.97 (0.32-2.90) - 1

Prostate 2 0.92 (0.31-2.78) - - 0.98 (0.34-2.90) - 1

Breast 2 0.89 (0.30-2.66) - - 0.96 (0.32-2.81) - 1.01 (0.33-3.13) 1

4  - - - 0.96 (0.33-2.79) - - -

Table 4. Posterior Median (95% CI) Relative Weights of the Shared Components on the Spatial and Temporal 
Variation of the Relevant Cancers
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with higher risk were the northwest. For prostate and 
breast cancers, Isfahan, Yazd, Fars, Tehran, Semnan, 
Mazandaran and Razavi Khorasan were recognized as 
the areas with higher risk.

The estimated effects of the four shared spatial 
components λl are mapped in Figure 2. The component A, 
shared by esophagus, stomach, bladder and lung, can be 
considered to represent the effect of smoking and had 
more effect in Gilan, Mazandaran, Chaharmahal and 
Bakhtiari, Kohgilouyeh and Boyerahmad, Ardebil and 
Tehran provinces respectively. Component B, shared 
by esophagus, colorectal, prostate and breast cancers 
can be considered to represent the effect of overweight 
and obesity. For this component the largest effect was 
found for Tehran, Razavi Khorasan, Semnan, Yazd, 
Isfahan, Fars, Mazandaran and Gilan, respectively. 
The component C is shared by esophagus and stomach 
cancers and is considered to represent the effect of 
inadequate fruit and vegetable consumption. It did not 
show any significant differences among the provinces. For 
the component D, shared by colorectal and breast cancers 
and considered to represent the effect of low physical 
activity, North Khorasan, Ardebil, Golestan, Ilam, Razavi 
Khorasan and Southern Khorasan were found to have the 
largest effects respectively.

Table 3 represents the temporal effect of the shared 
components. As expected, all relative risks in each time 
period were near 1 and none of them were significant.

Table 4 shows the level of importance or relative 
weight δ, that each shared component has for 
the spatial and temporal variation of the relevant cancers. 
The first component (considered to represent smoking) 
is significantly more important for stomach than for 
esophagus, bladder and lung cancers. The effect of 
second component (representing overweight and obesity) 
was significantly more for colorectal than of esophagus 
cancer. The two last components (representing low 
physical activity and inadequate consumption of 
fruits and vegetables) did not show any significant 
differences according to the weights on the relevant 
cancers. The figures in the main body of the table represent 
the weight of the cancer listed along the columns to 
the cancers listed along the rows (with 95% confidence 
intervals). If the RR is greater than 1.00 the cancer along 
the columns has more weight, if the RR is less than 1.00 
the cancer along the rows has more weight.

None of the components shows significant differences 
according to the weights on the temporal changes of the 
relevant cancers.

Discussion

In this paper, we have combined the ideas of 
multivariate spatial shared components and bivariate 
spatio-temporal shared component models. This way, 
we have presented a novel and valuable model that 
is capable to include any desired number of diseases, 
geographical areas, time periods and shared components 
representing the risk factors.

The proposed models allows for better estimation of 
the spatial pattern and of the temporal trend of the diseases 

by incorporating joint information from multiple diseases. 
Additionally, fitting this latent variables model enables 
us to estimate the effect of shared components representing 
the risk factors in all the spatial areas and time periods 
without the need of having real data for these factors. We 
also have the possibility to compare the relative weight of 
each component for the spatial and temporal variations of 
its relevant diseases using the scaling parameters.

Our proposed model has benefits over the pure 
spatial shared component models in addition to make 
improvement according to Deviance Information Criterion 
(DIC) and model fit. The results illustrate the changes over 
time by including temporal effects and hereby increasing 
the epidemiological interpretability the results. The model 
allows to investigate the persistence of pat- terns over 
time and highlight unusual patterns. In addition suitable 
space-time interaction terms can be included, allowing 
for the detection of localized clusters and strengthening 
inference (Manda et al., 2009; Richardson et al., 2006).

Our model also has some advantages over 
other multivariate spatio-temporal models, mainly 
the ability to estimate the spatial and temporal effects 
of shared components as surrogates of the risk factors. 
We can also estimate the relative importance of each 
component on the relevant diseases through including 
the spatial and temporal scaling parameters. It is possible 
include different structures of space-time, space-disease 
and disease-time interactions and to include data on 
environmental, social, economic, etc. covariates, (Manda 
et al., 2009; Richardson et al., 2006).

The final results will depend on the number of shared 
components representing the risk factors and their 
relevant diseases. So, using this model one needs to define 
the relationship between the diseases and risk factors in 
advance. To do so, we need to apply the epidemiological 
background of the diseases (Held et al., 2005; Downing 
et al., 2008).

One constraint of our model is the independency 
assumption between the shared components, and 
impossibility of assessing the interactions among the 
covariates (Knorr-Held and Best, 2001; Held et al., 2005, 
Best and Hansell, 2009). 

When observed numbers of diseases in each 
geographical area small, the model has more strength 
in compare with mapping crude or standardized rates or 
simple Besag/York/Mollie models. The smaller the areas 
the less the observed counts and the better the estimates of 
our model. Also, when information is available for more 
time periods, our model should work better. With long 
latency diseases like cancers, investigating the observed 
rates for lots of time period or for few long time periods 
such as 5-year periods are ideal because we do not expect 
remarkable changes over a short time period for cancer 
(Manda et al., 2009; Richardson et al., 2006).

From an epidemiological point of view we found 
a clearer spatial pattern with an obvious distinction 
between the high risk and low risk areas for the stomach 
and esophagus cancers in comparison with other cancer 
types. In comparison with less frequent cancers smaller 
changes over the time periods were observed. We have 
found notable similarities between the geographical 
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patterns of the relative risks of esophagus and stomach 
cancers and also for bladder and colorectal cancers and 
again for breast and prostate cancers. The patterns for 
bladder and colorectal cancers are different from that of 
esophagus and stomach cancers. The spatial pattern for 
the relative risk of lung cancer is quite different from all 
others cancers. The results were in correspondence to 
other previous studies about geographical pattern of these 
cancers in Iran (Asmarian et al., 2013; Haddad-Khoshkar 
et al., 2015; Haddad-Khoshkar et al., 2015; Mahaki et 
al., 2014).

Sistan and Baluchestan had the lowest relative risk for 
all the seven cancer in all the time periods for. After this 
province, Hormozgan, North Khorasan, South Khorasan, 
Kohgilouyeh and Boyerahmad, Kerman and Bushehr were 
found as the lowest risk areas respectively. Also, Razavi 
Khorasan, Semnan, Gilan, Mazandaran, Yazd, Isfahan, 
East Azerbaijan, Fars, West Azerbaijan, Kurdistan, 
Tehran, Ardebil and Golestan were recognized as the areas 
with highest risks. These results are in accordance with 
the results of previous studies about incidence and 
prevalence of the cancers in provinces, and similarity 
between the spatial patterns of the cancers (Azadeh et al., 
2008; Islami et al., 2009; Mousavi et al., 2009; Sadjadi et 
al., 2003; Sadjadi et al., 2010).

Temporal effects of the shared components representing 
the four latent risk factors were almost constant. According 
to the type of disease and the short and few time periods 
in this study, this was predictable. The result revealed 
the need for further studies including more time periods. 
Due to the lack of accurate data for cancer registration 
system in the county level, we considered Iran provinces 
as geographical areas. Also, since the cancer registration 
has been implemented in recent years, we restricted the 
data only for years 2004 to 2008. Due to some unexplained 
dispersion in the model and also due to other possible risk 
factors associated with the cancers, it would be helpful to 
include some other components to the model or to add real 
data of some important variables as ecological covariates. 
In this regard, adding socio-economic background as an 
important factor for all cancers can be considered (Dabney 
and Wakefield, 2005).

In summary our presented model is a valuable 
model to model geographical and temporal variation 
among diseases and has some interesting potential features 
and benefits over other joint models.
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