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Introduction

Nucleosume is the fundamental building block of 
eukaryotic chromatin formed by DNA and histone proteins 
(Strahl et al., 2003). Each nucleosome, basic unit of 
chromatin, is composed of an octamer of core histone 
proteins around which two super-helical turns of DNA 
are wrapped. Chromatin is a higher-order nucleoprotein 
complex by which the cell protects genetic information 
(Ito, 2003; Peterson et al., 2004). Chromatin modifications 
such as acetylation, methylation, and phosphorylation 
are necessary for chromatin protection, replication, 
DNA repair and gene transcription (Kouzarides, 2007). 
The correlation between histone acetylation and gene 
transcription has been reported. Acetylation of histone 
proteins occurs at specific lysine residues, all of which 
occur in the amino-terminal domains of the core 
histones, is closely linked to transcriptional activation 
(Choudhary et al., 2009; Berger, 2002; Heintzman et 
al., 2009). Addition and removal of acetate groups is 
catalyzed by specific enzymes (Zhang et al., 2005). Histone 
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acetyltransferases (HATs) are a group of enzymes that 
transfers the acetyl moiety to the internal lysine residues 
and histone deacetylases (HDACs) remove the acetyl 
groups by which re-establishthe positive charge in the 
histones (Shahbazian et al., 2007). The balance between 
acetylation and deacetylation of the lysine of histone 
proteins plays an important role in the regulation of gene 
expression (Shahbazian et al., 2007; Iizuka et al., 2003). 
Aberrant deacetylation of histone proteins leads to 
tumorigenesis in different tissues (Luo et al., 2000) and 
deacetylation of lysine is a common event in human 
cancer (Fraga et al., 2005). Histone deacetylase inhibitors 
(HDACIs) are a class of chemotherapeutic agent that 
can reactivate gene expression and inhibit the growth 
of tumor cells and also induce apoptosis in a wide 
range of tumor-derived cell lines by histone deacetylase 
inhibition (Marks et al., 2001; Johnstone, 2002). HDACI 
valproic acid (VPA) has shown potent anticancer 
effects in vitro and in vivo (Duenas-Gonzalez et al., 
2008). Previously, we reported that VAP can inhibit the 
growth and induce apoptosis of human colon carcinoma 
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HT 29 (Sanaei et al., 2016) and hepatocellular carcinoma 
(HCC) HepG 2 cells significantly (Sanaei et al., 2017). 
To establish that VPA can inhibit viability and induce 
apoptosis in HCC PLC/PRF5cell line, the present study 
was designed to investigate whether proliferation and 
apoptosis are altered by this compound. 

Materials and Methods 

Chemical agents
Valproic acid (2-propyl-pentanoic acid) was 

obtained from Sigma (St. Louis, MO) and dissolved in 
serum-free medium to make a stock solution which was 
further diluted with culture medium to yield different 
concentrations. Fetal bovine serum (FBS), Trypsin-EDTA, 
Dulbecco’s modified Eagle’s medium (DMEM), 
3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium 
bromide (MTT), phosphate-buffered saline (PBS), 
penicillin and streptomycin were purchased from 
Sigma Chemical Co. (St. Louis, MO, USA). Dimethyl 
sulfoxide (DMSO) was purchased from Merck Co. 
(Darmstadt, Germany).

Cell line
Human hepatocellular  carcinoma cell  l ine 

(PLC/PRF5) was obtained from the National Cell Bank 
of Iran-Pasteur Institute and maintained as monolayers in 
DMEM (St. Louis, MO, USA) supplemented with 10% 
fetal bovine serum at 37 °C (5% CO2/air atmosphere). 

Cell viability assay
Hepatocellular carcinoma, PLC/PRF5, cells were 

cultured into 96-well plates at a density of 4 × 105 cells per 
well. Following a 24 h culture period, the cells were treated 
with medium alone or with medium containing various 
concentrations of VPA (0, 1, 5, 10 and 20 μM) for 24, 48 and 
72 h, except control groups which treated with drug-free 
medium. After treatment time (24, 48 and 72 h), treated 
viable cells were determined by MTT assay according 
to the manufacturer’s instructions, treated and untreated 
(control groups) cells were washed twice with PBS and 
then a fresh medium containing MTT (0.5 mg/mL) was 
added and finally, after 4-hour of incubation the culture 
media were replaced with 100 μl of DMSO and the 
dye absorbance was measured spectrophotometrically 
at 570 nm. All experiments were repeated three times.

Detection of cell apoptosis
The PLC/PRF5 cells, 5 × 105 cells, were treated 

with 5 µM VPA for 24, 48 and 72 h and then all the 
adherent cells were harvested by trypsin solution to 
produce a single cell suspension, which washed with 
cold phosphate-buffered saline (PBS) and re suspended in 
Binding buffer (1x). An annexin-V-(FITC) and propidium 
iodide (PI, Becton-Dickinson, San Diego, CA) were used 
for staining according to the manufacturer’s instructions. 
Finally the apoptotic cells were analyzed using flow 
cytometry.

Statistical analysis
The database was set up with the SPSS 16.0 software 

package for analysis. The data were acquired from three 
tests and are shown as means ± standard deviations.

Statistical comparisons between groups were performed 
with ANOVA (one-way ANOVA) and Tukey’s test. 
A significant difference was considered P < 0.05.

Results
 

Cell growth inhibition of PLC/PRF5 by VPA
To assess the effect of VPA on the growth of PLC/PRF5 

cell line, the cells were exposed to various doses of the 
agent, as mentioned above, for 24, 48 and 72 h and then 
MTT assay was done. As can be seen in Figure 1, VPA 
had a strong growth inhibitory effect at all concentrations 
in a dose and time dependent manner. The effective dose 
of VPA that inhibited 50% growth of the PLC/PRF5 cells 
at 24 h was 5 µM. The percentage of inhibition in 5 µM 
VPA treated cells were approximately 52% as compared 
to the control group. 

Apoptotic induction of PLC/PRF5 by VPA
The results of flow cytometry assay demonstrated 

that VPA with concentration of 5 µM induced apoptosis 
in PLC/PRF5 cells significantly versus control groups. 
The Percentage of apoptotic cells in VPA-treated groups 
were 15, 36 and 60 % after 24, 48 and 72 h respectively 
(P < 0.001). Maximal Percentage of apoptotic cells were 
obtained after 72 h Figure. 2 and 3. 

Discussion

Histone proteins comprise the protein backbone of the 
chromatin structure. Histone acetyltransferases acetylate 
the lysine residues of histones by which diminishe their 
ability to bind to DNA. Besides, acetylated histone 
inhibits higher-order structures of chromatin provided 
accessibility for transcription factors. HDACs compact 
chromatin structure by removal of acetyl groups from 
histone proteins, thereby prevent the transcription of 
genes involved in tumorigenesis (Marmorstein et al., 
2007; Glozak et al., 2007; Shogren-Knaak et al., 2006). 
Histone deacetylase inhibitors can induce growth arrest, 
differentiation and apoptosis of tumor cells in vitro and 

Figure 1. In Vitro Effect of VPA on PLC/PRF5 Cell 
Growth Assessed by MTT Assay. Values are means of 
three experiments in triplicate. Asterisks (*) indicate 
significant differences between VPA treated groups and 
the control groups. *P < 0.001 as compared to the control 
group.
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and nuclear histone deacetylase (Han et al., 2013) and also 
activate Notch-1 signaling in human GI and pulmonary 
carcinoid cancer cells (Greenblatt et al., 2007). It has 
been shown that VPA induces apoptosis by activation 
of caspases-3, -8, and -9, cytochrome c release from 
mitochondria, DNA fragmentation and phosphatidylserine 
externalization (Kawagoe et al., 2002). VPA, however, 
activates Wnt-dependent gene expression through 
inhibition of HDAC following which increases the 
expression of β-catenin and de-represses Tcf/Lef 
(Phiel et al., 2001). Furthermore, it has been reported 
that VPA can act by the induction of histone (H3 and 
H4) hyperacetylation, restoration of p16/CDK4 pathway, 
activation of p21 and suppression of CMYC oncogene 
(Li et al., 2005). In the present study, we have not assessed 
apoptotic signaling pathway and molecular mechanism, 
suggesting that it should be evaluated in HCC PLC/PRF5 
and other HCC cell lines. 

In conclusion, VPA inhibits cell growth and induces 
apoptosis of HCC PLC/PRF5 cells in vitro, suggesting that 
it may be a potential agent for HCC treatment.
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