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Introduction

Breast cancer
Breast cancer is the prevalent malignancy among 

women worldwide (Cidadoet al., 2012). It often described 
as a heterogeneous disease with different subtypes, defined 
by its hormone receptor. All the current treatment decision 
for advanced breast cancer based on these biomarkers 
(Chan et al., 2005). Despite of the advancement in 
detection and targeted therapies, the mortality rate 
remains high because of the development of resistant 
cell lines. Thus, metastasis breast carcinoma remains an 
ineradicable disease by modern remedial approaches. 
So, a better perspective must be needed to thrive new 
treatment regimen.

According to the American cancer society, around 
232,340 recent cases of invasive breast cancer and 39,620 
breast cancer deaths are anticipated to happen among US 
women in 2013 (DeSantis et al., 2014). Over the past two 
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decades, breast cancer occurrence and mortality rates have 
been increasing rapidly. Breast cancer alone constitutes 
between 25% and 15% of all cancer cases and cancer 
deaths among women respectively (Torre et al., 2015). 
Developed countries comprise the number of breast cancer 
cases and deaths, incidence and mortality rate manifest the 
availability of the detection and treatment procedure. So, 
prolonged studies and efforts are required to provide better 
and easy detection and treatment procedures to all kinds of 
the population (DeSantis et al., 2014; Torre et al., 2015).

Breast cancer is a complicated and multifactorial 
disease. Therefore, so many risk factors associated with 
breast cancer, such as age, body mass index, family history 
having abnormal BRCA1 or BRCA2 gene, hormonal 
factors like- menarche at an early age, menopause at a 
late age, late pregnancy, little or no breastfeeding, oral 
contraceptive, and hormone replacement therapy (Laamiri 
et al., 2016). The precise interpretation of predisposing 
factors might be helpful to the development of the 
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novel treatment to prevent breast cancer. The top-most 
encouraging efforts require understanding the gene, 
gene-environment, or gene-gene interaction.

The leading cause of cancer is the genetic mutation 
which occurs as a result of genetic instability and 
environmental factors. In most of the breast cancer, genetic 
alteration arises during an individual’s lifetime and are 
present only in specific cells of the breast. These types of 
changes are called somatic mutation and are not inherited. 
A different kind of genetic changes, which is classified 
as germline mutation, are typically inherited from parent 
to their offspring.

Mutation in the number of genes is involved in causing 
breast cancer. Regarding high-risk family history, the 
most important genes are BRCA1 and BRCA2 (Ford et 
al., 1998). Variation in these two genes can increase the 
chance of developing the tumors by 80%. Therefore, early 
recognition of carrier among affected women is pivotal 
to suggest the specialist to determine the best suitable 
treatment plan (D’Argenio et al., 2015). 

mTOR pathway 
mTOR kinase is an intracellular signaling pathway 

which controls the various actions of our body such as 
cell division, cell survival, cellular morphology, protein 
synthesis and integration of metabolism. mTOR kinase 
signaling is activated in multiple cancer, guided by 
variation in the gene-coding receptor tyrosine kinase, 
Ras, PI3K, and PTEN that is involved in numerous 
cellular processes (Bhagwat et al., 2011). This protein 
is a component of two multi-subunit complexes known 
as mTOR1 and mTOR2. The mTOR1 complex is 
sensitive to anticancer drug Rapamycin, an allosteric 
inhibitor of mTORC1 results in complete disruption 
of the complex. The mTOR2 complex is considered as 
rapamycin-insensitive, regulates actin cytoskeleton by 
phosphorylating the survival kinase AKT at SER 473. 
mTOR is mainly activated by some intracellular and 
extracellular signals such as growth factors, nutrient 
status, energy metabolism and Oxygen level (O’Reganet 
al., 2011; Aarthy et al., 2017).

Dysregulation of the mTOR pathway
The aberrant activation of mTOR pathway identified 

in most of the cancer including breast cancer and its 
hyperactivation commonly associated with cell growth, 
cellular proliferation and neogenesis (García-Echeverría 
et al., 2010). For instance, in the variety of cancer 
phosphatase and tensin homologue deleted in chromosome 
10(PTEN) is mutationally inactivated, leads to an increase 
in mTOR activity. This hyperactivated mTOR gene results 
in the production of mRNAs that encode growth factors, 
cell death inhibitor, angiogenesis factors, cell growth 
inducer which overall promote carcinogenesis. Therefore, 
mTOR must be specifically targeted as an anticancer 
therapy for the treatment of cancer (Dowling et al., 2007). 
Overall features of the mTOR signaling pathway have 
provided a higher level of interest in targeting mTOR as 
a potential therapeutic agent for effective treatment (Xie 
et al., 2016).

Materials and Methods

Methodology
System Configuration

The present study was performed using a Schrödinger’s 
Drug Discovery Suite 2015 on the platform of Cent OS 
Linux 6.5 version. Molecular Dynamics simulations were 
carried out using an academic version of Desmond 2015.

Selection of Protein Target and known inhibitors
The three-dimensional structure of the target protein 

mTOR was retrieved from Protein Data Bank – PDB (www.
rcsb.org) with PDB ID: 5H64. Established inhibitors for 
mammalian target of rapamycin (mTOR) were explored 
using NCBI’s PubChem compound database (Chandrakar, 
B. et al., 2013; Rao DM. et al., 2010). The total of 40 
compounds were selected to consider the best-anchored 
compound. The selected inhibitors along with their 
PubChem ID are shown in Table 1.

Preparation of Protein 
Targeted three-dimensional structural coordinates 

was pre-processed using Protein Preparation Wizard 
module in Schrödinger Suite (Protein preparation 
wizard, Schrodinger, 2017) (Sharda et al., 2017; 
Bandaru et al., 2017) by implying the parameters like 
assigning bond orders, zero-order bonds to metal atoms, 
selenomethionine to methionine conversion, filling absent 
hydrogen’s, capping termini, side chains and loops, and 
removing waters beyond 5 Å distance surrounding the 
co-crystallized ligand (Bandaru et al., 2017; Shameer et 
al., 2017; Nasr et al., 2015; Khandekar et al., 2016; Singh 
et al., 2019). Further, tautomerization and protonation 
states were predicted in favor of ligand at pH 7.00. Lastly, 
the protein hydrogen bonds were optimized to renovation 
the overlying hydrogens and minimized using OPLS-2005 
force field with root mean square deviation (RMSD) value 
of 0.30 A° (Jorgensenet al., 1996; Glide, 2015; Reddyet al., 
2014; Patidar et al., 2016; Shaheen et al., 2015; Praseetha 
et al., 2016; Babitha et al., 2015).

Lead Compounds and Database preparation
All the 40 compounds retrieved from NCBI’s 

PubChem Database and a large chemical library of 
drug-like compounds – Zinc databases were prepared 
using the Ligand preparation module (LigPrep, 2017)
(Dunna et al., 2015; Dunna et al., 2015; Bandaru et al., 
2015) of molecular modeling package with suitable 
parameters like optimization, ring conformation, 2D to 
3D conversion, determination of protomers, tautomers, 
and ionization states at pH 7.0, along with partial atomic 
charges using OPLS_2005 force field (Bandaruet al., 2014; 
Jorgensen et al., 1996; LigPrep, 2015; Sinha et al., 2015).

Active Site Prediction and Receptor Grid Generation
Using SiteMap module in Schrodinger Suite, 

Ligand – Binding site of the receptor was predicted. Based 
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during clinical studies due to poor ADME/T; it leads to 
high cost of loss to pharmaceutical companies. Thus, 
QikProp, Schrodinger was taken forward for profiling 
the ADME properties of selected hits from screening. It 
evaluates the drug likeness and pharmaceutical properties 
such as molecular weight, aqueous solubility (QPlogS), 
octanol/water (logP), brain/blood partition coefficient 
(QPlogBB), CNS, hydrogen bond donors and acceptors 
along with Lipinski rule of five and Jorgensen rule of 
three. Following to these, the Human intestinal absorption 
(HIA), Blood brain barrier (BBB), AMES toxicity and 
LD50 were also generated to check compounds toxicity 
effect using online web server tool admetSAR (QikProp 
2015; Cheng et al., 2012).

MM-GBSA (Molecular Mechanics, the Generalized Born 
model and Solvent Accessibility) – free binding energy 
calculation

MM–GBSA, an efficient computational approach in 
Prime module of Schrodinger suit 2015 (Schrodinger, 
Inc., LLC, New York, USA), is worthwhile to calculate 
the relative binding free energy and to improve docking 
score after docking analysis from bio-molecular system. 
The binding free energy determines by ΔGbind, represented 
by following equation (Prime, Schrodinger, 2015; Lyne 
et al., 2006):

ΔGbind = ΔE + ΔGsolv + ΔGSA

Where, ΔGbind = Binding Free Energy, ΔE = Difference 
of energy minimization between receptorligand complex 
& the energies of receptor and ligand Where, ΔE = Ecomplex – 
Ereceptor – Eligand, ΔGsolv = Difference of electrostatic solvation 
energy of the receptor-ligand complex & the energies of 
receptor and ligand Where, ΔGsolv = Gsolv(complex) – Gsolv 

(receptor) – Gsolv (ligand), ΔGSA = Difference of Surface area 
energies of the receptor-ligand complex and the energies 
of receptor and ligand:

 
Where, ΔGSA = GSA(complex) – GSA (receptor) – GSA (ligand)

The Prime module applies a surface generalized 
Born model which  makes use of a Gaussian surface for 
enhanced demonstration of a solvent accessible surface 
area (Suryanarayanan et al., 2005; Singh et al., 2016; 
Prime, Schrodinger, 2015; Lyne et al., 2006).

BOILED-Egg plot 
A Brain or intestinal EstimateD permeation method 

(BOILED-Egg) is a predictive model which predicts 
the bioavailability of the drugs over gastrointestinal 
absorption and brain penetration. There are five parameters 
which defines the Cartesian coordinates of both ellipses 
includes MW, TPSA, MLOGP, GI and BBB. Classification 
of Egg-plot include the yolk (physiochemical space for 
BBB permeation), the white (physiochemical space for 
HIA absorption), and the outside grey region stands for the 
molecule which predicted low absorption and limited brain 
penetration properties. The molecule which are placed in 
grey region are counted as remarked (Padmini et al., 2019; 
Divya et al., 2019; Palak et al., 2019, Trishang et al., 2019). 

on top ranked site score, five potential active sites were 
analyzed. Site2 was taken for docking analysis based on 
highest site score along with presence of hydrophobic 
and charged amino acids (Sinha et al., 2014; Reddy et 
al., 2014; Panwar et al., 2017).Using Receptor Grid 
Generation module in Schrodinger, the grid generation 
was performed on prepared protein with the help of site 
score from SiteMap (Bandaru et al., 2014; Bandaru et al., 
2013). The atoms of protein were fixed within the default 
parameters of the radii of Vander Waal’s scaling factor of 
1 Å with partial charge cut-off of 0.25Å using OPLS_2005 
force field (Vuree et al., 2013).

Molecular Docking
Firstly, all the selected 40 compounds were docked 

into the generated grid of prepared protein using Glide 
XP (extra precision) module, Schrodinger with default 
parameters. Glide score is used to rank the various poses of 
ligand in complex with receptor, where the higher negative 
values reveal strong binding interaction of protein-ligand. 
Generally, Glide score is calculated based on the equation:

Glide score = 0.065 * vdW + 0.130 * Coul + Lipo + 
Hbond + Metal + BuryP +RotB + Site (1)

Where,vdW =vanderWaalsenergy, Coul=Coulomb 
energy, Lipo=Hydrophobicinteractions, 

H-bond=Hydrogenbonds, 
Metal=Metalbindingterms,
BuryP=Penaltyfor buried polargroups,
RotB=Freezingrotatablebonds, Site=Polar interaction 

inthebindingsite.
Based on the glide docking score the best-docked 

complex was selected for further studies of virtual 
screening (Suryanarayanan et al., 2005; Singh et al., 
2016).

High throughput Virtual Screening
Virtual screening is one of the highly advanced 

computing processes to identify the novel drug candidate 
from large chemical libraries against biological target. 
Herein, the trio of HTVS, SP, and XP from Glide, 
Schrodinger was utilized to filter the best configuration 
of ligand with highest docking score in every step of 
virtual screening trio (Aarthyet al., 2017; Suryanarayanan 
et al., 2005; Singh et al., 2016). Finally, the best ranking 
compounds were selected using criteria of docking score 
for further studies of ADMEprediction. 

Pharmacophore studies
Pharmacophore studies involve different types of 

interactions between ligand and receptor. This study 
includes H-bond interaction, electrostatic interaction, 
hydrophobic interaction, and aromatic interaction done 
by using Accelrys Discovery Studio 3.5 DS Visualizer 
(Visualizer, Accelrys Inc, 2012; Basak et al., 2016; 
González-Díaz et al., 2016; Kelotra et al., 2014; Kelotra,  
et al., 2014; Majhi et al., 2018; Khandelwal et al., 2018; 
Sharma et al., 2018; Sinha et al., 2018).

ADME and Toxicityprofile
As per olden research, many of drugs have been failed 
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To proceed for further analysis of Egg-plot, compound 
ID of the top three best drug from each of established 
docked and virtual screened docked was retrieved. 
Observable result were analyzed based on the different 
parameters used for Egg-plot.

Results

Herein this study, a highly significant virtual screening 
process was applied to find out an effective leading 

compound using Schrodinger Software. 

Docking and virtual screening results
Molecular docking of top 40 known inhibitors was 

identified with great binding interaction within the same 
active site. Later, SF1126, the best one protein-ligand 
complexes were analyzed as perfect binding confirmation 
with better docking score, XP Score, glide energy, and 
Glide emodel, tabulated (Table 2) which were taken 
forward for virtual screening process against Zinc NCD 

Sl. no Inhibitors name PubChem ID Ref
1 Temsirolimus, CCI-779 6918289 Chan et al., 2005
2 Everolimus,RAD001 6442177 Shavetaet al., 2013
3 Rapamycin, sirolimus 5284616 Jerusalem et al., (2014)
4 Ridaforolimus, deforolimus, 11520894 HareHarvey et al., 2017
5 AZD2014 25262792 Guichard et al., (2015)
6 AZD8055 25262965 Jordan et al., (2014)
7 INK 128, MLN0128 45375953 Gokmen-Polar et al., (2012)
8 CC-223 58298316 Bendell et al., (2015)
9 Palomid 529 (P529), 11998575 Xiang et al., (2011)
10 OSI-027 44224160 Bhagwat et al., (2011)
11 Torin 1 49836027 Hall et al., (2012)
12 PP242 25243800 SparksGuertin (2010)
13 PP30 24905154 Leung et al., (2015)
14 KU-0063794 16736978 Lee et al., (2013)
15 XL388 59604787 Liu et al., (2009)
16 WYE-125132(WYE-132), 25260757 Chen et al., (2016); Yu et al., 2010
17 WYE-687 25229450 Yu et al., (2009)
18 WAY-600 25229526 Yu et al., (2009)
19 WYE-354 44219749 Yu et al., (2009)
20 Torin 2 51358113 Liu et al., (2013)
22 GDC-0349 59239165 Pei et al., (2013)
23 NVP-BEZ235, BEZ235 11977753 Serra et al., (2008)
24 PF-04691502 25033539 Wander et al., 2013
25 NVP-BGT226 57336745 Markman et al., (2012)
26 Apitolisib,GDC-0980 25254071 Wallin et al., (2011)
27 PF-05212384, PKI-587 44516953 Fouqué et al., 2016
28 SAR245409 (XL765) 49867926 Papadopoulos et al. (2014)
29 GSK2126458 (Omipalisib) 25167777 Munster et al., 2015
30 PKI-402 44187953 (Mallon et al., (2010))
31 PI-103 9884685 Jang et al., 2015
32 Metformin 4091 Zakikhani et al., 2007
33 Antrocin (AKT/mtor) 53474706 Rao et al., 2010
34 Piperlongumine 637858 Shrivastava et al., 2014
35 VS-5584 (SB2343) 46912230 Kolev et al., 2014
36 PKI-179 46947264 Venkatesan et al., 2010
37 Resveratrol He et al., 2011
38 Osthole 10228 Hung et al., 2011
39 SF1126 66577114 Mahadevan et al., 2012
40 MKC-1 5327686 Schneider et al., 2008

Table 1. List of Inhibitors of mTOR Towards Breast Cancer
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database. The resulted top 10 compounds with appropriate 
pharmacological including drug like properties as potent 
inhibitors against targeted protein with highest docking 
score, glide score and glide energy, shown (Table 3). The 
resulted compound ID:ZINC85569445shows the best 
affinity with the target protein with docking score of 
-10.607 kcal/mol. The binding mode analyses of the 
ZINC85569445 were described in detailed.

Binding mode of Compound ZINC85569445 with the 
receptor

The ligand ZINC85569445was identified with highest 
docking score -10.607 kcal/mol, glide energy -61.060 
kcal/mol, glide Emodel -82.947 kJ/mol. Hydrogen bond 
interactions were identified with the amino acids Glu662, 
Lys690, Glu701, Asn725; in which, amine group of 
compound interacted with oxygen of Glu662 with a 
distance of 2.01 Å, three carboxyl group of compound 
interacted respectively with amino group of Lys690 with 
a distance of 2.43 Å, oxygen of Glu701 with a distance 
1.96 Å, and oxygen of Asn725 with a distance 2.07 Å. 
Amino acids residues Val671, Tyr674, Phe678, Val681, 

Leu694, Pro697, Ala698, Tyr723, Ala732, Leu735, 
Leu742 were observed as hydrophobic residues. The 2D 
profile interaction diagram was represented in Figure 1.

Pharmacophore Studies
Pharmacophore mapping helps to understand the 

interaction between ligand and receptor molecule. In the 
active site of target protein, compound ID:ZINC85569445 
shows considerable interaction. It shows electrostatic 
interaction with Ser722 and Lys690, while the H-bond 
was observed with Glu662, Lys690, Glu701, and Asn725. 
Figure 4, depicts the aromatic interaction where Phe678, 
Thr731 actively participated. 

Hydrogen Bond interaction between compound ID and 
target protein

ZINC85569445 and the target protein mTOR is shown 
(Figure 2). Green dotted lines represent the Hydrogen 
interaction between atoms. This interaction involving 
atoms of the residues Asn725, Glu701, Val67, Ser722, 
Lys690 of mTOR.

Figure 1. Compound ID:ZINC85569445 Shows High Affinity with mTOR Protein 

Name of 
Inhibitors

Docking Score 
(kcal mol-1)

Glide 
E model 
kJ/mol

Glide Energy
(kcal/ mol)

Interactive residues π- π 
Interaction

Yes/No
sf1126 -8.705 -85.06 -74.137 Asp641, Cys679, Ala682, Leu683, Lys690, Asn725 No
WYE-687 -7.692 -82.145 -61.005 Ser711, Arg718 No
PKI-587 -7.617 -88.447 -45.599 Leu739 No
NVP-BGT226 -7.284 -64.903 -49.687 Glu701 Yes
KU-0063794 -7.174 -67.057 -47.904 Ala666, Ser668 No
GDC-0980 -7.036 -82.006 -59.175 Ser711, Ser719 No
WYE-354 -6.97 -82.607 -56.887 Arg718 No
Torin 2 -6.839 -48.904 -44.086 Ser738 No
XL388 -6.826 -77.967 -50.654 - No
GDC-0980 -6.719 -78.072 -57.72 Ser719 No

Table 2. Selected Final Compounds from Re-Docking of Knowninhibitors Into the Active Site of the Protein Kinase 
for Virtual Screening
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Electrostatic Interaction between the compounds ID
ZINC85569445 in the active site of mTOR shown in 

(Figure 3). The red surface of the protein is electrically 
negative surface;while, the blue surface is electrically 
positive. The compound is deeply embedded in the cavity 
of positive and negative amino acids of the target protein 
mTOR.

Aromatic interactions between the most effective 
compoundID

ZINC85569445 and mTOR protein shown in (Figure 
4). Most favorable region of the aromatic interaction is the 
blue region (Edge), where Phe678 of mTOR is actively 
participating in bond formation. While the least favorable 
region (Face) have less interaction.

Interactions of the compounds ID
ZINC85569445 in the active site of mTOR shown in 

[Fig 5]. The residues (Asn725, Glu701, Val67, Ser722, and 
Lys690) of blue dotted line participating in Hydrogen bond 
interaction while the residues in green circles forming 
Van-der Waals. Pink circled residues participating in 
electrostatic interaction.

ADME profile
An ADME property of the top 10 hits was calculated 

by evaluating their physicochemical properties using 
QikProp, Schrodinger. All the predicted ADME properties 
are accepted within the standardized range defined for 
human use such as Molecular weight (MW 130-500), 
H-Bond donor (< 5.0), H-Bond acceptors (< 10.0), the 
octanol/water partition coefficient log (-2 to 6.2), the 
aqueous solubility log (mol/L) (-6.5 to 0.5), CNS activity 
-2 (inactive) to +2 (active Lipinski’s rule of five and 
Jorgensen rule of three), shown in Table 4.

Comparative ADMET profile of the test ligands and the 
control

Comparative studies of the parameters such as Human 
intestinal absorption(HIA), Blood-brain barrier (BBB), 
AMES toxicity, LD50 doses of best established docked 
compound SF1126 (control) and top three virtual screened 
ligands (CID: ZINC85569445, CID: ZINC14640443, and 
CID: ZINC85489178) was done: using R-programming 
language which is depicted in Figure 6. ADMET 
parameters such as HIA, BBB, AMES toxicity, and LD50 

S. No. Compound ID Docking 
Score 

(kcal/ mol)

Glide 
E model
 kJ/mol

Glide Energy
(kcal/ mol)

Interactive residues for H-bond between  
IN-Ligand

π- π 
Interaction

Yes/No 
1 ZINC85569445 -10.607 -82.947 -61.06 Glu662, Lys690, Glu701, Asn725 Yes
2 ZINC14640443 -10.437 -52.385 -43.829 Ala682, Leu683, Lys690, Ser719 No
3 ZINC85489178 -10.434 -72.949 -48.322 Glu662, Arg716, Ser719, Ser722, Thr731 No
4 ZINC18208633 -10.429 -58.417 -49.658 Glu701, Pro715 No
5 ZINC85569455 -10.391 -83.908 -57.087 Glu662, Lys690, Glu701 Yes
6 ZINC85569435 -10.352 -76.75 -58.258 Glu662, Asn691, Glu701, Thr731 Yes
7 ZINC06446612 -10.144 -102.15 -63.041 Glu662, Ser719 Yes
8 ZINC08694341 -9.996 -82.165 -61.169 Glu662, Ser719 No
9 ZINC85569217 -9.921 -65.376 -45.512 Thr731 Yes
10 ZINC08791845 -9.869 -82.457 -52.494 Glu662 No

Table 3. Structure Based Virtual Screening Results

Figure 2. Hydrogen Bond Interaction betweenCompound ID: ZINC85569445 and the Target Protein mTOR
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are predicted using online web server tool admetSAR 
server shown (Table 5). Derived properties revealed 
that CID: ZINC85569445, CID: ZINC14640443 had 
the better blood-brain barrier which was higher than the 
control molecule SF1126. SF1126, CID: ZINC85569445 

showed almost equal HIA probability higher than others. 
Higher HIA denotes the compound could be better 
absorbed from the intestinal tract after oral administration. 
Computed result for LD50 dose showed best for SF1126. 
ZINC85569445 had lower LD50 value compare to another 

Figure 3. Electrostatic Interaction between the Compounds ID: ZINC85569445 in the Active Site of mTOR

S. No. Compound ID MW CNS HBD HBA QPlogPo/w QPlogS QPlogBB QPlogKP Rule of 5 Rule of 3

1 ZINC85569445 477.513 -2 5 8.7 2.392 -4.191 -2.343 -5.648 0 2
2 ZINC14640443 288.256 -2 3 3.75 1.399 -2.801 -2.351 -4.4 0 0
3 ZINC85489178 470.694 -2 5 5.25 2.849 -5.239 -2.617 -7.405 0 2
4 ZINC18208633 388.425 0 3 4 3.328 -3.894 -0.435 -4.639 0 0
5 ZINC85569455 475.54 -2 4 6 3.703 -5.389 -1.943 -5.472 0 1
6 ZINC85569435 463.486 -2 5 8.7 2.099 -3.808 -2.116 -5.593 0 2
7 ZINC06446612 495.58 -2 1.25 7.75 4.857 -5.732 -1.339 -0.536 0 1
8 ZINC08694341 477.562 -2 1.25 8.5 4.211 -5.722 -1.462 -1.189 0 1
9 ZINC85569217 476.528 -2 5 3.75 4.397 -6.134 -2.095 -3.315 0 2
10 ZINC08791845 439.473 -1 2 7 4.402 -6.317 -0.868 -1.073 0 1

Figure 4. Aromatic Interactions between the most Effective Compound ID: ZINC85569445 and mTOR Protein

Table 4. ADME Profile of Screened Hits

MW (Molecular Weight of the molecule), (130.0 to 725.0); CNS, predicted central nervous system activity on a -2 (inactive) to +2 (active) scale; 
HBD, Hydrogen Bond Donor = (0.0 to 6.0); HBA, Hydrogen Bond Acceptor = (2.0 to 20.0); QPlogP o/w (Predicted octanol/water partition coef-
ficient) = (-2.0 to 6.5); QPlogS, (Predicted aqueous solubility, logS) = (-6.5 to 0.5); QPlogBB, (Predicted brain/blood partition coefficient) = (-3.0 
to 1.2); QPlogKP, (Predicted skin permeability, logKp) = (-8.0 to -1.0); Rule of 5, (Number of violations of Lipinski’s rule of five) = (maximum is 
4); Rule of 3, Violations (Number of violations of Jorgensen’s rule of three) = (maximum is 3)
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compound. CID: ZINC85489178 had almost equivalent 
LD50 dose to SF1126. Regarding toxicity, the probability 
of being toxic was lower for SF1126 and ZINC85569445. 
Ames test employed to test whether a compound is toxic 
or not. The result of the Ames test revealed that all ligands 
and control molecule were non toxic.

MM-GBSA
The binding free energy was calculated using a 

post-scoring method –MMGBSA for the evaluation of 
molecular docking process. Obtained MMGBSA (ΔG 
bind) ranges from -58.149 to -89.989, are presented in 

Table 4. Results were correlated along with docking score 
to design a relevant drug like potent inhibitors. Higher 
binding free energy of the lead defines the greater affinity 
to bind with the receptor.

BOILED-Egg plot analysis
To understand the poor pharmacokinetics behaviors 

and bioavailability of the drug which is crucial for drug 
discovery process, BOILED-Egg plot is proposed as an 
accurate model to predict lipophilicity and polarity of the 
small molecule. Prediction for both BBB and intestinal 
permeation is translated into a molecular design on 

Compound HIA BBB CYP substrate/inhibition AMES toxicity Carcinogenicity LD50 in rat
SF1126 0.9992 0.5096 Non-substrate/non-inhibitor 0.5621 Non-carcinogen 2.6105
ZINC85569445 0.9298 0.5101 Non-substrate/non-inhibitor 0.7878 Non-carcinogen 2.4722
ZINC14640443 0.9704 0.586 Non-substrate/inhibitor 0.663 Non-carcinogen 1.9822
ZINC85489178 0.8774 0.6136 Non-substrate/non-inhibitor 0.7778 Non-carcinogen 2.3465

Table 5. Comparative ADMET Profile of Best Established Dock Compound and Test Ligands

Figure 5. Interactions of the Compound ID: ZINC85569445 in the Active Site of mTOR

S. No. Compound ID/Name ΔGbind
a ΔGcoulomb

b ΔGcovalent
d ΔGvdW

c ΔG sol GB
e

1 SF1126 -36.926 -22.993 15.799 -54.637 55.852
2 ZINC85569445 -89.038 -65.12 9.296 -55.945 75.929

ZINC14640443 -48.027 -29.584 9.153 -29.07 26.395
4 ZINC85489178 -90.039 -55.047 6.71 -41.326 66.435
5 ZINC18208633 -68.198 19.778 1.678 -47.657 -2.161
6 ZINC85569455 -84.579 -47.073 6.579 -49.289 64.133
7 ZINC85569435 -82.428 -61.031 7.617 -49.668 67.263
8 ZINC06446612 -85.144 14.521 2.577 -60.392 1.39
9 ZINC08694341 -81.948 10.026 10.091 -58.752 7.041
10 ZINC85569217 -69.215 -12.936 10.077 -47.402 32.732
11 ZINC08791845 -73.241 13.789 11.497 -57.52 5.618

Energies in kcal mol-1; a, Free binding energy; b, Coulomb energy contribution to the binding free energy; c, Covalent energy contribution to 
the binding free energy; d, Van der Waals energy contribution to the binding free energy; e, The generalized born electrostatic solvation energy 
contribution to the binding free energy.

Table 6. Binding Free Energy Analysis Results
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account of speed, reliability, conceptual clarity and clear 
graphical output of the model (Table 5) indicates the 
pharmacokinetics and bioavailability properties of the 
best six compound; three from established docking and 

three from virtual screening. It suggests that there is low 
GI absorption for best pre-established docked compound 
while high GI absorption for the virtual screening 
compound. The result itself indicates that there is no BBB 

Figure 6. Comparative HIA, BBB, and LD50 of the Established Compound against Virtual Screened Compounds

Molecule MW TPSA MLOGP GI absorption BBB permeant
SF1126 852.84 344.2 -6.42 Low No
WYE-687 528.61 110.53 1.61 High No
PKI-587 615.73 128.29 1.21 High No
ZINC85569445 478.51 136.97 -2.84 High No
ZINC14640443 288.25 118.22 0.48 High No
ZINC85489178 471.7 104.61 -3.51 High No

Table 7. Best Three Compound from -Established Dock Result and Virtual-Screened Dock Result Used for 
BOILED-Egg Plot

Figure 7. Boiled Egg Plot Predicted for the Best 3 Compounds from Established Drugs and Virtual Screened Drugs  



Khushboo Patidar et al

Asian Pacific Journal of Cancer Prevention, Vol 201238

permeant. All the virtual screened drugs are in white space 
meaning proper GI-intestinal absorption. BOILED-Egg 
plot is shown (Figure 7).
Discussion 

Breast Cancer is considered as the prime cause of 
mortality among women worldwide. Metastatic breast 
cancer is a diverse disease with different subtypes and 
irremediable with current treatment regimens (Brouckaert 
et al., 2017). Based on the data composed by American 
cancer society, nearly 231,840 recent cases supposed to be 
diagnosed in 2105 (Ward et al., 2015). One important cause 
of cancer is the sequential mutation in the number of genes 
due to the fact of genetic instability and environmental 
factors (Al-Hajj et al., 2003). mTOR (mammalian target 
of rapamycin) is a serine/threonine kinase, which controls 
the various acts of our body such as cell growth, survival, 
metabolism, is upregulated in various cancer. mTOR is a 
downstream member of the PI3K/AKT signaling pathway, 
and its aberrant activation is observed in various human 
malignant diseases (Vicier et al., 2014). Therefore, mTOR 
is considered as a desirable target for treatment strategies.

Accordingly, substantial importance is given on PI3K/
AKT/mTOR signaling pathway which has led to the 
progress of different kinds of inhibitors. In the present 
study, we found a pre-existing drug against mTOR and 
technically found SF1126 with the best binding score 
-8.705kcal/mol against mTOR. Further exploration 
established from the structure similarity search of 
SF1126 against ZINC database found various compound 
with similar properties against mTOR. High-throughput 
virtual screening performed in this study for structure 
similarity search which revealed ZINC85569445 with 
best binding score -10.607kcal/mol. In this study the 
tested compound CID: ZINC14640443 displayed with 
the lowest binding energy of -10.607kcal/mol. The 
binding energy of the control molecule SF1126 was 
higher than CID: ZINC14640443 as found in our study, 
thus CID: ZINC14640443 displayed the much better 
binding score. ADME profile of both the compounds  
SF1126(control) and test ligand ZINC85569445 was 
evaluated using QikProp Schrodinger and all the 
parameters accepted within the standardized range 
defined for human use. CID: ZINC14640443 predicted 
blood-brain barrier 0.51 compare to SF1126 of 0.50. 
Carcinogenic profile of both the test ligand and control 
molecule revealed to be  non-carcinogenic.

The effectiveness of the known inhibitors against 
mTOR has been tested with significant antiproliferative 
activity while some of them are being under phase II/III 
clinical trials (Chresta et al., 2010). In spite of having high 
ability in inhibiting the activity of mTOR, inhibitors are 
quite inadequate in fighting against cancer. The likelihood, 
there is the number of reasons such as feedback loop can 
activate the upstream signaling pathway and promote cell 
survival and proliferation. The mTOR signaling pathway 
is essential for healthy cell growth and viability and its 
inhibition can be destructive to other cells and tissues(Xie 
et al., 2016). Despite some loopholes, further attention 
should be given to the understanding of the mTOR 
signaling pathway and its downstream processing which 

play a vital role in tumor progression.
In conclusion, this research study focuses on finding 

a satisfactory lead compound which targets to inhibit 
the breast cancer. Phosphatidylinositol 3- kinase/AKT/ 
mammalian target of rapamycin(PI3K/AKT/mTOR) 
pathway is dysregulated in various cancer along with the 
breast cancer and is the major signaling pathway which 
controls the routine activity of our body including cell 
survival, cell division, etc. In this study, we found many 
pre-existing compounds against the mTOR protein and 
technically found SF1126 with the high-affinity properties 
along with the best binding energy score. Further research 
progress based on the structural similarity of SF1126 
against drug database found that there are several more 
compound having property against mTOR. Best drug 
found in this research is ZINC85569445and concluded 
based on the ADME profile and BOILED-Egg plot 
prediction. 

BOILED -Egg plot is a good informant for lead 
optimization and following analyses the virtual 
screened compound ZINC85569445 exhibits interesting 
pharmacokinetics. Virtual tested drugs are correctly 
placed in the white region of the egg which indicates 
that it constitutes preferable compound against mTOR 
protein. The binding free energy using post scoring method 
MMGBSA calculated for the evaluation of molecular 
docking, also concluded the virtual screened compound 
was having higher affinity with the receptor as compared 
to pre-exist drug. 

Conclusively the lead compound is ZINC85569445 
ideal for the study of pharmacophore profile. The 
compound shows the best affinity among all the pre-exit 
drugs, and inhibition property against the target mTOR 
as well as the study of pharmacophore mapping of the 
compound displayed considerable binding affinity in the 
active site of protein mTOR. This research encourages 
suitable opportunity for compound ZINC85569445 to 
prevent breast cancer.
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