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Introduction

The absence of estrogen receptor, progesterone 
receptor, and human epidermal growth receptor 2 (HER2) 
is characteristic of TNBC. TNBC patients do not benefit 
from hormonal or trastuzumab-based therapies because 
of the loss of these receptors. Approximately 70-80% 
of patients with TNBC show chemosensitive behavior, 
with nearly 25-40% showing a pathologic complete 
response(Perez et al., 2010; Silver et al., 2010; Holanek 
et al., 2021; Li et al., 2022). However, ~30-50% of TNBC 
patients have residual disease burden (RCB) II/III after 
neoadjuvant chemotherapy and are at a high risk of 
relapse, with significantly worse survival, particularly in 
the first three years(Hamy et al., 2020). 

The majority of TNBC patients are diagnosed late, 
with about 70% having advanced stages, resulting 
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in a disproportionate number of breast cancer deaths 
compared to non-TNBC patients(Pratik K Jha and 
2020). Despite their diagnosis at later stages, all TNBC 
patients (irrespective of their response to chemotherapy) 
were initially treated with standard four cycles of 
anthracycline/taxane-based chemotherapy, preferably 
within the neoadjuvant chemotherapy treatment (NACT) 
setting(Furlanetto and Loibl, 2020). Needless to say, it 
will be too late for the clinician to know about the non-
responsive behavior of the tumor towards chemotherapy. 
However, this issue must be addressed. Therefore, there 
is a need to develop an assay that can predict the non-
responsive behavior of TNBC tumors before or during 
the initial phases of chemotherapy.

MiRNAs regulate TNBC progression by targeting 
several genes. These regulatory mechanisms have been 
extended to include circulating miRNAs. MiRNAs 
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are small non-coding RNAs that negatively regulate 
gene expression at the post-transcriptional level. The 
expression of several miRNAs, whether upregulated or 
downregulated, is associated with chemoresistance or 
poor survival in patients (Liang et al., 2016; Li et al., 
2017; Piasecka et al., 2018; Song et al., 2018; Bao et al., 
2019; Han et al., 2019; Liu et al., 2019; Sugita et al., 2019; 
Tormo et al., 2019). However, few studies have correlated 
the expression of miRNAs with the clinicopathological 
grade of patients with TNBC, with some limitations. For 
example, a study conducted by Gautam et al. (Bajaj et al., 
2020) showed that overexpression of miR-182 and miR-
18a correlates with worse clinical and pathological tumor 
characteristics in locally advanced TNBC, and hence 
could be used as a prognostic marker in these patients. 
However, the sensitivity and specificity of the assay was 
only 60 and 50%, respectively. Similarly, a study by 
Thakur et al. showed that miR-21 has 95% sensitivity 
and 81% specificity, and miR 195 has 78% specificity 
and 65% specificity (Thakur et al., 2016). These results 
suggest that studies conducted to correlate miRNAs 
with TNBC grade or chemoresistance should include a 
panel of miRNAs to enhance the accuracy of the assay. 
Furthermore, measurement of the expression levels of a 
panel of miRNAs in a patient’s tumor sample could overall 
predict the intrinsic sensitivity of TNBC to a particular 
type of chemotherapy. Therefore, a strategy that includes a 
panel of miRNAs for prognosing chemotherapy resistance 
needs to be developed.

In this study, DE-miRNAs in chemoresistant and 
chemosensitive breast cancer tissues were screened 
using the miRNA expression profile of the breast cancer 
chemoresistance-associated miRNA microarray dataset, 
GSE71142. The genes targeted by DE-miRNAs were 
predicted, and their potential functions were analyzed 
using functional and pathway enrichment analyses. 
Furthermore, a protein-protein interaction (PPI) network 
of the predicted target genes was constructed. Next, we 
derived CRI using the target genes of the top six miRNAs 
in a large representative breast tumor cohort and tested 
the relationship between CRI and hazard rate. Next, the 
relationship between CRI and hazard rate was validated 
in the validation cohort. Through this comprehensive 
bioinformatic analysis, the present study aimed to 
explore the significance of CRI in identifying TNBC 
chemoresistance.

Materials and Methods

Patients and samples
Two datasets of TNBC patients (discovery and 

validation) who had undergone microarray analysis 
of their primary tumors were used in this study. The 
Discovery cohort (TCGA, Cell 2015) included a total 
of 55 TNBC patients. The median disease relapse-free 
survival (DRFS) was 29 months (range:0.33-113.18 
months). The median age of the patients was 51 years 
(range:11.9-82 years). The baseline characteristics of the 
validation cohorts (TCGA, Firehose, and Legacy) are 
presented in Table 1.

miRNA Microarray:
Breast cancer chemoresistance-associated miRNA 

microarray dataset GSE71142 was downloaded from the 
National Center for Biotechnology Information (NCBI) 
Gene Expression Omnibus (GEO) database (http://www.
ncbi. nlm.nih.gov/geo). The dataset GSE71142, based on 
the GPL20717 µParaflo ™ miRNA microarray platform 
(LC Sciences, Houston, TX, USA), included five cases 
of chemoresistant breast cancer tissues and five cases of 
chemosensitive tissues. The chemotherapy drugs used to 
treat patients with breast cancer were adriamycin, taxol, 
or a combination of two or more drugs (CTF: Cytoxan, 
pirarubicin, 5-Fluorouracil (5-FU)); CAF: Cytoxan, 
adriamycin, 5-FU, gemcitabine, and capecitabine; and 
CEF: Cytoxan, epirubicin, and 5-FU).

Screening for DE-miRNAs
Data were analyzed using linear models for microarray 

(LIMMA), which uses Bayesian statistics to minimize 
the type 1 false-positive error in R(Ritchie et al., 2015). 
To further reduce the possibility of a type 1 error, only 
genes present in all chemosensitive and chemoresistant 
tissues were used. miRNAs with fold change (FC) ≥ 2 
and p-values ≤ 0.05 were selected for cluster analysis. 
The mean values of each group were used in cluster 
analysis using the ComplexHeatmap package in the R 
programming language. 

Prediction of genes targeted by DE-miRNAs
In the present study, mirTarBase 9 was used to 

predict the target genes of the DE-miRNAs. In general, 
miRTarBase deals with experimentally validated targets 
using high-throughput approaches, such as reporter assays, 
western blots, and quantitative polymerase chain reaction 
(qPCR) (Chou et al., 2018). Only miRNAs with evidence 
in strong validation methods were chosen.

GO and pathway analysis
The WEB-based GEne SeT AnaLysis Toolkit 

(WebGestalt) was used to perform functional enrichment 
analyses, including Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analyses, to identify potential target genes of DE-
miRNAs(Wang et al., 2017). Statistical significance 
was set at P < 0.05. The degree of connectivity in the 
networks was analyzed using high confidence (value=0.9) 
in Cytoscape software (version 3.9.1) to obtain significant 
nodes or hub proteins in the PPI networks(Shannon et al., 
2003). The top ten hub genes were selected in each group 
(upregulated and downregulated) for further analysis (total 
hub genes =20).

Definition of Chemotherapy Resistance Index
The top genes out of selected 20 hub genes were 

identified using a random forest model(Yao et al., 2019). 
Random Forest in R programming builds and combines 
multiple decision trees to obtain more accurate predictions. 
It is a nonlinear classification algorithm. Genes were 
selected based on their importance level (identified by 
the random forest algorithm) and least variability in the 
z-value in both the discovery and validation cohorts. 
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Results

Identification of differentially expressed-miRNAs and 
their target genes

Based on FC (≥ 2) and p-values (≤ 0.05), a total of 12 
DE-miRNAs were screened. Of these 12 DE-miRNAs, six 
were upregulated (miR-214-3p, miR-4758-3p, miR-200c-
3p, miR-4254, miR-140-3p, and miR-24-3p) and six (miR-
142-5p, miR-146-5p, miR-1268b, miR-1275, miR-4447, 
and miR-4472) were downregulated in chemoresistant 
breast cancer tissues compared to chemosensitive tissues 
(Figure 1). These miRNAs were used for further analyses. 
miRTarBase analysis generated 91 potential target genes, 
including 77 upregulated and 14 down-regulated miRNAs.

Functional and pathway enrichment analyses
GO functional and KEGG pathway enrichment 

analyses were performed for the identified 91 potential 
target genes. The enriched GO functions for the target 
genes are presented in Table 2, including the positive 
regulation of cellular component movement, regulation of 
cell death, regulation of intracellular signal transduction, 
negative regulation of apoptotic process, regulation of cell 
proliferation, and positive regulation of molecular function 
in the biological process (BP) category; cyclin-dependent 
protein kinase holoenzyme complex, transcription factor 
complex, plasma membrane receptor complex and 
chromosome, telomeric region in the cellular component 
(CC) category; and cyclin-dependent protein kinase 
activity, transcription factor binding, proximal promoter 
sequence-specific DNA binding, Interleukin-6 receptor, 
platelet-derived growth factor and protein kinase binding, 
and phosphotransferase activity in the molecular function 
(MF) category. The enriched KEGG pathways for the 
target genes of the upregulated miRNAs (Supplementary 
Figure 1A) included miRNAs in cancer, pathways in 
cancer, PI3K-Akt signaling pathways, cellular senescence, 

We defined a Chemotherapy Index (CI) based on the 
median expression levels of the genes regulated by the 
top six upregulated miRNAs (UmR) and the top six 
downregulated miRNAs (DmR). The median expression 
of these genes was further normalized using the Box-Cox 
power transformation to normalize their distribution. 
CI was calculated as CI = UmR + DmR. The CRI was 
calculated as CRI= CI + B, where B is a constant and the 
number determined to produce positive values for the CI. 

Molecular docking
The RNAComposer system was used for the fully 

automated prediction of miRNA three-dimensional (3-D) 
structures. RNAComposer is a knowledge-based method 
for fully automated RNA 3D structure prediction from 
user-defined secondary structures (Biesiada et al., 2016). 
The secondary structure of miRNAs was determined using 
the mFold software (Zuker, 2003). The structures of the 
miRNAs were prepared and refined using AutoDock 
Vina (Trott and Olson, 2010). Charges were assigned, 
hydrogen atoms were added to the heavy atoms, and all the 
water molecules were deleted. For docking studies, 5-FU 
was retrieved from the PubChem database (compound 
identifier (CID):16213520). Molecular docking was 
performed using the PatchDock server (Schneidman-
Duhovny et al., 2005).

Statistical Analysis
The correlation between CRI and cumulative hazard 

rate was estimated using the Cox model, and the predicted 
rate of distant relapse was obtained from the Breslow-type 
estimator of the survival function (OriginLab version 
2019). CRI values were classified as low or high based 
on the cut-off values determined from the first discovery 
cohort using the Median ± 2SEM. The same thresholds 
were used for subsequent validation analyses and their 
correlations with hazard rate. All statistical computations 
were performed using OriginLab, version 2019. 

Figure 1. Differentially Expressed miRNAs (DE-miRNAs) in Five Cases of Drug-Resistant (DR) Breast Cancer 
Tissues and Five Cases of Drug-Sensitive (DS) Tissues. Data are presented as a heat map. FC, fold change; CR, 
Chemoresistant; CS, Chemosensitive 
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and proteoglycans in cancer signaling pathways. For 
downregulated miRNAs, the enriched KEGG pathways 
included FoxO, Janus kinase/signal transducers and 
activators of transcription (JAK-STAT), epidermal growth 
factor receptor (EGFR), mitogen-activated protein kinase 
(MAPK), and toll-like receptor pathways (Supplementary 
Figure 1B).

Construction and analysis of PPI network and miRNA-
target network

Data from the STRING database showed that 
many target genes interacted with each other. For 
better visualization, the top ten hub nodes with higher 
degrees were screened (Table 3). The hub genes for 
upregulated miRNAs were CTNNB1, CCND1, MYC, 
RHOA, MAPK8, BRCA1, RAC1, HIF1A, CCNA2, 
and KRAS. Among these genes, CTNNB1 had the 
highest node degree (degree=18). The hub genes for the 
downregulated miRNAs were IL-6, TRAF6, IRAK1, 
PDGFRA, SOCS1, ITGAV, TGFBR2, PTEN, SMAD3, 
and A2M. Among these genes, IL-6 showed the highest 
node degree (degree=06). A miRNA-hub gene network 
was constructed as shown in supplementary Figure 2A-B. 
The hub target genes of the upregulated miRNAs were 
potentially regulated by miR-24-3p, miR-200c-3p, and 
miR-214-3p. In particular, miR-24-3p and miR-200c-
3p were predicted to target four hub genes (miR-24-3p: 
CCND1, MYC, BRCA1, CCNA2; miR-200c-3p: RHOA, 
RAC1, HIF-1A, and KRAS). The hub target genes of 
downregulated miRNAs were potentially regulated 
by miR-146b-5p (A2M, IL-6, IRAK1, PDGFRA, and 
TRAF6) and miR-142-5p (ITGAV, SMAD3, PTEN, 
TGFBR2, and SOCS1) (Table 3).

SN Characteristics Validation cohort
1 Number of TNBC patients     55
2 Platform Agilent microarray
3 Age

     <50 24
     ≥50 31
Mean 51
SD 11.9

4 T-Stage
     1 11
     2 41
     3 2
     4 1

5 AJCC Stage
     I 9
     II 36
     III 7
     IV 1

6 Node
     Positive 36
     Negative 15

7 Menopausal status
     Pre             21
     Post 29
     Neither pre nor post 2
     Not available 3

Table 1. Population Characteristics of Validation Cohort
Gene Symbol Degree Gene Symbol
CTNNB1 18 IL6
CCND1 15 TRAF6
MYC 15 IRAK1
RHOA 15 PDGFRA
MAPK8 14 SOCS1
BRCA1 14 ITGAV
RAC1 14 TGFBR2
HIF1A 13 PTEN
CCNA2 12 SMAD3
KRAS 10 A2M

Table 2. Hub Genes Identified in PPI Network

Figure 2. Corelation of Chemotherapy Resistance Index (CRI) with Hazard Rate for Distant Relapse in TNBC Patients 
from Validation Cohort. P values are from point-biserial corelation coefficient. 



Asian Pacific Journal of Cancer Prevention, Vol 24 2047

DOI:10.31557/APJCP.2023.24.6.2043
Chemotherapy Resistance index in Triple Negative Breast Cancer

Identification of top hub genes regulated by DE-miRNA
Using the random forest model, we identified the 

best model based on the tumor stage for 20 hub genes. 
Furthermore, these genes were screened based on their 
least variability of z-values in the discovery and validation 
cohorts. Genes with high importance in the random 
forest model and the least variability in the z-values were 
selected. This strategy led to the identification of the top 
three genes (RAC1, MYC, and CCND1) for upregulated 
miRNAs and the top three genes (IL-6, SOCS1, and 
PDGFRA) for downregulated miRNAs. The z-scores for 
these genes in both the discovery and validation cohorts 
showed similar trends. For example, in the discovery 
cohort, the z-scores for RAC1, MYC, CCND1, IL-6, 

SOCS1 and PDGFRA were − -0.16, 0.69, -0.89, 0.48, 
0.46, and 0.18, respectively. In the validation cohort, the 
z-scores for these genes were -0.14, 0.75, -0.72, 0.37, 
0.76, and 0.23, respectively. These data suggest that for 
upregulated miRNAs the expression of RAC1 and CCND1 
is below the mean value and the expression of MYC 
is above the mean value. Similarly, for downregulated 
miRNAs, the expression of IL-6, SOCS1 and PDGFRA 
is above the mean value.

Relationship of CRI with distant relapse hazard rate
In the validation cohort, we observed a significant 

association between CRI and the risk (hazard rate) for 
distant relapse or death (P = 0.04, Figure 2), with a 

Figure 3. Corelation of Median Expression Level of A) MYC, B) RAC1, C) CCND1, D) IL-6, 5) SOCS1, and 6) 
PDGFRA genes with hazard rate for distant relapse in TNBC patients from validation cohort. P values are from 
point-biserial corelation coefficient. 

Figure 4. Kaplan-Meier Estimates of A) relapse-free survival and B) hazard rate in high and low risk groups of TNBC 
patients from validation cohort. Patients were divided into high (CRI ≥1.3) and low-risk (CRI ≤ 0.8) groups based on 
the cut-off points of the CRI. 
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GO terms: Upregulated genes P-Value FDR* ER* Genes 
overlap

Biological process (BP)
     GO:0051270: Regulation of cellular component movement <2.2e-16 <2.2e-16 6.44 35
     GO:2000145: Regulation of cell motility 2.20E-16 <2.2e-16 6.43 32
     GO:0040012: Regulation of locomotion <2.2e-16 <2.2e-16 5.4 34
     GO:0033993: Response to lipid <2.2e-6 <2.2e-16 5.17 32
     GO:0009628: Response to abiotic stimulus <2.2e-6 <2.2e-6 6.4 35
     GO:0010941: Regulation of cell death <2.2e-16 <2.2e-16 4.63 44
     GO:0051240: Positive regulation of multicellular organismal process <2.2e-16 <2.2e-16 4.38 42
     GO:1902531: Regulation of intracellular signal transduction <2.2e-16 <2.2e-16 4.37 46
     GO:0044093: Positive regulation of molecular function  <2.2e-16 <2.2e-16 4.34 43
     GO:0006915: Apoptotic process <2.2e-16 <2.2e-16 4.26 47
Cellular Component (CC)
     GO:0000307: Cyclin-dependent protein kinase holoenzyme complex 3.36E-08 7.8974E-06 31.397 6
     GO:1902554: Serine/threonine protein kinase complex 1.47E-07 0.000024689 17.463 7
     GO:1902911: Protein kinase complex 5.80E-07 0.000072327 14.303 7
     GO:0000781: Chromosome, telomeric region 3.36E-07 0.000049345 12.003 12
     GO:0005667: Transcription factor complex 8.82E-08 0.000017281 7.2524 16
     GO:0044454: Nuclear chromosome part 2.80E-09 0.000001096 6.4164 16
     GO:0000228: Nuclear chromosome 9.37E-10 5.51E-07 6.3653 17
     GO:0000785: Chromatin 6.16E-07 0.000072327 5.4796 13
     GO:0044427: Chromosomal part 4.32E-10 5.08E-07 5.0852 21
     GO:0005694: Chromosome 4.86E-09 1.4285E-06 4.4433 21
Molecular Function (MF)
     GO:0097472: Cyclin-dependent protein kinase activity 1.40E-09 4.69E-07 33.194 7
     GO:0004674: Protein serine/threonine kinase activity 3.47E-08 7.2425E-06 5.8614 15
     GO:0004672: Protein kinase activity 7.41E-11 6.95E-08 5.6772 21
     GO:0008134: Transcription factor binding 3.94E-10 1.85E-07 5.5001 20
     GO:0019900: Kinase binding 5.71E-11 6.95E-08 5.4289 22
     GO:0000987: Proximal promoter sequence-specific DNA binding 3.93E-08 7.3845E-06 5.3676 16
     GO:0019901: Protein kinase binding 2.25E-09 6.04E-07 5.283 19
     GO:0016773: Phosphotransferase activity, alcohol group as acceptor 3.59E-10 1.85E-07 4.9297 22
     GO:0016301: Kinase activity 1.50E-09 4.69E-07 4.568 22
     GO:0016772: Transferase activity, transferring phosphorus-containing groups 5.53E-09 1.2984E-06 4.0639 23

Table 3A. Enriched Functions of the Target Genes of the Upregulated miRNAs

*FDR, False discovery rate; ER, Enrichment ratio

point-biserial correlation value of 0.26. However, no 
significant relationship was observed between box-cox 
transformed expression values of individual genes (RAC1, 
MYC, CCND1, IL-6, SOCS1, or PDGFRA) and hazard 
rate (Figure 3A-3F). 

Two groups of chemotherapy resistance defined by CRI
Having validated the concept that a higher CRI is 

associated with a higher risk of distant relapse (hazard 
rate), we sought to establish clinically useful categories. 
Two cut-off points (corresponding to index values of 0.83 
and 1.34) were chosen to maximize the association of CRI 
with distant relapse events or death. Patients were divided 
into high- and low-risk groups based on the cut-off points 
of the CRI (≥1.3 and ≤0.8). All patients with relapsed 
events showed a high CRI value (≥1.3), and none of the 
patients in the low-risk group showed a relapse event 

(≤0.8). However, no significant association was observed 
between the risk of distant relapse and CRI (P=0.09; 
Figure 4A-B). This could be because of the small number 
of patients with disease recurrence. A high CRI index and 
node-positive status were independent predictors of the 
risk of distant relapse in a univariate Cox model (Table 4).

Molecular models of miRNAs involved in chemoresistance
RNAComposer was used to produce a molecular model 

of the six miRNAs expressed in chemoresistance through 
in silico projection processing of their molecular structures 
(Figure 5A-F). Using the SM2miR tool, three and five 
drugs were identified that upregulated miR-142-5p and 
miR-146b-5p, respectively. Similarly, 6, 15, 6, and 4 
drugs were identified that downregulated the expression 
of miR-214-3p, miR-24-3p, miR-140-3p and miR200c-
3p respectively. Our data suggest that 5-FU is a 
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common drug that can downregulate miR-200c-3p and 
miR-24-3p and up-regulate the expression of miR-146b-
5p (Supplementary Table 1). Therefore, 5-FU can enhance 
sensitivity to personalized chemotherapy when the CRI 
of patients is high. Further investigations are necessary 
to validate this hypothesis.

Molecular docking of 5-FU with miRNAs
Visualization of 5-FU with miR146-5p showed 7 

hydrogen bonds with 5-FU [Adenine10 (A10)-3.5 & 4Aº, 
Adenine5 (A5)-2.2 Aº, Adenine6 (A6)-2.3 Aº, Guanine4 
(G4)-3.1 Aº and Cytosine7 (C7)-3.3 Aº] (Figure 6). 
However, three and two hydrogen bonds were observed 
for miR24-3p [Guanine16 (G16)-2 Aº, Guanine 17(G17)-
2.9 Aº, and Adenine12 (A12)- 3.2 Aº] and miR200c-3p 
[Adenine16 (A16)-3.3 Aº and cytosine15 (C15)-2.7 
Aº)], respectively (Figure 7-8). These results indicate 
the strongest interaction between 5-FU and miR146-
5p in comparison to the other two miRNAs. These 
sites represent the active sites of miRNAs with 5-FU. 
According to the docking analysis, the atomic contact 
energy (ACE) for miR-146-5p and 5-FU was − -157 Kcal/
mol which indicated a strong binding with miR-146-5p. 
The ACE for miR-24-3p with 5-FU was − -83-Kcal/mol 
and for miR-200c-3p with 5-FU was −64 kcal/mol. These 
data further support that the interaction of miR-146-5p is 

GO terms: Downregulated genes P-Value FDR* ER* Genes 
overlap

Biological process (BP)
     GO:0045785: Positive regulation of cell adhesion 3.11E-09 0.000003821 18.893 8
     GO:0030155: Regulation of cell adhesion 7.40E-09 6.7306E-06 12.74 9
     GO:0043066: Negative regulation of apoptotic process 2.47E-10 6.62E-07 11.29 11
     GO:0043069: Negative regulation of programmed cell death 2.91E-10 6.62E-07 11.117 11
     GO:0060548: Negative regulation of cell death 7.19E-10 1.3074E-06 10.214 11
     GO:0042127: Regulation of cell proliferation 2.29E-10 6.62E-07 7.6951 13
     GO:0042981: Regulation of apoptotic process 3.40E-09 0.000003821 7.3281 12
     GO:0043067: Regulation of programmed cell death 3.78E-09 0.000003821 7.261 12
     GO:0008283: Cell proliferation 2.15E-10 6.62E-07 6.5261 14
     GO:0006915: Apoptotic process 2.80E-09 0.000003821 6.2978 13
Cellular Component (CC)
     GO:0098802: Plasma membrane receptor complex 9.09E-07 0.00053419 26.559 5
     GO:0005811: Lipid droplet 0.0027644 0.32482 25.387 2
     GO:0043235: Receptor complex 2.21E-09 2.5929E-06 19.745 8
     GO:0009897: External side of plasma membrane 0.00018196 0.032174 13.528 4
     GO:0098552: Side of membrane 0.00000568 0.0022255 12.192 6
     GO:0098797: Plasma membrane protein complex 0.00019167 0.032174 8.758 5
     GO:0009986: Cell surface 0.00090472 0.11812 6.2493 5
     GO:0098796: Membrane protein complex 0.00073894 0.10853 5.0773 6
     GO:0005887: Integral component of plasma membrane 0.00008592 0.02524 4.8992 8
     GO:0031226: Intrinsic component of plasma membrane 0.00012021 0.02825 4.6737 8
Molecular Function (MF)
     GO:0005138: Interleukin-6 receptor binding 0.0000205 0.0064129 280.13 2
     GO:0005161: Platelet-derived growth factor receptor binding 0.00010201 0.021274 130.73 2
     Gene set: GO:0031435: Mitogen-activated protein kinase kinase kinase binding 0.00016573 0.031107 103.21 2
     GO:0019838: Growth factor binding 2.07E-07 0.00019393 35.524 5
     GO:0019955: Cytokine binding 0.00000708 0.0030997 30.881 4
     GO:0070851: Growth factor receptor binding 0.00000825 0.0030997 29.711 4
     GO:0005126: Cytokine receptor binding 0.00000609 0.0030997 17.892 5
     GO:0019901: Protein kinase binding 0.00002488 0.006672 9.323 6
     GO:0019900: Kinase binding 0.00004874 0.011436 8.274 6
     GO:0005102: Signaling receptor binding 2.92E-08 0.000054871 7.0125 11

Table 3B. Enriched Functions of the Target Genes of the Downregulated miRNAs

*FDR, False discovery rate; ER, Enrichment ratio

Factor Hazard ratio p-value
Age 1.25 0.7500
Node (Positive vs. Negative) 7.91 0.0152
Menopausal status 1.26 0.4861

Table 4. Univariate Cox Regression Analysis of 
Association with Hazard Rate
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Figure 5. Predictive Models of miRNAs by RNAComposer A) miR-24-3p, B) miR-200c-3p, C) miR-140-3p, 
D) miR-214-3p, E) miR-146b-5p, and F) miR-142-5p 

Figure 6. Molecular Docking of miR-146b-5p with 5-FU A) Interactions between residues of miR-146b-5p with 5-FU 
(Residues of miR-146b-5p-Pink, 5-FU-Green). Magenta colored lines are showing hydrogen bonding. Amino acids 
were labelled with a one-letter code. Residues shown in the figures are within the range of 5Aº from the 5-FU. B) 
Complete three-dimensional (3D) structure of miR-146b-5p showing interactions with 5-FU. Predictive 3D structure 
of mir-146b-5p shown in orange. Residues within the range of 5Aº from 5-FU are shown in pink and 5-FU is shown 
in green. 

strongest with 5-FU; however, the other two miRNAs also 
showed strong interactions with 5-FU.

Discussion

The treatment of TNBC remains challenging because 
of the heterogeneity of the disease, drug resistance, tumor 
relapse, and lack of single targetable mutations. The effects 
of miRNAs on multiple targets may improve the response 
rates in the context of this genetically and biologically 
heterogeneous disease. In this scenario, miRNAs-based 
therapeutics offer a very attractive area to treat this difficult 
to treat cancer. The differential expression of miRNAs 
based on disease severity is an essential consideration 

when assessing the utility of miRNA biomarkers for 
clinical use. In this study, we identified the differential 
expression of the top 12 miRNAs in chemoresistant 
TNBC compared to that in chemosensitive TNBC. Among 
the dysregulated miRNAs, miR-214-3p (upregulated) 
and miR-142-5p (downregulated) showed the greatest 
fold-change in expression between chemoresistant 
and chemosensitive tissues. miR-214-3p promotes 
carcinogenesis in TNBC, and its inhibition attenuates the 
migration, invasion, and viability of TNBC cells (Zhang 
et al., 2019). Similarly, stable re-expression of miR-142-
5p robustly and significantly increased the sensitivity of 
TNBC cells embedded in collagen to doxorubicin (Qattan, 
2020). The delivery of this miRNA to drug-resistant 
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Figure 7. Molecular Docking of miR-24-3p with 5-FU A) Interactions between residues of miR-24-3p with 5-FU 
(Residues of miR-24-3p-Pink, 5-FU-Green). Magenta coloured lines are showing hydrogen bonding. Amino acids 
were labelled with a one-letter code. Residues shown in the figures are within the range of 5Aº from the 5-FU. B) 
Complete 3D of miR-24-3p showing interactions with 5-FU. Predictive 3D structure of mir-24-3p shown in orange. 
Residues within the range of 5Aº from 5-FU are shown in pink and 5-FU is shown in green. 

Figure 8. Molecular Docking of miR-200c-3p with 5-FU A) Interactions between residues of miR-200c-3p with 
5-FU (Residues of miR-200c-3p-Pink, 5-FU-Green). Magenta coloured lines are showing hydrogen bonding. Amino 
acids were labelled with a one-letter code. Residues shown in the figures are within the range of 5Aº from the 5-FU.  
B) Complete 3D structure of miR-200c-3p showing interactions with 5-FU. Predictive 3D structure of mir-200c-3p 
shown in orange. Residues within the range of 5Aº from 5-FU are shown in pink and 5-FU is shown in green.
 

TNBC patients in combination with chemotherapy may 
be a promising therapeutic approach. These two miRNAs 
(miR-214-3p and miR-142-5p) have not been systemically 
investigated in breast cancer. This is the first report 
to link these two miRNAs with TNBC chemotherapy 
resistance. Other studies that correlate miRNAs with 
chemoresistance in TNBC have less diagnostic testing 
accuracy and, thus, have less clinically significant value. 
These results highlight the importance of including a panel 
of miRNAs to increase the sensitivity of the diagnostic/
prognostic assay. 

The miRNAs identified in this study can be used 
to calculate and validate the CRI if a validation cohort 
describing detailed patient data, miRNA signatures, 
and their correlation with chemoresistance is available. 
However, these data were not available. Therefore, we 
utilized the target hub genes of miRNAs to calculate 
CRI, which was used to define the hazard rate or DRFS 
in TNBC patients. The target genes were trained using a 

random forest model. This study showed that the gene 
expression-based random forest classification model 
accurately predicts and distinguishes patients according 
to risk. Top six genes identified in this study played an 
important role in regulation of TNBC (Hartman et al., 
2013; Klauber-DeMore et al., 2018; Qian et al., 2018; 
Ganapathy-Kanniappan, 2020; Zhang et al., 2020).

The CRI and lymph node status were significantly 
correlated with the hazard rate or DRFS in TNBC. Lymph 
node status was an independent prognostic factor for 
hazard rate in this study. Furthermore, an elevated CRI 
was more strongly associated with an increased hazard 
rate and reduced survival. This supports our interpretation 
that CRI is a chemoresistance predictor and predicts a 
lower response to chemotherapy in TNBC tumors. These 
data further suggest that patients with node-negative 
TNBC status and low CRI could reasonably select 
standard chemotherapy alone, but other patients at high 
risk might benefit from additional treatment, such as 
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immunotherapy, to have better DFRS. Validation cohort 
data showed that approximately 33% of patients with 
clinical stage II or III disease had a high CRI and may 
not benefit from chemotherapy. Therefore, it is important 
to consider whether chemotherapy should be encouraged 
for patients with node-negative and low CRI groups, 
or whether a predictive test for chemosensitivity could 
identify node-negative patients with excellent survival 
from standard chemotherapy. We expect that additional 
studies that evaluate the predictive performance of the 
CRI will further highlight its clinical interpretation. The 
performance of the CRI-based predictive model in both 
discovery and validation cohorts was highly positive. 
This suggests that this model has the potential to assist 
clinicians in making decisions for patients whose tumors 
are chemoresistant due to the differential expression of 
the top six genes regulated by miRNAs.

The clinical relevance of the independent prediction of 
chemoresistance should not dissuade the use of standard 
chemotherapy as a standard treatment for eligible patients. 
Rather, CRI results should be better interpreted in the 
context of nodal status and combined to predict the 
chemoresistant nature of TNBC. The CRI was calculated 
based on differential gene expression profiling. In this 
context, CRI could be considered an important piece of a 
prognostic puzzle for personalized breast cancer treatment. 
For example, our findings from the molecular docking 
studies suggest that 5-FU has a potential chemical affinity 
and ability to alter the expression of the three miRNAs. 
These results suggest that 5-FU, in combination with a 
potent small-molecule miRNA targeting drugs, could be 
used as a remedial approach for chemoresistant TNBC.

Author Contribution Statement

RG and MS was responsible for the conceptualization 
of the manuscript and manuscript drafting. ASC, MS, DN, 
and RG performed all the analyses.

Acknowledgements

Ethics approval
This bioinformatics study was waived from ethics 

approval. 

Availability of data
The datasets generated during and/or analyzed during 

the current study are available from the corresponding 
author on request.

Conflict of interest
The authors declare no conflict of interest.

References

Bajaj R, Tripathi R, Sridhar TS, et al (2020). Prognostic role of 
microRNA 182 and microRNA 18a in locally advanced triple 
negative breast cancer. PLoS One, 15, e0242190.

Bao C, Lu Y, Chen J, et al (2019). Exploring specific prognostic 
biomarkers in triple-negative breast cancer. Cell Death Dis, 
10, 807.

Biesiada M, Purzycka KJ, Szachniuk M, et al (2016). Automated 
RNA 3D Structure Prediction with RNAComposer. Methods 
Mol Biol, 1490, 199-215.

Chou CH, Shrestha S, Yang CD, et al (2018). miRTarBase update 
2018: a resource for experimentally validated microRNA-
target interactions. Nucleic Acids Res, 46, 296-302.

Furlanetto J, Loibl S (2020). Optimal Systemic Treatment for 
Early Triple-Negative Breast Cancer. Breast Care (Basel), 
15, 217-26.

Ganapathy-Kanniappan S (2020). Rac1 repression reverses 
chemoresistance by targeting tumor metabolism. Cancer 
Biol Ther, 21, 888-90.

Hamy AS, Darrigues L, Laas E, et al (2020). Prognostic value 
of the Residual Cancer Burden index according to breast 
cancer subtype: Validation on a cohort of BC patients treated 
by neoadjuvant chemotherapy. PLoS One, 15, e0234191.

Han J, Lim W, You D, et al (2019). Chemoresistance in the 
Human Triple-Negative Breast Cancer Cell Line MDA-
MB-231 Induced by Doxorubicin Gradient Is Associated 
with Epigenetic Alterations in Histone Deacetylase. J Oncol, 
2019, 1345026.

Hartman ZC, Poage GM, den Hollander P, et al (2013). Growth 
of triple-negative breast cancer cells relies upon coordinate 
autocrine expression of the proinflammatory cytokines IL-6 
and IL-8. Cancer Res, 73, 3470-80.

Holanek M, Selingerova I, Bilek O, et al (2021). Neoadjuvant 
Chemotherapy of Triple-Negative Breast Cancer: Evaluation 
of Early Clinical Response, Pathological Complete Response 
Rates, and Addition of Platinum Salts Benefit Based on 
Real-World Evidence. Cancers (Basel), 13.

Klauber-DeMore N, Schulte BA, Wang GY (2018). Targeting 
MYC for triple-negative breast cancer treatment. 
Oncoscience, 5, 120-1.

Li J, Lai Y, Ma J, et al (2017). miR-17-5p suppresses cell 
proliferation and invasion by targeting ETV1 in triple-
negative breast cancer. BMC Cancer, 17, 745.

Li Y, Zhang H, Merkher Y, et al (2022). Recent advances in 
therapeutic strategies for triple-negative breast cancer. 
J Hematol Oncol, 15, 121.

Liang Z, Bian X, Shim H (2016). Downregulation of 
microRNA-206 promotes invasion and angiogenesis of 
triple negative breast cancer. Biochem Biophys Res Commun, 
477, 461-6.

Liu M, Gong C, Xu R, et al (2019). MicroRNA-5195-3p 
enhances the chemosensitivity of triple-negative breast 
cancer to paclitaxel by downregulating EIF4A2. Cell Mol 
Biol Lett, 24, 47.

Perez EA, Patel T, Moreno-Aspitia A (2010). Efficacy of 
ixabepilone in ER/PR/HER2-negative (triple-negative) 
breast cancer. Breast Cancer Res Treat, 121, 261-71.

Piasecka D, Braun M, Kordek R, et al (2018). MicroRNAs 
in regulation of triple-negative breast cancer progression. 
J Cancer Res Clin Oncol, 144, 1401-11.

Pratik K Jha MAA, Vivek Srivastava, AKV, Mohit Mangla 
(2020). Triple Negative Breast Cancer: Alarming Burden 
and Future Challenges in Indian Perspective. J Sci Res, 
64, 126-30.

Qattan A (2020). Novel miRNA Targets and Therapies in the 
Triple-Negative Breast Cancer Microenvironment: An 
Emerging Hope for a Challenging Disease. Int J Mol Sci, 21.

Qian Q, Lv Y, Li P (2018). SOCS1 is associated with clinical 
progression and acts as an oncogenic role in triple-negative 
breast cancer. IUBMB Life, 70, 320-7.

Ritchie ME, Phipson B, Wu D, et al (2015). limma powers 
differential expression analyses for RNA-sequencing and 
microarray studies. Nucleic Acids Res, 43, e47.

Schneidman-Duhovny D, Inbar Y, Nussinov R, et al (2005). 



Asian Pacific Journal of Cancer Prevention, Vol 24 2053

DOI:10.31557/APJCP.2023.24.6.2043
Chemotherapy Resistance index in Triple Negative Breast Cancer

PatchDock and SymmDock: servers for rigid and symmetric 
docking. Nucleic Acids Res, 33, W363-7.

Shannon P, Markiel A, Ozier O, et al (2003). Cytoscape: a 
software environment for integrated models of biomolecular 
interaction networks. Genome Res, 13, 2498-504.

Silver DP, Richardson AL, Eklund AC, et al (2010). Efficacy 
of neoadjuvant Cisplatin in triple-negative breast cancer. 
J Clin Oncol, 28, 1145-53.

Song H, Li D, Wu T, et al (2018). MicroRNA-301b promotes 
cell proliferation and apoptosis resistance in triple-negative 
breast cancer by targeting CYLD. BMB Rep, 51, 602-7.

Sugita BM, Pereira SR, de Almeida RC, et al (2019). 
Integrated copy number and miRNA expression analysis 
in triple negative breast cancer of Latin American patients. 
Oncotarget, 10, 6184-203.

Thakur S, Grover RK, Gupta S, et al (2016). Identification of 
Specific miRNA Signature in Paired Sera and Tissue Samples 
of Indian Women with Triple Negative Breast Cancer. PLoS 
One, 11, e0158946.

Tormo E, Ballester S, Adam-Artigues A, et al (2019). The 
miRNA-449 family mediates doxorubicin resistance in 
triple-negative breast cancer by regulating cell cycle factors. 
Sci Rep, 9, 5316.

Trott O, Olson AJ (2010). AutoDock Vina: improving the speed 
and accuracy of docking with a new scoring function, 
efficient optimization, and multithreading. J Comput Chem, 
31, 455-61.

Wang J, Vasaikar S, Shi Z, et al (2017). WebGestalt 2017: a more 
comprehensive, powerful, flexible and interactive gene set 
enrichment analysis toolkit. Nucleic Acids Res, 45, 130-7.

Yao D, Zhan X, Kwoh CK (2019). An improved random forest-
based computational model for predicting novel miRNA-
disease associations. BMC Bioinformatics, 20, 624.

Zhang L, Yuan C, Peng J, et al (2020). SHP-2-Mediated 
Upregulation of ZEB1 Is Important for PDGF-B-Induced 
Cell Proliferation and Metastatic Phenotype in Triple 
Negative Breast Cancer. Front Oncol, 10, 1230.

Zhang Y, Zhao Z, Li S, et al (2019). Inhibition of miR‑214 
attenuates the migration and invasion of triple‑negative 
breast cancer cells. Mol Med Rep, 19, 4035-42.

Zuker M (2003). Mfold web server for nucleic acid folding and 
hybridization prediction. Nucleic Acids Res, 31, 3406-15.

This work is licensed under a Creative Commons Attribution-
Non Commercial 4.0 International License.


