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Introduction

In the Greater Mekong subregion of Southeast Asia, 
O. viverrini causes live fluke-induced opisthorchiasis, 
which increases mortality rates associated with CCA [1]. 
In Thailand and other parts of Southeast Asia, CCA ranks 
as one of the most common cancers in males and females 
(96 per 100,000 men in Northeast Thailand) due to the high 
prevalence of liver fluke infection [2]. One main reason 
is having strong livelihoods and lifestyle associations 
within wetland ecosystems in the Mekong region, which 
are intricately related to human raw food consumption. 
The basin covers a large part of northeastern Thailand, 
almost the entire countries of Lao PDR and Cambodia 
[3, 4] (Figure 1A), where the custom of consuming raw fish 
exists (Figure 1B, D), which may have been contaminated 
with O. viverrini metacercaria [5, 6]. A fluke can settle in 
the small ducts of the intrahepatic bile ducts and live there 
for an average of 20–30 years (Figure 1C) [7]. Long-term 
O. viverrini infection causes bile duct inflammation, which 
leads to epithelial hyperplasia, periductal fibrosis, bile duct 
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dilation, and, eventually, cancer [7].
According to the International Agency for Research 

on Cancer (IARC), opisthorchiasis, one of only three 
eukaryotic diseases classified as Group 1 carcinogens, 
can cause persistent inflammation in the biliary tract, 
causing cancer [8]. Chronic obstruction of bile ducts 
by flukes, mechanical damage caused by their suckers, 
the release of their excretory/secretory products, and 
immunopathology have all been noted as risk factors 
for the development of O. viverrini-associated CCA 
[9, 5, 10]. Intrahepatic cholangiocarcinoma (iCCA) is 
the most frequently diagnosed liver cancer subtype in 
places with a high prevalence of liver fluke infection, 
such as Northern Thailand. This is primarily due to a 
prototypical inflammatory etiology of liver fluke disease 
(Figure 1D) [11, 12]. Flukes normally reside in the small 
to medium intrahepatic bile ducts (IHCC), but in severe 
infections, they may also settle in the gallbladder and 
extrahepatic ducts (EHCC), which ultimately raises the 
risk of extrahepatic cholangiocarcinoma (eCCA) [13]. 

It is often difficult to treat patients with CCA, whether 

Editorial Process: Submission:09/04/2023   Acceptance:01/19/2024

1Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 
40002, Thailand. 2Tropical Disease Research Center, WHO Collaborating Centre for Research and Control of Opisthorchiasis, 
Khon Kaen University, Khon Kaen 40002, Thailand. *For Correspondence: sutasu@kku.ac.th

Alok Kafle1, Sutas Suttiprapa1,2*



Alok Kafle and Sutas Suttiprapa

Asian Pacific Journal of Cancer Prevention, Vol 2526

Figure 1. Epidemiology, Transmission Dynamics, and Anatomical Subtypes of Ov-CCA. A. An illustration of the 
Lower Mekong Basin in Southeast Asia showing where the highest prevalence of CCA is found in Thailand, Lao PDR, 
Cambodia and Vietnam. B. Raw or fermented fish consumption is the main cause of O. viverrini infection (freshwater 
cyprinid fish). A diet high in raw fish causes individuals to experience cycles of O. viverrini infection, treatment, and 
re-infection, increasing the risk of developing CCA in highly endemic areas. C. Schematic diagram of CCA types: 
Based on anatomical structures, CCA is divided into two subtypes: extrahepatic (eCCA) and intrahepatic (iCCA). 
Extrahepatic CCA can be further classified into perihilar (pCCA), middle, and distal (dCCA), depending on the loca-
tions of the tumor. D. Life cycle of liver fluke in humans: The human bile duct is a host environment for the parasite 
O. viverrini sexual development. After a brief time of free-living growth, eggs produced by the cross-fertilization of 
hermaphroditic adult liver fluke move through feces and infect the first intermediate host (snails). The reproduction in 
this host environment is asexual. Infected snails (Bythinia Spp.) release larval flukes (cercariae) that then develop into 
encysted metacercariae in a second intermediate host of specific fish species. (Cyprinid spp.). Ingestion of fish infected 
with metacercariae leads to the infection of the human host. 

Opisthorchis viverrini-associated cholangiocarcinoma 
(Ov-CCA) or non-Opisthorchis viverrini-associated 
cholangiocarcinoma (non-Ov-CCA), due to the lack 
of early signs and biomarkers [14]. Most people with 
Ov-CCA suffer from advanced metastatic disease when 
detected, resulting in poor prognosis and short survival 
time [15]. The 5-year survival rate is still quite low despite 
advancements in diagnostic techniques such as blood 
tumor markers, radiographic and endoscopic imaging, and 
pathological analysis of biopsies or endoscopic brushings 
[16-18]. Hence, to address ascending rates of CCA cases 
in the endemic region by late diagnosis due to the lack of 
early symptoms and the refractory nature of these tumors, 
improved biomarkers and diagnostic methods are needed 
for detection in humans and susceptible animal host to 
prevent progression to cancer (CCA) from controlling 
and monitoring O. viverrini effectively.

Researchers continue using conventional serum 
markers despite advancements and discovering prospective 
biomarkers. They have utilized carbohydrate antigen 19-9 
(CA 19-9) and carcinoembryonic antigen (CEA) for 

routine CCA screening. However, these markers are also 
elevated by alcoholic liver disease, chronic viral hepatitis, 
primary sclerosing cholangitis (PSC), cholestasis, liver 
damage, and various malignancies [19, 20]. Currently, 
there are no tumour-specific markers for Ov-CCA. 
Hence, until now, ultrasound has been the only method 
convincingly used to screen for CCA due to O. viverrini 
[21, 22]. However, pathognomonic radiological features 
in imaging frequently make accurate diagnosis difficult, 
leaving biopsy as the only option for determining CCA 
[23]. Thus, a strategic road map for neglected tropical 
diseases 2021-2030 establishes global targets for 
preventing, controlling, eliminating, and eradicating a 
diverse set of NTDs, including the O. viverrini parasite, 
and effectively necessitates diagnostic biomarkers for 
early infection, recurrence, or documentation of successful 
treatment. 

Even though there are many examples of lab-based 
experiments and small-scale human trials showing the 
usefulness of new biomarkers in the field of Ov-CCA [24-
26], finding biomarkers and figuring out how to use them 
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in clinical settings remains a major challenge. Identifying 
biomarkers that differentiate disease phenotypes, such 
as symptomatic versus asymptomatic or uncomplicated 
versus severe forms, holds substantial promise for 
improving prognostication and providing precise guidance 
for clinical researchers, physicians, and surgeons. This 
review aims to find potential biomarkers for clinical 
use in diagnosing and monitoring O.viverrini infection. 
Hence, this review serves as an up-to-date overview 
of identifying and validating potential biomarkers for 
Ov-CCA. Additionally, it discusses potential markers 
and biomarker studies involving Ov-CCA, investigates 
the reasons behind limited implementation in clinical 
settings, and proposes pilot studies, machine learning, 
and “omics” technologies for future biomarker research 
and clinical translation.

Biomarker
A biomarker refers to any characteristic or measurement 

of a biological sample or medical condition that can be 
accurately and reliably measured. In other words, it is 
a way to describe or quantify features of a biological 
system [27, 28]. On the other hand, the term “marker” is 
more encompassing, referring to any discernible attribute, 
substance, or indicator that can be employed to identify, 
measure, or monitor a particular condition, disease, or 
biological process [29]. For a long time, researchers 
and healthcare professionals have hailed biomarkers as 
the key to improving patient care and reducing medical 
expenses [30]. They are beneficial in detecting and grading 
disease seriousness in laboratory and clinical settings. The 
impact of biomarkers on cancer therapy can be assessed 
using a three-faceted framework that includes prognostic, 
predictive, and diagnostic assessment [31] (Table 1). We 
will highlight these three areas of biomarker investigations 
in Ov-CCA for this review and their relevance to cancer. 

Cancer researchers categorize cancer biomarkers 
into three groups based on their associated signature: 
prognostic, predictive, and diagnostic. Regardless of 
any medical intervention, prognostic biomarkers provide 
information about the tumor’s severity and the patient’s 
long-term prognosis. Predictive biomarkers, on the 
other hand, provide information about how a therapeutic 
intervention will affect a patient. Finally, diagnostic 
biomarkers are biological criteria that help diagnose 
a disease and may indicate its progression or therapy 
efficacy.

Biomarkers for Opisthorchis viverrini (Ov) infection
Currently, the “gold standard” detection method 

for diagnosing opisthorchiasis is detecting O. viverrini 

eggs in stool samples using the formalin ethyl-acetate 
concentration technique (FECT). This approach exhibits 
a restricted diagnostic sensitivity and specificity for 
detecting mild infections, as eggs of O. viverrini 
parasites are often indistinguishable from those of minute 
intestinal flukes (MIFs) when present in fecal matter [32, 
33]. Detecting chronic O. viverrini infection through 
coprological methods presents a significant challenge 
due to the obstruction of egg flow into the feces caused 
by opisthorchiasis. Further complicating identification 
is fibrosis or primary biliary sclerosis in the bile ducts. 
As a result, conventional diagnostic approaches, such 
as microscopic examination of stool samples, may not 
be effective in identifying the presence of O. viverrini 
infection in individuals with chronic opisthorchiasis [34, 
35]. In addition, numerous investigations have shown 
that the relationship between estimated CCA incidence 
and fecal Ov eggs count is only weakly associated with 
active infection during CCA [36, 37]. Doctors and patients 
in endemic opisthorchiasis areas are currently facing a 
significant challenge. In order to aid in the early detection, 
prognostication, and therapy of this form of cancer, it is 
imperative to look into the molecular mechanism behind 
the development of CCA.

High-throughput technologies have paved the way 
for identifying molecular markers of disease processes 
by comprehensively analyzing genes, transcripts, 
proteins, and other biological molecules [38].  Given the 
multitude of biomarkers and their diverse functions and 
properties, selecting and designing clinical trials involving 
biomarkers can be challenging.  Therefore, this review 
addressed potential biomarkers for Ov-CCA, which could 
provide researchers and clinicians with a reliable panel of 
biomarkers. Importantly, these biomarkers may also have 
the potential to identify CCA not attributed to O. viverrini, 
as CCA can arise as a consequence of either condition.

Biofluid (serum and plasma) and tissue biomarkers 
Serum and plasma are used to identify potential 

biomarkers because of their ease of collection, stability, 
and wide range of biologically active molecules, which 
can provide valuable information about a person’s health 
status. The choice between serum and plasma ultimately 
depends on the specific biomarkers of interest and the 
intended downstream applications. The most effective 
biomarkers were those demonstrating the highest levels 
of both sensitivity and specificity. Other popular methods 
for assessing the quality of biomarker signatures include 
measuring the area under the curve and determining 
receiver operating characteristics (ROC) (AUROC) [39]. 
Human serum may include antigens from the circulating 

Marker Type Definition Examples in Clinical application
Diagnostic 
marker

A biological marker is used to diagnose a specific disease or 
condition.

PSA  (prostate-specific  antigen) test for prostate 
cancer (Ilic et al., 2018)

Predictive 
marker

A biological marker helps predict how a disease will develop 
or how a patient will react to a certain treatment.

HER2 (human epidermal growth factor  receptor  2)  
gene  for breast cancer treatment (Zhang et al., 2020)

Prognostic 
marker

A biological marker helps predict the future outcome of a 
disease, such as the likelihood of survival or progression.

LDH  (lactate  dehydrogenase) levels for Hodgkin's 
lymphoma prognosis(Qi et al., 2021)

Table 1. Biological Markers Types and Examples in Clinical Application
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Cancer cells metabolism, motility, proliferation, and 
survival are controlled by a key oncogenic pathway 
known as phosphatidylinositol 4,5-bisphosphate 3-kinase 
(PI3K) [61, 62]. The potential and suitability of 
phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic 
subunit beta isoform (PIK3CB), a specific isoform of the 
catalytic subunit of PI3K, as biomarkers were assessed 
using indirect ELISA for the diagnosis of O. viverrini 
infections and CCA.  In a study conducted by Prasopdee, 
Yingchutrakul et al. (2022), the potential and suitability 
of phosphatidylinositol 4,5-bisphosphate 3-kinase 
catalytic subunit beta isoform (PIK3CB) as a biomarker 
was assessed using indirect ELISA for the diagnosis 
of O. viverrini infections and CCA. The plasma levels 
of PIK3CB were significantly different between the O. 
viverrini and CCA groups compared to the non-Ov CCA 
group. However, there was no significant difference in 
PIK3CB levels between the Ov and CCA groups. The 
sensitivity and specificity values for detecting O. viverrini 
using an OD450 cut-off at >1.570 were 76% and 72%, 
respectively [63]. Previous research has acknowledged 
that the downstream signaling molecules, specifically the 
PI3K signaling pathways involving AKT and ERK, are 
crucial in stimulating cholangiocyte proliferation [64]. In 
Ov-CCA investigations, the PI3K/AKT/mTOR and ERK 
pathways were mainly reported in tissues and cell lines 
[65, 66]. Inhibitors of PI3K have significant potential for 
treating CCA and are important as a cancer diagnostic [67]. 
To test for Ov-CCA and non-Ov-CCA, the measurement of 
plasma PIK3CB via indirect ELISA holds great potential.

Interleukin-6 (IL-6)
Chronic inflammation is a crucial factor in the 

development of O. viverrini-induced CCA. In advanced 
cases of chronic O. viverrini infection, a high level of 
circulating plasma IL-6, a well-known inflammatory 
cytokine, is related to the severity of periductal fibrosis 
but not to the infection itself [68]. During O. viverrini 
infection, injured epithelial cell lining can produce 
several cytokines, including IL-6, IL-8, TGF- β and 
TNF- α, leading to chronic bile duct inflammation [69], 
causing bile duct epithelial cell proliferation and impaired 
epithelial barrier function. 

IL-6 plasma levels (>64 pg/mL) showed 80% 
sensitivity and 90% specificity for detecting CCA with 
an 89% accuracy (95% CI = 85% to 93% [68]. However, 
the low diagnostic specificity of IL-6 is worth noting, as 
it has been proposed as an inflammatory marker for many 
conditions, including other cancers [70- 72], virus [73] 
and bacterial infections [74, 75]. 

The usefulness of plasma IL-6 as a diagnostic marker 
for cholangiocarcinoma (CCA) is limited due to its 
nonspecific rise in response to immune challenges other 
than parasite antigens. However, given the high prevalence 
of exposure to the carcinogen O. viverrini through the 
consumption of raw fish in half the high-incidence 
population, a readily available biomarker like plasma 
IL-6 could have significant clinical utility in identifying 
individuals at risk for CCA or those with early-stage 
disease [76]. In the context of Isaan, Thailand, where the 
prevalence of O. viverrini infection can reach as high as 

liver fluke that can be utilized to diagnose liver fluke 
infection. Based on the information in (Table 2), the 
review will focus on blood and tissue-based biomarkers 
that exhibit high sensitivity, specificity, and accuracy in 
detecting O. viverrini infection and Ov-CCA in human 
or hamster models.

CA19-9 and CEA are widely used prognostic 
biomarkers [40, 41] in CCA, due to their proven clinical 
utility [42]. CA19-9 has a sensitivity of 50-90% and 
a specificity of 54-98% [43- 46], while increased bile 
CEA levels predict CCA with a sensitivity of 58-84% 
and specificity of 33-84% [47, 46]. Various alternative 
biomarkers have been suggested for Ov-CCA, potentially 
providing higher efficacy and specificity. However, 
their clinical utility and reliability necessitate rigorous 
research and validation studies. Despite this, the use of 
these alternative biomarkers has shown promising results, 
and they may offer improved predictive, prognostic and 
diagnostic value for Ov-CCA in the future.

Heat shock proteins (HSPs)
Heat shock proteins (HSPs) are proteins produced by 

cells in response to stress and identified as a therapeutic 
target for various cancers [48- 52]. Furthermore, evidence 
linked HSP overexpression to tumor aggressiveness, 
metastasis, and poor prognosis [53, 54]. Under stressful 
circumstances, HSPs either maintain the stability of 
particular proteins or cause their proteasomal breakdown, 
assisting in cell survival [55]. 

A heat shock proteins (HSPs) isoform, HSP70, 
a conserved protein in mammalian species, shows a 
sensitivity of 90% and specificity of 100% for CCA 
detection [56]. A higher sensitivity and specificity than 
CA19-9 and CEA makes it a potentially better biomarker 
for CCA detection. O. viverrini infection causes oxidative 
stress, which in turn causes DNA damage, aberrant tissue 
remodeling, and changes in gene expression, all of which 
have been linked to the development of cancer [57]. A 
unique isoform of HSPs, Hsp90, destroys associated 
oncoproteins and reduces the growth rate of a wide range 
of cancers [58]. 

In O. viverrini infection, particularly HSP90α 
antibodies may have the potential as a diagnostic 
biomarker for cholangiocarcinoma. The anti-HSP90α 
serum levels had a sensitivity of 76.2% and specificity of 
71.4% in discriminating cholangiocarcinoma from healthy 
individuals, as well as other diseases like cirrhosis and 
hepatitis, but not colon cancer, and their levels correlated 
with tissue expression [59]. Rucksaken and colleagues 
conducted a study in 2014, revealing that individuals 
with Ov-CCA had more autoantibodies targeting HSP70, 
RNH1, and ENO1. Healthy people, on the other hand, 
had lower levels of these autoantibodies. Furthermore, 
combining positivity rates for HSP70, ENO1, or RNH1 
autoantibodies increased the specificity of detection to 
more than 78% [60]. As a result, serum anti-HSP90 levels 
and other markers may have significant clinical value for 
detecting Ov-CCA early and predicting the disease stage. 

Phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)
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79%, there exists an urgent need for an easily accessible 
immune marker capable of discriminating between the 
infection and the subsequently advanced pathology it 
induces, especially given the region’s disproportionately 
high incidence of intrahepatic cholangiocarcinoma [77].

CCA-associated carbohydrate antigen (CCA-CA)
Monoclonal antibodies (mAbs) are required to 

effectively target cancer cell-specific antigens while 
reducing binding to normal cells. As a result, they are 
useful biological tools in immunodiagnostic procedures 
[78]. When using the mAb method to investigate novel 
markers in various cancers, high sensitivity and specificity 
have been achieved [79]. 

S121 monoclonal antibody (mAb) recognizes an 
unidentified glycan epitope on MUC5AC, referred to be 
CCA-associated carbohydrate antigen, in Ov-CCA [80]. 
The antigen was found to be a glycan epitope and shown 
to be reactive to an S121 immunoglobulin M MoAb 
[80]. MUC5AC is an O-glycosylated glycoprotein that 
is part of the membrane-bound and secreted epithelial 
mucin family. It has the most potential to be a predictive 
biomarker [81]. 

In a hamster model, CCA-CA expression increased 
gradually with tumor progression from Ov-CCA, making 
it an excellent time-dependent CCA-CA marker [82]. An 
enzyme-linked immunosorbent assay (ELISA) utilizing 
lectin-captured MUC5AC was developed which can 
differentiate patients with cholangiocarcinoma (CCA) 
from healthy controls, individuals with active O. viverrini 
infection, and patients with various gastrointestinal 
malignancies, hepatocellular carcinoma, and benign 
hepatobiliary diseases, with high sensitivity (87.63%) 
and specificity (89.58%) [82].

Furthermore, elevated serum CCA-CA levels 
correlated with poor patient outcomes [83, 80]. A meta-
analysis has indicated that the detection of mucin 5AC 
(MUC5AC) in serum samples may serve as a potent 
biomarker for CCA, offering a specificity of up to 97% 
and sensitivity of 63% [80, 84, 85] . Also, most biliary 
tract cancer (BTC) tumor biopsies from patients have 
shown high MUC5AC reactivity. This suggests that the 
MUC5AC antigen associated with the tumor is released 
into the bloodstream, where it can be found [86]. Hence 
CCA-CA has the potential to be a new marker for early-
stage CCA, and a panel of two markers, CA19-9 and 
MUC5AC, could effectively distinguish CCA from non-
CCA with 70% sensitivity, 82.5% specificity, and AUC 
0.806 [87]. These findings have important implications for 
improving disease diagnosis and management strategies

S100 calcium-binding protein 
The S100 protein family is made up of a variety 

of small acidic calcium proteins, each with its own set 
of functions [88]. S100 calcium-binding protein A9 
(S100A9), a putative pro-inflammatory mediator in 
both acute and chronic inflammatory processes, plays 
a significant role in the pathogenesis of inflammation-
associated carcinogenesis [89, 90]. Duangkumpha, et al. 
(2019) study found significantly higher concentrations 
of S100A9 protein in the sera of CCA patients than in 

normal control groups. According to their published 
results, S100A9 was a promising diagnostic biomarker 
with sensitivity, specificity, and an AUC value of 0.888, 
equal to the differential diagnosis of CCA and normal 
control [91].

A recent study by Kimawaha and colleagues (2021), 
the diagnostic accuracy of CCA patients with low 
CA19-9 levels can be improved by using S100A9 as a 
complementary marker. S100A9 has a high diagnostic 
yield of 95% in this patient population. Combining 
S100A9 with CA19-9 further enhances the diagnostic 
efficiency, increasing the sensitivity value from 78% 
for S100A9 alone to 95% for the two markers together. 
Decision Tree analysis helped identify this complementary 
relationship between the two biomarkers [87]. Many 
benign biliary disorders (BBD) have a markedly elevated 
serum level of S100A9 [92].

In a study on Ov-CCA tumor tissue, Wu and 
colleagues (2016) found that the expression of the 
calcium-binding protein S100P was significantly higher 
in Ov-CCA and correlated with poor patient survival. Cox 
regression analysis revealed that high S100P expression 
was an independent prognostic factor for overall survival. 
Moreover, the authors measured CCA patients’ S100P 
levels in serum and bile fluid samples. They found that 
S100P levels were higher in these patients than in healthy 
individuals or O. viverrini-infected patients. S100P 
expression was significantly associated with advanced 
tumor stage, metastasis, and poor patient survival. 
Furthermore, knockdown of S100P expression suppressed 
cholangiocarcinoma proliferation, caused cell cycle arrest, 
promoted apoptosis, and augmented the sensitivity of 
cholangiocarcinoma cells to sunitinib and apigenin [93]. 

Despite suggestions of the S100P protein as a potential 
novel prognostic biomarker of colorectal cancer [94, 
95]. A meta-analysis demonstrated that the prognostic 
value of S100P significantly correlates with reduced 
overall survival in patients with cholangiocarcinoma 
and hepatocellular carcinoma, but not in patients with 
gastric, colorectal, gallbladder, or pancreatic malignancies 
[96]. Further research is needed to explore the potential 
diagnostic usefulness of S100A9 in combination with CA 
19-9, especially in cases where the CA19-9 level is normal 
or low. The goal is to identify a blood-based biomarker 
panel that can aid in diagnosing and predicting outcomes 
for Ov-CCA. Studies have demonstrated that combining 
test biomarkers can improve the sensitivity and specificity 
of cholangiocarcinoma (CCA) diagnosis, thereby boosting 
their combined effective diagnostic capacity [97].

Annexin A1 (ANXA1)
ANXA1’s role in cancer development and progression 

is complex and context-dependent. A simple classification 
of ANXA1 as solely a tumor suppressor or cancer-
promoting factor is an oversimplification, as research has 
demonstrated its tumor-suppressive functions in certain 
neoplasms, yet its capacity to also facilitate oncogenic 
processes like proliferation, invasion, and metastasis in 
other carcinogenic contexts [98]. It’s more likely a double-
edged sword due to its function as tumor-suppressive 
or tumor-promoting effects, which makes it difficult to 
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classify it as simply one or the other [99]. As a result, the 
function of ANXA1 appears to differ in different types of 
cancer; for example, in melanoma and pancreatic cancer, 
ANXA1 is elevated and involved in the regulation of 
proliferation [100, 101]. It’s known that the ANXA1 
molecule was significantly and persistently upregulated 
during the long-term host-parasite interaction [102, 103].

In cholangiocarcinoma (CCA) patients, elevated 
expression levels of ANXA1 correlate with increased 
tumor stage, larger tumor size, and greater incidence of 
lymph node metastasis [104]. Both of which are traits of 
chronic opisthorchiasis. Hongsrichan, Rucksaken et al. 
(2013), have demonstrated that Annexin A1 (ANXA1) 
is the strongest immunohistochemical marker in 
distinguishing between cholangiocarcinoma (CCA) and 
hepatocellular carcinoma (HCC) in O. viverrini-infected 
hamsters. The study found that ANXA1 expression was 
significantly higher in hamsters with CCA induced by an 
O. viverrini infection and N-nitrosodimethylamine than in 
those with HCC and healthy liver tissues. The study also 
showed a high sensitivity (94%) and specificity (100%) of 
ANXA1 in distinguishing CCA from HCC, with a positive 
predictive value of 100% [105]. The findings of Kotepui 
et. al. (2022) strongly indicate that ANXA1 is a potential 
prognostic marker and may be used to screen tissues of 
CCA patients at risk of metastasis [106]. The examples 
above show that ANXA1 expression is involved in the 
carcinogenesis of chronic inflammation-related CCA, 
implying that it could be used to diagnose CCA. Hence, 
manipulation of ANXA1 action may be an alternative 
strategy to prevent metastasis of CCA. Nevertheless, the 
ability of ANXA1 to differentiate between Ov-CCA and 
non-Ov-CCA remains a critical question that requires 
further investigation.

Immunoglobulin G (IgG) and Immunoglobulin G4 (Ig4) 
antibodies 

Infection with O. viverrini, a parasitic worm that 
affects the bile ducts, triggers the immune system to create 
antibodies to combat the parasite. Serological assays like 
ELISA can identify these antibodies even in blood or 
urine samples [107]. In  O. viverrini, IgG antibodies have 
been demonstrated to have a 99.2% sensitivity and a 93% 
specificity for diagnosing O. viverrini infection [107], 
and it can persist in infected hosts even after being cured 
[108]. The close relationship between parasite-specific 
IgG and severe fibrosis suggests a specific immune 
response to the parasite [109]. A high prevalence of serum 
IgG for Ov-positive CCA patients and a correlation with 
overexpression of HER2 indicated poor survival of CCA 
[110]. Therefore, future clinical investigations of anti-
HER2 therapies should also target Ov-CCA.

Specifically, Immunoglobulin G4 (IgG4) antibodies 
exhibit high specificity for O. viverrini infection and are 
absent in sera from healthy controls or individuals with 
other parasitic infections. Therefore, the presence of IgG4 
antibodies in the serum or urine of an individual is a strong 
indicator of O. viverrini infection [110]. Elevated urine 
IgG to O. viverrini antigen significantly distinguishes 
individuals with APF and CCA, signifying its potential 
as a syndromic biomarker for estimating risk of renal 

and hepatobiliary pathologies in O. viverrini endemic 
areas [111]. However, it’s important to note that the 
detection of IgG4 antibodies alone may not be sufficient 
to diagnose CCA or predict the risk of developing Ov-
CCA.  Additional diagnostic tests and risk assessments are 
needed to confirm the presence of CCA and assess the risk 
of developing CCA in patients with O. viverrini infection.

Oxidized alpha-1 antitrypsin (ox-A1AT)
Alpha-1 antitrypsin (AAT) is a significant protease 

inhibitor present in human blood (1-2 g/L), with oxidized 
alpha-1 antitrypsin (ox-A1AT) serving as a marker 
for oxidative stress [112, 113]. During an acute-phase 
reaction triggered by pro-inflammatory cytokines, such 
as IL-6, IL-8, IL-17, and TGF-β, alpha-1 antitrypsin 
(AAT) plasma levels can increase up to 2-4 fold above 
baseline, indicating its potential role in inflammation 
and oxidative stress in O. viverrini infection [114, 115]. 
Most of these pro-inflammatory cytokines are known to 
increase in opisthorchiasis and parasitic liver fluke that can 
increase oxidative stress in the liver by inducing chronic 
inflammation and producing reactive oxygen species 
(ROS) [115, 116]. 

The study by Jamnongkan and colleagues (2013) 
used indirect ELISA to evaluate the potential of serum 
ox-A1AT levels as a biomarker for detecting advanced 
periductal fibrosis (APF) and cholangiocarcinoma 
(CCA) in individuals infected with O. viverrini. The 
findings suggest that serum ox-A1AT levels have high 
sensitivity and specificity for identifying APF and CCA. 
At a cut-off value of 0.209, the sensitivity and specificity 
for identifying APF were 96.3% and 90%, respectively. 
At a cut-off value of 0.12, the sensitivity and specificity 
for identifying CCA were 81% and 80%, respectively. 
These results suggest that serum ox-A1AT levels have 
the potential as a biomarker for the early detection of APF 
and CCA in individuals infected with O. viverrini [117]. 
This study suggests that serum ox-A1AT level could be a 
potential predictive biomarker for detecting CCA and APF 
associated with O. viverrini infection. Furthermore, the 
study found that indirect ELISA was more sensitive (81%) 
than sandwich ELISA (35.7%) for detecting ox-A1AT 
in serum, which could be a useful screening method for 
routine serological testing/evaluation of ox-A1AT levels.

Plasma Checkpoint Kinase 1 (CHK1)
Checkpoint kinase 1 (CHK1) is a protein kinase 

crucial in the DNA damage response [118]. To preserve 
genomic fidelity, cells employ highly effective DNA 
damage repair systems that induce cell cycle arrest at key 
junctures such as the G1/S, intra-S, G2/M, and mitotic 
spindle checkpoints. These cycle control mechanisms, 
collectively termed cell cycle checkpoints, are critical for 
cell viability [119]. 

The O. viverrini infection promotes inflammation and 
results in DNA damage when combined with nitrosamine 
chemicals [120-122]. Analysis of the O. viverrini-infected 
plasma proteome revealed the presence of proteins with 
functions related to cell cycle regulation, cell proliferation, 
and cell signaling, such as Chk1, VCAM1, PIK3C2B, 
MAPK1, and PIM1, within the protein network [123]. 
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Additionally, Phanaksri et.al.(2022), a study showed that 
the plasma checkpoint protein 1 (Chk1) is significantly 
increased in Ov-infected patients, with a sensitivity and 
specificity of 59.38% and 85.71%, respectively, using an 
OD450 cut-off of 0.6668, suggesting a possibility that 
DNA damage started during the infection period and may 
have continued during the development of CCA [123]. 
Higher plasma Chk1 levels may serve as a potential 
diagnostic biomarker for Ov-CCA. Some studies suggest 
that targeting Chk1 in DNA damage response (DDR) 
signaling pathways could offer therapeutic benefits, such 
as enhancing the activity of DNA-damaging agents, 
regulating cell cycle checkpoints, and modulating DNA 
repair and apoptotic events [124, 125]. Hence, there 
is potential for Chk1-targeting agents to also serve as 
therapeutic targets. However, current research exploring 
Chk1 in this capacity remains preliminary, particularly in 
Ov-CCA. Additional studies are necessary to confirm the 
suitability of Chk1 as a predictive or prognostic marker.

Opisthorchis viverrini granulin 1 (Ov-GRN-1)
Granulin, which has been implicated in the development 

of biliary tract cancer induced by liver fluke infection, 
exhibits potential utility as both a prognostic indicator 
and a therapeutic agent for wound healing [126]. The 
O. viverrini genome contains two genes encoding single 
granulin domains (Ov-GRN-1 and Ov-GRN-2) identified 
in in-silico generated ES products of O. viverrini [127]. 
Both O. viverrini and C. sinensis are recognized for their 
release of mitogenic and anti-apoptotic agents, including 
factors akin to granulin and thioredoxins. These substances 
promote cellular proliferation, resulting in the progression 
of cholangiocarcinoma [128-130]. 

Moreover, granulin functions as an extracellular growth 
factor, promoting cell proliferation and tumorigenesis. 
In a hamster model of O. viverrini infection and 
carcinogenesis, granulin expression was specifically 
identified in malignant cholangiocarcinoma (CCA) 
lesions, as demonstrated by immunohistochemistry, 
distinguishing it from normal and pre-cancerous biliary 
tissue [131]. Further analyses via Western blot and RT-
PCR confirmed a notable increase in granulin levels 
within CCA specimens compared to non-cancerous liver 
tissue. This cancer-specific overexpression of granulin 
underscores its potential value as a biomarker, both within 
tissue samples and potentially in circulating blood.

Knocking out the Ov-GRN1-1 using CRISPR/Cas9 in 
a hamster model of liver fluke infection led to reduced 
fibrosis, biliary epithelial proliferation, and malignancy, 
resulting in less periductal fibrosis, fewer proliferating 
cholangiocytes, and lower expression of mutant p53 
compared to control infections, underscoring the 
crucial role of Ov-GRN-1 in driving pathogenesis and 
cholangiocarcinogenesis during chronic O. viverrini 
infection [132]. Ov-GRN-1, secreted by O. viverrini, is 
detectable in host tissues and biofluids, with its levels 
correlating with infection intensity and severity of biliary 
abnormalities, indicating its potential as a diagnostic 
biomarker and prognostic indicator for Ov-CCA.

Recently, progranulin (PGRN) also has emerged as 
a noteworthy candidate for biomarker exploration in 

Ov-CCA [133, 134]. Ov-PGRN is secreted by the liver 
fluke and stimulates proliferation of host cholangiocytes 
and expression of inflammatory cytokines like IL-6 and 
IL-8, underscoring its role in pathogenesis [135]. Detection 
of Ov-PGRN levels and anti-Ov-PGRN antibodies may 
serve as biomarkers of infection intensity, hepatobiliary 
morbidity, and risk associated with O. viverrini infection. 

Other markers with potential value
Early detection of CCA induced by O. viverrini 

is vital in resource-constrained regions with high 
prevalence, making any potential available biomarkers 
immensely valuable for public health. A study conducted 
by Aksorn and colleagues (2018) has shown that liver 
fluke infection-associated CCA can be differentiated from 
other forms of CCA using specific biomarkers, including 
immunoglobulin heavy chain,  ALX1 (aristaless-like 
homeobox1 isoform X1), MICA (major histocompatibility 
complex polypeptide-related), translocated in liposarcoma 
(TLS), visual System Homeobox 2 (VSX2). These 
proteins have been identified in cholangiocarcinoma 
(CCA) cases associated with O. viverrini infection.  
However, these biomarkers’ diagnostic capabilities must 
still be thoroughly characterized [25]. 

Other potential markers include the liver fluke protein 
14-3-3 O. viverrini demonstrated that these proteins 
are numerous and constitutively expressed throughout 
the adult worm’s life cycle and in most tissues [136]. 
The protein isoform 14-3-3 eta represents a potential 
screening and early diagnostic biomarker for Ov-CCA 
[137]. Additionally, the protein isoform 14-3-3 eta may 
be used as a screening and early diagnostic marker for 
Ov-CCA [138]. 

Cholangiocarcinoma associated with O. viverrini 
infection (Ov-CCA) displays distinct genetic, epigenetic, 
and transcriptional profiles compared to CCA not linked 
to this parasite [139]. While this study focused principally 
on potential molecular markers in Ov-CCA, the findings 
may also inform non-Ov-CCA cases, given the established 
role of O. viverrini infection as a risk factor for CCA 
pathogenesis. There are markers like (KLK11) expression, 
CD44v9, Ov IgG level, and CSC markers that can be used 
as the prognostic markers for CCA patients’ survival [140, 
141]. Although the paper itself does not directly analyze 
O. viverrini infection status or antibody levels (like Ov 
IgG) as a prognostic marker for CCA patient survival, the 
study provides evidence for CD44v9 and CSC markers as 
predictors of CCA patient survival, which can be applied 
in Ov-CCA as well. 

There are several studies in the domain of non-Ov CCA 
where authors found that high expression was associated 
with tumor samples from CCA patients, lymph node 
metastasis, and poor overall survival in CCA patients. 
However, these studies do not address the potential 
influence of O. viverrini as a risk factor on their findings, 
leaving an opportunity for comparative investigations of 
such proteins in Ov-CCA and non-Ov-CCA.

Biomarker potential of MicroRNAs in Ov-CCA
Non-coding RNAs, especially miRNAs, are vital 

regulators in CCA, influencing cancer development 
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and recurrence through various cellular processes and 
epigenetic mechanisms [142, 143]. In CCA, an increasing 
number of miRNAs have been linked to the disease, and 
many of them have been characterized for their functional 
roles [144-146]. One noteworthy aspect of miRNAs in 
the context of Ov-CCA or even in non-Ov-CCA is their 
remarkable stability, even after formalin fixation and 
this stability has sparked substantial interest in utilizing 
miRNAs as potential biomarkers that can be explored 
using tumor biopsy samples preserved in formalin-fixed 
paraffin-embedded (FFPE) tumor blocks [147]. 

In O. viverrini infection leading to Ov-CCA, the 
expression of has-miR-192 was found to be elevated in 
both human and hamster liver tissues [148]. Examining 
distinct extracellular miRNA levels in plasma of 
O. viverrini-infected subjects compared to uninfected 
controls underscores their potential as non-invasive 
biomarkers. Circular RNAs (circRNAs) hold significant 
promise as markers for the initiation and advancement 
of CCA, presenting valuable prospects for diagnosis, 
therapeutic interventions, and prognostic surveillance of 
the disease [149, 150]. In 2015, a finding emerged from 
plasma miRNA profiling, revealing the induction of eight 
miRNAs, namely hsa-miR-885-5p, hsa-miR-505-3p, 
hsa-miR-483-5p, hsa-miR-92b-3p, hsa-miR-874, has-
miR-1307-3, hsa-miR-1275, and hsamiR-320b, associated 
with O. viverrini induced intrahepatic cholangiocarcinoma 
(Ov-iCCA) from tissue and plasma, thus laying the 
foundation for a circulating miRNA-based biomarker 
panel for Ov-CCA [151]. 

miRNAs like Mir21 , miR-210, and 200 family 
(miR-200c, miR-200b, miR-200a, miR-429, and miR-141) 
[152] was observed in O. viverrini-Ov-iCCA and are 
dysregulated both in tumor tissue across histological 
subtypes and in plasma seem to have the most promising 
potential as diagnostic or prognostic biomarkers for 
Ov-induced ICC [153-155]. The miR-200 family serves 
as tumor suppressors, often reduced in cancer, with 
clinical significance for diagnostics, prognostics, and 
anti-cancer drug resistance [156] and miR-210 inhibition 
suppresses pro-inflammatory responses [157] and reduces 
the responsiveness of CCA cells to gemcitabine by 
suppressing HIF-3 (Hypoxia inducible factor 3), while 
concurrently sustaining HIF-1 activity [158, 159]. 

Elevated miR-21 serum levels were strongly associated 
with advanced clinical stage, increased invasion depth, 
lymph vessel infiltration, metastasis, poor differentiation, 
non-resectable status, and poorer survival in CCA patients 
[160]. A secreted miR-21 can be detected in blood and 
body fluids and may serve as a non-invasive biomarker 
and may distinguish metastatic versus non-metastatic 
tumors [161]. It would be interesting to investigate if 
similar correlations exist in ICC induced by O. viverrini. 

Certain miRNAs and lncRNAs show potential in 
discerning O. viverrini from other parasites. Conserved 
miRNAs with crucial functions and their extracellular 
release warrant deeper exploration as biomarkers for 
diagnosis, prognosis, or therapeutic response [162]. 
Further validation of miRNA biomarkers and functional 
characterization of their mechanisms in Ov-CCA may aid 
prognosis, treatment monitoring, and the development of 

RNA-targeted therapeutics for this cancer etiology.

Limitations in the Discovery and Clinical Implementation 
of Biomarkers for Ov-CCA

The discovery and implementation of biomarkers for 
Ov-CCA in clinical trials and field studies face several 
challenges. Despite many publications on biomarker 
discovery, only a few get validated for clinical use due 
to poor reproducibility and lack of standardization in 
specimen collection [163, 164]. In our findings, we found 
few studies that have evaluated the same biomarker 
candidates, making it difficult to compare results across 
studies and validate utility. There was a lack of consistent 
biomarker panels being assessed. The majority of 
experiments designed to confirm preliminary biomarkers 
rely predominantly on the hamster model of Ov-CCA. 
Further efforts utilizing well-defined biomarker candidates 
probed across multiple human sample cohorts will be 
imperative to substantiate the veracity and reproducibility 
of proposed markers. Nevertheless, the top biomarker 
candidates emerging from our review were selected based 
on proper evaluation of sensitivity, specificity, and other 
test accuracy measurements from a single robust study. 
For example:

• CCA-associated carbohydrate antigen (CCA-CA) 
demonstrated high sensitivity (87.6%) and specificity 
(89.6%) in multiple studies for diagnosis and prognosis.

• IL-6 showed good sensitivity (80%) and specificity 
(90%) for predicting prognosis in several human studies.

• IgG4 antibodies revealed excellent specificity 
(99.2%) and sensitivity (93%) for Ov-CCA. 

• Anti-Hsp90α antibodies exhibited sensitivity of 
76.2% and specificity of 71.4% in a well-designed study.

In contrast to many existing discovery-based 
investigations, our approach was centered on candidates 
demonstrating both accuracy and reliability. However, 
additional validation could strengthen its inclusion as a 
component of a biomarker panel.

In addition, more than the limited availability of 
clinical specimens and small sample sizes, especially 
in resource-limited settings, limits statistical power in 
demonstrating associations between biomarkers and 
conditions [165]. Besides regulatory hurdles (absence of a 
specific FDA-approved biomarker), financial constraints, 
technical limitations, and the disease’s complexity are 
the major reasons behind these challenges. Another 
major challenge in biomarker discovery for Ov-CCA 
infection is the host’s immune response variability, 
which can lead to difficulty generalizing the biomarker 
results. Furthermore, co-infections with other parasites 
can complicate the interpretation of biomarker results 
[166, 167]. Therefore, identifying a single biomarker 
alone may lack the requisite diagnostic or prognostic 
sensitivity and specificity for Ov-CCA. Rather, combining 
multiple biomarkers related to inflammation, cell cycle 
control, and DNA damage - known to be upregulated in 
Ov-CCA versus healthy tissue - should be investigated 
to enhance early CCA detection and prognosis. When 
developing a biomarker for Neglected Tropical Diseases 
(NTDs) such as O. viverrini, it is crucial to consider the 
cost-effectiveness of the test, as this can significantly 
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impact its utilization in resource-limited settings [168]. To 
address these challenges, collaborative efforts are required 
from researchers, funding agencies, and policy-makers to 
prioritize research on CCA biomarkers caused either by 
parasite infection or other etiologies.

Immunoproteomics to Discover and Validate Biomarkers 
and Targets for O. viverrini 

Among the numerous options for assessing biomarker 
validity, immunoproteomic profiling represents a 
promising conventional approach for efficacy testing due 
to its capacity for high-throughput and sensitive antigen 
characterization and cost-effectiveness to validate putative 
biomarkers. Given the prevalence of Ov-CCA in lower-
income populations, the use of immunoproteomics ensures 
that biomarker validation can be conducted using standard 
equipment and methods readily available to scientists 
in developing regions, promoting equity in healthcare 
research. Additionally, the capacity for multiplexing and 
automation within immunoproteomic pipelines further 
enhances its suitability for robust biomarker verification 
in resource-limited settings. Immunoproteomic assay 
integrates antibody specificity and mass spectral analysis, 
enabling sensitive and efficient detection of specific 
antigens or antibodies [169]. Robust validation of antibody 
biomarkers can be achieved by employing antibody-based 
assays such as ELISA or protein arrays across substantial 
patient cohorts and matched controls. Meanwhile, analysis 
of protein biomarkers using techniques including 2D gels, 
western blots, and LC-MS/MS enables quantification 

of differentially expressed proteins to reveal novel 
candidate biomarkers warranting further scrutiny. 
Furthermore, incorporating animal profiling techniques 
and human tissue samples may provide valuable insights 
into identified biomarkers’ translational potential and 
biological relevance [170, 171].

Additionally, optimization and clinical validation of 
this biomarker panel enable the development of a multiplex 
assay for rapid and efficient detection in clinical practice. 
This confirmatory approach strengthens biomarker 
development pipelines by analytically validating identified 
leads, enhancing biomarker discoveries for O. viverrini 
infection and complementing existing biomarkers 
(Figure 2). Nevertheless, it also uncovers stage-specific 
diagnostic biomarkers, identifies novel antigens associated 
with parasite maturation and virulence, and enables precise 
tracking of post-treatment outcomes. This technique 
accurately maps antibody responses against parasite 
antigens expressed throughout different developmental 
stages. 

Immunoproteomic profiling of O. viverrini infections 
allows for identifying antigens specifically upregulated 
in juvenile stages, aiding in understanding parasite 
development and identifying potential early markers. 
Comparative analysis across different host species 
provides insights into proteins critical for parasite 
maturation and survival [172, 173]. This approach aids 
in discovering crucial parasite proteins, thus facilitating 
the development of targeted interventions for controlling 
and managing opisthorchiasis.

Figure 2. Venn Diagram Representation of Notable Biomarker Proteins. PIK3CB, Phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit beta; Chk1, Checkpoint kinase 1; YKL-40, Chitinase-3-like protein 1; 
CSC markers, Cancer stem cell markers; PDGFA, Platelet-derived growth factor subunit A; KLK11, Kallikrein-11; 
CD44v9, CD44 variant 9; IL-6, Interleukin 6; Anti-Hsp90α, Antibodies against Heat shock protein 90 kDa 
alpha; ANXA1 and ANXA2, Annexin A1 and Annexin A2; ox-A1AT, Oxidized alpha-1-antitrypsin; Exostosin 1: 
Exostosin glycosyltransferase 1; OvROPN1L, Rhophilin associated tail protein 1; Ov-TSP1, Opisthorchis viverrini 
tetraspanin-1; Plasma hydroxyproline, Collagen I, MMP-7, and HYP, Plasma hydroxyproline, Collagen type I, Matrix 
metallopeptidase 7, Hydroxyproline, 14-3-3 eta: 14-3-3 protein eta, Orm2 and KIF18A, Orosomucoid 2 and Kinesin 
family member 18A PTP alpha and fibronectin; PIGR, Polymeric immunoglobulin receptor; TLS, Translocated in 
liposarcoma; VSX2, Visual system homeobox 2; S100: S100 calcium-binding protein; MUC5AC, Mucin-5AC. 
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Conclusion: Future Directions in CCA Biomarker 
Research

A comprehensive understanding of the disease 
pathogenesis and underlying mechanisms is essential 
for identifying biomarkers that can effectively reflect the 
disease status or predict disease progression. Given the 
lack of widely accepted or clinically validated prognostic 
and predictive biomarkers for CCA and Ov-CCA, 
discovering minimally invasive indicators is imperative. 

By compiling the current evidence and identifying the 
lead biomarkers supported by the strongest validation data, 
this review provides clarity on the current state of usable 
biomarkers for Ov-CCA.  However, rigorous validation 
and assessment of these preliminary biomarkers in large 
prospective clinical studies are essential before considering 
practical clinical implementation. Furthermore, since 
carcinogenesis is a multi-path, complex process, it may 
take more than one biomarker to correlate with a tumor 
appropriately. Hence, high-throughput technologies for 
omics data allow for assessing hundreds or more potential 
biomarker candidates for specific diseases or disease 
states.

Immunoproteomic profiling demonstrates biomarker 
potential, yet to comprehensively understand the 
complexity of biological systems, integrating additional 
omics approaches such as genomics, proteomics, 
metabolomics, and transcriptomics is necessary for a 
comprehensive view [174, 175]. Single-cell multiomics, 
mass spectrometry-based proteomics, Next-generation 
sequencing (NGS), metabolomics, and integration 
of multiomics data with advanced computational 
methods provide comprehensive insights into cellular 
heterogeneity, disease mechanisms, protein biomarkers, 
genetic variants, gene expression patterns, metabolic 
pathways, and potential therapeutic targets [175, 176]. 

Studies analyzing large amounts of biological data 
to identify patterns and changes in gene expression, 
protein production, metabolic pathways, and other 
molecular processes associated with a particular disease 
or condition can enhance the quality of immunoproteomic 
profiling [177]. For massive data like such, pilot studies 
can be conducted to assess the potential of discovering 
biomarkers, given the limited availability of participants 
and high costs. For instance, HiPerMAb, a computational 
tool, can be employed to evaluate pilot studies by 
calculating performance measures and comparing the 
number of “good” biomarker candidates with expected 
values, even when statistical tests fail to provide 
significance [178]. This approach can help determine the 
feasibility of conducting large-scale biomarker discovery 
studies and inform the design of subsequent trials. 
HiPerMAb can help evaluate numerous CCA biomarkers 
that require careful evaluation. 

Additionally, machine learning (ML) techniques can 
help identify potential biomarkers for O. viverrini by 
analyzing various data types, such as gene expression 
patterns and serum samples. ML algorithms can help 
reduce the dimensionality of large datasets, select relevant 
features, and integrate different datasets to enhance the 
predictive model’s performance [179]. Furthermore, 
various machine learning algorithms, such as random 

forests, support vector machines, and neural networks, 
can be used for biomarker discovery and validation [180]. 
By applying ML algorithms to O. viverrini biomarkers, 
researchers can potentially identify specific genetic 
variations that distinguish individuals with Ov-CCA 
from those without it, leading to the development of new 
diagnostic tools and therapies for the disease.
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