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Introduction

With 768,793 deaths worldwide from gastric cancer 
(GC) in 2020, it is one of the most common malignancies 
and ranks third in terms of cancer-related mortality 
[1]. Each year, GC is diagnosed in more than 1 million 
individuals globally, and the total amount of cases may 
rise in the future as the older population increases [2]. With 
several origins and potential carcinogenesis processes, 
GC is a molecularly and phenotypically very variable 
illness, which causes disparities in GC incidence rates 
among genders, races, and geographic regions [3]. Due 
to a significant number of patients who receive diagnoses 
at an advanced stage, radical surgery is frequently 
ineffective shortly after diagnosis, which leads to an 
unfavorable outcome [4]. Understanding the condition’s 
pathophysiology is therefore essential to find the related 
molecular indicators for early detection and effective 
management.
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Microarrays have quickly advanced to serve as the 
most efficient tool for studying disease processes in the 
genomic age, shedding fresh insight into the pathogenesis 
at the molecular level. With lots of applications in 
medicine, including genetic tumor classification, cancer 
response estimation, prognostic prediction, genetic testing, 
identification of novel therapeutic targets, and patient 
classification, microarray analysis is increasingly used 
as a fundamental technique in oncology. The amount 
of data that has been in-depth evaluated is still missing 
despite the enormous number of microarray datasets that 
have been released. Additionally, a significant difficulty 
still remains in figuring out how to use classic differential 
expression analysis to translate the microarray data into a 
deeper knowledge of biology.

Therefore, the current study aims to identify the 
hub genes and potential mechanisms in GC using a 
bioinformatics approach and a number of functional 
evaluations to serve as a guide for future research into 
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this condition.

Materials and Methods

MicroArray Data Collection
The present study used four human gene expression 

matrix files of GC containing GSE54129, GSE79973, 
GSE55696 and GSE15459 from the Gene Expression 
Omnibus (GEO) database. Table 1 displays the key 
characteristics of these four datasets.

Identification of differentially expressed genes (DEGs)
The DEGs between the normal group and the GC 

group were compared using the Limma package. The 
false discovery rate (FDR) was controlled using the 
Benjamini-Hochberg analysis, and DEGs were chosen 
using the cutoffs of FDR p-value <0.05 and absolute log2 
fold-change (FC) >1.5. The R language packages ffplot2 
and pheatmap were used to create the volcano plot and 
heatmap of DEGs, respectively.

Functional and pathway enrichment analysis
To determine the distinctive biological properties of 

genes, gene products, and sequences, such as biological 
processes, cell components, and molecular function, 
Gene Ontology (GO) analysis is frequently utilized [5]. 
An extensive collection of biointerpretations of genomic 
sequences and information on protein interaction networks 
are available thanks to the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis. These technologies have 
been used to examine DEGs in a large number of recent 
research [6]. ClusterProfiler V3.14.0, enrichplot V1.10.2, 
and GOplot V1.0.2 packages were employed to conduct 
the GO functional enrichment and KEGG pathway 
enrichment analyses in this study. Significant enrichment 
was defined as p-value<0.05 and q-value<0.05.

Construction of Protein-protein Interaction (PPI) network 
and identification of hub genes

Functional connections between proteins encoded 
by DEGs were discovered using the STRING platform. 
In STRING, we chose 0.6 as the cut-off value of the 
combined score to establish PPI network. Then, the 
number of nodes of all the related proteins in the PPI 
network was counted using the R software and visualized 
using Cytoscape 3.8.2. Added to that, the hub genes of 
GC were discovered via the Cytoscape plugin cytoHubba. 
Maximal Clique Centrality (MCC), one of the topological 
analysis techniques included in cytoHubba, performs best 
at accurately determining important nodes from a PPI 
network. To assess the significance of DEGs in the GC 
biological network, we chose MCC as the topological 

analysis approach in this study.

Evaluating the prognostic value of hub genes
The predictive significance of hub genes was 

evaluated through GSE15459 dataset. The GSE15459 
dataset, which is based on GPL570 platform (Affymetrix 
GeneChip Human Genome U133 Plus 2.0 Array), includes 
genome-wide mRNA expression profiles of 196 primary 
gastric tumors from the Singapore patient cohort. Kaplan-
Meier plotter platform was used to conduct the analysis. 
As a benchmark for analysis, the lower and higher 50% 
of gene expression were used. Based on the median 
expression level of hub genes, the objects were divided 
into 2 groups in the current study. Results of the log-rank 
test with p<0.01 were considered statistically significant.

Results

Identification of DEGs in GC
Differential gene expression analysis was performed 

based on the screening criteria after normalization of the 
GSE79973, GSE55696, and GSE54129 datasets. Figure 1 
depicts volcano plots of the DEGs. 894 DEGs were present 
in GSE79973, of which 240 were up-regulated and 654 
were down-regulated. GSE55696 included 866 DEGs with 
629 up-regulated genes and 237 down-regulated genes. 
Regarding GSE54129, 1065 DEGs with 471 up-regulated 
and 594 down-regulated were identified. The plots also 
indicated 5 up-regulated genes and 5 down-regulated genes 
with the lowest p-value. In addition, heatmaps showing 
the expression changes of 50 representative DEGs with 
the highest absolute value of FC are presented in Figure 2. 
The overlapping DEGs from the three databases were 
screened using the Venn diagram. As shown in Figure 3, 
73 genes with high reliability were finally identified for 
further analysis. The details of these genes are represented 
in Table 2 and Table S1.

Functional Enrichment Analysis
Using the clusterProfiler package, GO functional 

annotation was carried out. Figure 4 depicts the outcomes 
of the major enriched analyses, encompassing biological 
processes, cell constituents, and molecular function.

Regarding biological processes, the genes were mostly 
enriched in response to xenobiotic stimulus, digestion, 
cellular hormone metabolic process, xenobiotic metabolic 
process, and cellular response to xenobiotic stimulus. 
Molecular function analysis predominantly indicated 
extracellular matrix (ECM) structural constituent, 
calcium-dependent cysteine-type endopeptidase activity, 
aromatase activity, endopeptidase activity, and steroid 
hydroxylase activity. Additionally, DEGs-related cell 

Dataset Platform Samples
GSE54129 GPL570 111 GC and 21 normal gastric mucosa tissue samples
GSE79973 GPL570 10 pairs of stomach adenocarcinoma tissue and adjacent non-tumor mucosa
GSE55696 GPL6480 19 gastric early-stage carcinoma and 19 chronic gastritis tissue samples
GSE15459 GPL570 192 GC samples

Table 1. Details of GEO Datasets Used in This Study
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Figure 1. Volcano Plots of Differentially Expressed Genes of GSE54129 (A), GSE79973 (B), GSE55696 (C) DataSets. 

Figure 2. Heatmaps of of 50 Representative DEGs with the Highest Absolute Value of Fold Change. A, GSE54129; 
B, GSE79973; C, GSE55696. 

components included apical part of cell, basal part of cell, 
apical plasma membrane, basal plasma membrane, and 
basolateral plasma membrane.

Pathway Enrichment Analysis
KEGG pathway-enrichment result was illustrated 

in Figure 5, in which GC-specific DEGs were mainly 
involved in Drug metabolism-cytochrome P450, Retinol 
metabolism, Chemical carcinogenesis-DNA adducts, 
Gastric acid secretion, Metabolism of xenobiotics by 

cytochrome P450, Steroid hormone biosynthesis, ECM-
receptor interaction, Linoleic acid metabolism, Salivary 
secretion, and cAMP signaling pathway. The detailed 
information of functional enrichment analysis were shown 
in Table S2 and S3. 

PPI Network Construction and Hub Gene Selection
Figure 6A illustrated the PPI network of GC-related 

DEGs made using data from the STRING database, 
which revealed 73 nodes and 215 edges in total. 
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Figure 3. Venn Diagram of Common Differentially Expressed Genes from the Three Datasets

Figure 4. Gene Ontology Enrichment Analysis of Differentially Expressed Genes. A, Biological processes; 
B, Molecular function; C, Cell components. 

Subsequently, the cytoHubba analysis was performed 
using MCC module. Due to degree connectivity of the 
genes, the top five intersecting genes identified were 
Secreted Phosphoprotein 1 (SPP1), Inhibin Subunit 
Beta A (INHBA), Matrix Metallopeptidase 7 (MMP7), 
Thrombospondin 2 (THBS2) and Fibroblast Activation 
Protein Alpha (FAP) (Figure 6B).

Prognostic Value of the Hub Genes
Using the Kaplan-Meier approach and the GSE15459 

dataset, the predictive value of hub genes was examined. 
All 5 hub genes were highly related to the patients’ OS, 
as seen in Figure 7. A worse prognosis was observed 
in GC patients who expressed greater levels of SPP1 
[HR=1.98 (1.26–3.11), P=0.002], INHBA [HR=1.95 
(1.32–2.89), P<0.001], MMP7 [HR=1.91 (1.30–2.81), 

P<0.001], THBS2 [HR=2.21 (1.51–3.25), P<0.001], and 
FAP [HR=1.67 (1.13–2.47), P=0.009].

Discussion

As a complicated medical condition, GC continues to 
have a high mortality due to its heterogeneity. Even while 
surgery is still the most popular form of treatment, there 
are other options as well, including radiation therapy, 
chemotherapy, gene therapy, and targeted therapy, 
however, the five-year survival rate is still around 30% 
[7]. To prevent GC advance, improve therapy efficacy, 
and improve patient survival rates, it is essential to look 
into the underlying causes of GC progress. Understanding 
the molecular pathophysiology of the condition would 
thus benefit from identifying the key genes and pathways 
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Figure 5. Kyoto Encyclopaedia of Genes and Genomes Pathway Enrichment Analysis of Differentially Expressed 
genes (DEGs). A, Bubble plot illustrate enrichment of DEGs in signalling pathways; B, Cluego network diagram 
illustrate the relationship between the DEGs and signalling pathways.

Figure 6. Protein-Protein Interaction (PPI) Network. A, PPI network of 73 differentially expressed genes (DEGs); B, 
Network of top 5 hub genes from the PPI network due to the Maximal Clique Centrality analysis. 

involved in GC.
In the present research, we conducted an integrative 

analysis of 4 microarray datasets from the GEO database 
to explore the expression level of important genes 
implicated in GC. A total of 73 DEGs were determined. 
Enrichment analysis revealed that they were involved in 
a variety of biological processes, molecular functions and 
cell components, such as response to xenobiotic stimulus, 
cellular hormone metabolic process, xenobiotic metabolic 
process, ECM structural constituent. Using KEGG 
analysis, we found that Drug metabolism-cytochrome 

P450, Retinol metabolism, Chemical carcinogenesis-
DNA adducts, Gastric acid secretion, and Metabolism of 
xenobiotics by cytochrome P450 were the main pathways 
the genes are involved. The findings are in line with what 
is already known, which is that aberrant activation of 
these functions and pathways is a key factor in cancer 
development and progression [8-12]. SPP1, INHBA, 
MMP7, THBS2 and FAP were subsequently determined 
as hub genes for GC due to their degree connectivity in 
the MCC analysis.

Secreted Phosphoprotein 1 (SPP1), also known as 
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Figure 7. Kaplan-Meier Analysis for Overall Survival Based on the Expression of 5 hub Genes Using the GSE15459 
Dataset.  

DEGs Gene symbol
Up-regulated CXCL1 RARRES1 SNX10 HOXB7 CTHRC1 HOXC10 SPP1 CST1 SLC1A3 NNMT THBS2 INHBA 

MFAP2 COMP FAP CLDN1 COL8A1 TNFAIP6 SPOCK1 MMP7 IGF2BP3
Down-regulated STS CAPN8 KCNK10 SLC9A1 DGKD CAPN13 EPB41L4B RAB27A PLLP ADRB2 CTSE MAL 

BCAS1 ALDH3A1 FER1L4 SST MAP7D2 MUC5AC CYP2C19 PSAPL1 CWH43 SOSTDC1 CYP3A5 
UPK1B SSTR1 CAPN9 SCIN CYP2C9 SYTL5 SPTSSB CA9 SCNN1B FBP2 PKIB RNASE1 SCGB2A1 
ADAM28 VSIG1 SHISA6 LYPD6B KLK11 PSCA FUT9 RDH12 EYA2 C16orf89 UGT2B15 B3GNT6 
HRASLS2 MUC6 GKN2 KCNE2

Table 2. Differentially Expressed Genes in Gastric Cancer

Osteopontin (OPN), is a SIBLING family member that 
encourages growth of tumors by promoting cell migration 
in the ECM and interacting with CD44 and integrin 
receptors [13-15]. SPP1 upregulation in gastric cancer has 
been found to be associated with tumor cell proliferation, 
tumor metastases, and poor prognosis [16, 17]. The injury 
caused by Helicobacter pylori (H. pylori) is responsible for 
more than 70% of the worldwide burden of GC. Elevated 
SPP1 level is correlated with the severity of H. pylori 
infection, and inhibiting expression of SPP1 may alleviate 
GC development. Chang et al. [18] found that activation 
of SPP1 by CagA-positive H. pylori accelerated stomach 
tumorigenesis through IL-8 and β-catenin pathways. On 
the contrary, through down-regulation of uPA and MMP2 
levels and suppression of Akt phosphorylation, decrease 
of SPP1 expression is able to inhibit the development and 
invasion of GC cells [19].

INHBA encodes a portion of the activin-inhibin protein 
complexes, which has been linked to a variety of aspects 

of physiology as well as pathophysiology [20]. It was 
discovered that elevated INHBA expression promoted 
the production of Activin A and the activation of activin 
receptors such as ACVR1, which play a well-known 
role in the development of tumors [21]. In line with 
previous studies [22, 23], we found that patients who had 
increased INHBA-expressing GC had worse prognosis. 
Cancer-associated fibroblasts (CAFs) may be a key factor 
in INHBA’s promotion of GC. Using bulk RNA-seq 
technique, Grunberg et al.[24] found that INHBA was 
secreted in extracellular vesicles by CAFs in a manner that 
encourages the progression of aggressive GC subtypes. On 
the other hand, a recent research employing scRNA-seq 
analysis revealed different populations of fibroblasts and 
the INHBA-FAP axis as a CAF regulator in GC [25]. These 
findings suggest INHBA pathway is a possible target to 
interfere with CAF function and call for drug modality 
testing in pertinent model systems.

FAP is a prolyl peptidase family member and a type II 
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