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Introduction

Quantum dots (QDs) are being explored in 
next-generation solar cells because they can absorb 
wider wavelengths of light compared to traditional solar 
materials [1]. Used in display technology to improve 
the color and performance of LCD screens, they result 
in brighter, more energy-efficient screens, and enable 
quantum computing as possible qubits, the basic units of 
quantum information processing [2, 3]. Functionalized 
QDs can be used in drug delivery systems to deliver 
therapeutic agents to specific targets in the body. QDs 
are also used in various chemical and biological sensors 
because they are sensitive to environmental changes 
[4]. They also act as fluorescent labels in biological and 
medical imaging [5, 6]. Their brightness, photostability, 
and tunable emission make them ideal for monitoring 
and imaging biological molecules, cells, and tissues. 
Despite all these advantages, some QDs, especially 
those containing heavy metals such as cadmium, can 
cause toxicity problems [7]. Cadmium-based QDs were 
previously considered to be toxic to cells. CdTe QDs 
increased mouse hepatocytes and enhanced reactive 
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oxygen species (ROS) [8]. QDs also induced apoptosis 
in HeLa cells and inhibited cell proliferation [9]. Green 
Cd QDs are more toxic than yellow ones, suggesting 
a size-dependent QD toxicity mechanism [10]. CsdTe 
QDs also changed mitochondrial membrane potential 
and increased Ca2+ levels. Scientists are developing safer 
alternatives and coatings to mitigate this problem. Studies 
have shown that quantum dots accumulate on the cell 
surface by binding to cell surface receptors and are then 
internalized by receptor (or clathrin)-mediated endocytosis 
[11]. QDs are usually transported into mammalian cells 
mainly by clathrin-mediated endocytosis [12]. However, 
some cell types combine these pathways to capture QDs. 

Thus, QDs, with their unique optical properties, serve 
as versatile tools in biomedicine, enabling precise imaging 
of cellular structures and processes, crucial for diagnostics. 
Additionally, their application extends to targeted drug 
delivery, offering a promising avenue for localized and 
efficient therapeutic interventions in the treatment of 
various diseases (Figure 1).
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QD in Oncology Imaging
Due to their distinctive optical and physicochemical 

characteristics, QDs have attracted significant interest in 
cancer research and therapy [13]. The detection, diagnosis, 
imaging, and treatment of cancer have all shown promise 
for these nanoscale semiconductor particles [14, 15]. The 
use of quantum dots in oncology research and imaging, as 
well as their potential effects on the field, are covered in 
this review. In order to image cancer, quantum dots can 
be used as extremely effective fluorescent probes [16, 
17]. They are excellent for identifying and monitoring 
cancer cells and tissues due to their bright and stable 
fluorescence properties. To specifically target cancer cells, 
QDs can be coupled with biomolecules that are specific 
to tumors, such as antibodies or peptides [18]. QDs can 
be used in conjunction with other imaging methods 
like computed tomography (CT) or magnetic resonance 
imaging (MRI) to provide supplementary data for a precise 
cancer diagnosis known as multimodal imaging [19, 20]. 
They can also serve as vehicles for the delivery of drugs 
[21]. Chemotherapeutic medications can be added to or 
enclosed in QDs, enabling targeted drug delivery to cancer 
cells [22]. As a result, systemic toxicity is decreased 
and therapeutic efficacy is increased. In theranostic 
applications, QDs can act as both drug carriers and 
imaging agents [23, 24]. This makes it possible to track the 
delivery of drugs and how they affect cancer cells in real 
time. To find cancer biomarkers, QD can be incorporated 
into biosensors. This makes it possible to track the delivery 
of drugs and how they affect cancer cells in real-time. To 
find cancer biomarkers in blood or other bodily fluids, QD 
can be incorporated into biosensors [25-27]. Early-stage 
cancer can be detected by alterations in the fluorescence 
characteristics of QDs when certain biomolecules are 
present. Near-infrared (NIR) light can reach deep inside 
tissues and can be absorbed by QDs [28, 29]. QDs produce 
heat when exposed to NIR light, enabling localized 
photothermal therapy to eradicate tumors or cancer cells 

[30]. According to Shim and Song, [31] and Yang et al. 
[32], QDs can label cancer cells or tumor tissues to track 
their response to treatment. Fluorescence distribution 
or intensity changes can offer information about the 
effectiveness of a given therapy and aid in its optimization. 
In surgical oncology, particularly in breast cancer and 
melanoma, QDs are used in Sentinel Lymph Node 
Mapping to quickly map sentinel lymph nodes [33, 34]. 
This lessens the need for extensive lymph node dissections 
by making it easier to locate and remove lymph nodes that 
might be impacted by cancer spread. Aloe vera extracts 
have been constructed to form amorphous carbon QDs 
with apoptosis effects on MCF-7 cancer cells, positioning 
them as a valuable fluorescent probe for live imaging [35]. 
In fact, cancer surface markers play a dominant role in 
detecting cancers. The overexpression of folate receptors 
in various cancers, including breast, brain, cervical, 
and ovarian cancer, makes folic acid an ideal ligand for 
targeting and imaging cancer cells. Researchers, such as 
Liu and colleagues, successfully synthesized luminescent 
carbon quantum dots with high quantum yield (95%) using 
folic acid as a precursor, exhibiting excellent properties 
like photostability and biocompatibility [36]. 

Due to their unique physicochemical properties, QDs 
have attracted a lot of attention from researchers for use 
in optical imaging [37, 38]. They can be made to emit 
visible fluorescence in a range of wavelengths because 
of their adjustable size, which makes them useful for in 
multilayered and multicolor tissue and cell imaging as 
compared to other fluorescent materials [39, 40]. In brain 
cancer, known for its challenges due to the blood-brain 
barrier, Zheng et al. [41] developed carbon QDs (CD-Asp) 
from D-glucose and L-aspartic acid, capable of crossing 
the blood-brain barrier and serving as a fluorescent imaging 
probe for glioma cells [41]. Qiao et al. [42] highlighted 
the highest selectivity of carbon QDs towards glioma 
cells when synthesized in a specific molar ratio [42]. Betel 
leaves, renowned for their use as a mouth freshener due to 
their rich content of antioxidants, vitamins, and minerals 
[43], have been utilized by Atchudan et al. [44] to derive 
nitrogen-doped carbon quantum dots (B-NCD). These 
carbon QDs exhibit multicolor fluorescence and have been 
demonstrated for multicolor imaging on HCT 116 colon 
cancer cells by the authors [45]. InP QDs also emerge as 
a promising, eco-friendly substitute for Cd-based QDs 
in diagnostics and bioimaging. Zhang et al. excelled in 
specific labeling of liver cancer cells and in vivo tumor-
targeted imaging in live mice, highlighting their potential 
for advanced cancer diagnosis and image-guided surgery 
[11]. To enhance the technique, Cao et al. [46] integrated 
high-quality dual-color quantum dots particle probes into 
a multilabel lateral flow immunoassay system, creating 
an immunodetection platform for instant and quantitative 
detection of gastric cancer markers (pepsinogen I & II) in 
serum samples [46]. 

Furthermore, this technology allows for real-time, 
in-situ observation of a variety of biomarkers, enabling 
quantification of expression levels of biomarkers and 
providing a more comprehensive understanding of 
biomolecular interactions and their relationship to 
disease onset, progression, and prognosis, which has the 

Figure 1. Application of Quantum Dots in Medical 
Research 
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Figure 2. Applications of Quantum Dots in Cancer 

Figure 3. Cancer Detection Using Quantum Dots  

potential to facilitate clinical diagnostics and treatment 
decisions [47, 48]. Recent research has revolutionized 
this technology and driven it towards nucleic acid-
functionalized quantum dots, which show promise as 
imaging probes for cancer cell bioimaging, combining 
QDs’ optical properties with bioconjugation facilitated 
by nucleic acid functionalization. In a study Zn-doped 
CdTe QDs were synthesized and DNA-functionalized 
through a one-pot hydrothermal method. These DNA-
functionalized QDs were successfully tested for detecting 
MUC1 in lung adenocarcinoma A549 cells in vitro and 
in tumor-bearing nude mice in vivo [49]. In 2014, Ma et 
al. addressed challenges in using QDs for living imaging 
of intracellular tumor-related markers, proposing a new 
type of DNA-functionalized QD for extracellular and 
intracellular targeting and imaging of cancer markers. 
They designed a heterobivalent QD using a DNA 
template with a central phosphorothioate domain for 
QD growth and two phosphate domains at each end for 
extracellular nucleolin and intracellular mRNA targeting. 
The QDs were facilitated into cells via micropinocytosis, 
bypassing lysosomal sequestration, allowing for effective 
sensing and imaging of intracellular targets [50]. 
Extending their work, the same group introduced a novel 
approach for single-cell imaging using QDs through 
DNA-programmed polymerization of QDs with aptamers, 
forming linear QD-aptamer polymers. This bottom-up 
assembly approach, utilizing hybridization chain reaction, 
enhanced cell-sensing sensitivity through multivalent 
binding and multiple QD signal amplification. The study 
focused on optimizing signal amplification for sensing 
specific cancer cell markers, particularly the cell surface 
receptor PTK7 in human acute lymphoblastic leukemia 
cells (CCRF-CEM) [51] (Figure 2).

Applications of QDs in Cancer
According to Kashyap et al. [52] Wilkinson et al. [53] 

Houghton et al. [54] and Fahad, [55] breast cancer is one of 
the most prevalent cancers in the world and has the highest 

incidence rate among women [52-55]. For cancer staging, 
sentinel lymph node biopsy (SLN) is a common practice 
[56, 57]. When patients are exposed to ionizing radiation 
during surgery, organic dyes or radiocolloids used in SLN 
mapping result in local tissue damage [58]. Without a 
biopsy, QD can map the SLN [34, 59]. The best course of 
action is surgical resection of the primary tumor. However, 
because it can be challenging to define the tumor margin, 
cancer cells frequently survive and recur. Functionalized 
QDs can be used for image-guided tumor resection to 
visualize cancer cells [60, 61]. Photostable near-infrared 
QDs are available. These QDs are appropriate for deep-
seated tumors because of their improved deep-tissue 
penetration [62, 63]. Although quantum dots have many 
benefits for cancer research and treatment, there are some 
issues with their toxicity and long-term safety that need to 
be resolved before they are widely used in clinical settings 



Sajib Sarkar et al

Asian Pacific Journal of Cancer Prevention, Vol 25750

Figure 4. Cancer Therapy Using Quantum Dots 

Quantum Dots Applications References 
1 B and Co-doped C-QD Bio-imaging (Lysosomes) (Deng et al., 2023)
2 Boron-doped Graphene QD Bio-imaging (Stem Cell line) (Fan et al., 2014)
3 Cadmium based QD Anti-Autophagy (Fan et al., 2016)
4 Cadmium-based QD Autophagy Formation for Cell Survival (Luo et al., 2013)
5 CdSe FRET (Peng et al., 2016)
6 CdSe/ZnS FRET (Hikmet et al., 2003)
7 CdSe/ZnS DNA Hybridization (Fu et al., 2004)
8 CdSe/ZnS/antibody DNA Hybridization (Goldman et al., 2002)
9 CdSe/ZnSe/ZnS Intra-cellular pH sensors (Liu et al., 2007)
10 CpG doped QD Immunotherapy (Golshadi and Schrlau, 2017)
11 C-QD Bio-imaging and Bio-labelling (Atchudan et al., 2021; Murugan et al., 2019)
12 C-QD Antiviral (Ting et al., 2018; Dong et al., 2017)
13 Graphene QD Photostability and Phototoxicity (Kulahava et al., 2023)
14 PEG/BSA coated QD Anticancer (Chen et al., 2017)
15 QD Antibiotic (Huh et al., 2011)
16 QD High Thoroughput Experimentation (Ali et al., 2023)
17 ZnO QD Anti-Apoptosis (Wahab et al., 2016)
18 ZnSe/ZnS FRET (Kim et al., 2003)

[64]. To ensure the security of their application in cancer 
diagnosis and treatment, researchers are still looking into 
the biocompatibility and potential risks of QDs. However, 
the adaptability and distinctive qualities of QDs offer hope 
for enhancing our comprehension of cancer and cancer 
management approaches [65]. A significant role for QDs in 
preventive oncology emphasizes early detection and risk 
assessment to reduce the incidence and impact of cancer 
[66]. Here are some ways in which QDs can be applied 
in drug deliveries

QDs in Drug deliveries
Due to their special qualities, such as tunable optical 

characteristics, biocompatibility, and adaptable surface 
functionalization, QDs have become promising tools in 
drug delivery systems [67, 68]. Targeted drug delivery, 
controlled release, and real-time monitoring are just a few 
benefits associated with their use in drug delivery [69-71]. 
Targeting ligands like antibodies, peptides, or aptamers 
can be used to functionalize QDs [72, 73]. These ligands 
allow for precise binding to cancer cells or other target 
tissues, guaranteeing that the drug payload is delivered 
exactly where it is needed. Targeted drug delivery 
minimizes harm to healthy tissues and reduces off-target 
effects. This method lessens side effects while increasing 
the therapeutic index of medications. In addition to 

Table 1. Applications of Quantum Dots in Biology. Table shows different types of Qdots and their application with  
relevant references.  
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viability compared to free doxorubicin. Carbon QDs 
with specific functional groups selectively interact 
with receptors upregulated in cancer cells, enabling 
targeted delivery of topotecan in a glioma mouse model, 
demonstrating effective tumor cell killing with reduced 
toxicity to normal tissues [89]. Extending this scope 
of literature to other neurodegenerative disorders, the 
optical characteristics of QDs have also been exploited 
in treating several neurodegenerative disorders. In a 
recent study, Lin et al. [90] introduced an innovative 
brain-targeted platform using ZnO QDs for delivering 
a gene aimed at interfering with SNCA expression in 
Parkinson’s disease treatment. Their findings revealed 
that ZnO QDs successfully traverse the blood-brain 
barrier, releasing the gene through lysosomal escape. 
Additionally, they demonstrated the neuroprotective 
effects of this nanoplatform, highlighting its ability to 
reverse neurodegenerative processes in Parkinson’s 
disease models [90]. In a separate investigation, Kim et 
al. [91] reported that graphene QDs (GQDs) effectively 
permeate the blood-brain barrier, providing protection 
against dopamine neuron loss induced by α-syn preformed 
fibrils and mitigating associated behavioral deficits [92]. 
This particular technique has also been implemented to 
inhibit Aβ peptide aggregation, underscoring its clinical 
application to treat Alzheimer’s disease.  

Amyloidosis is a well-known pathological condition 
characterized by the aggregation and deposition of 
amyloid proteins in the form of cross-beta sheets or 
fibrils around cells. These deposits often lead to the 
formation of plaques, contributing to organ and tissue 
failures, and has been implicated in degenerative disorders 
such as Alzheimer’s disease and Parkinson’s disease, 
and has been associated with bacterial biofilms [93]. 
GQDs have been identified as remarkable inhibitors 
of amyloid aggregation [94], demonstrating the ability 
to counteract the toxicity associated with pathogenic 
proteins. Additionally, GQDs exhibit functional surface 
properties that make them effective in targeting and 
delivering anti-amyloid treatments. The small size of 
GQDs and their capacity to produce high levels of 
reactive oxygen species positions them as potential 
therapeutic agents for disassembling biofilms associated 
with amyloidosis. Through mechanisms such as ROS 
production and membrane breakage, GQDs offer promise 
in addressing the challenges posed by amyloidosis in 
various biomedical applications. In a 2018 study, adenine-
modified GQDs exhibited antibacterial activity under 
white light [95]. The GQDs demonstrated significant 
antibacterial effects against gram-positive S. aureus and 
gram-negative E. coli. While E. coli showed nearly no 
proliferation or vital activity, S. aureus did not show much 
effect. They were also found to alleviate colitis in mice 
induced by dextran sulfate sodium. Oral administration 
of GQDs resulted in amelioration of disease severity, 
with histological improvements and decreased pro-
inflammatory cytokine levels. Intraperitoneal injection of 
GQDs also demonstrated protective effects against body 
weight loss, modulating immune cells and polarizing 
macrophages from M1 to M2 in colitis mice [96]. These 
findings suggest GQDs as a microbiota-friendly and 

targeted deliveries, QDs also aid in the encapsulation 
of drugs to allow for a controlled release [74, 75]. Drug 
molecules can either be attached to the surface of QDs 
or encapsulated within their core. The drug is shielded 
from deterioration by this encapsulation, enabling a 
controlled and prolonged release [76]. In response to 
particular stimuli like changes in pH, temperature, or 
enzyme activity, researchers have created QD-based drug 
delivery systems [77-79]. These stimuli cause the drug 
payload to be released at the intended site, increasing drug 
efficacy. Strong and stable fluorescence characteristics are 
present in QDs [80, 81]. When loaded with drugs, they 
allow for real-time in vivo drug release and distribution 
monitoring. This monitoring offers insightful information 
on the pharmacokinetics and pharmacodynamics of drugs. 
Multiple drugs or therapeutic agents can be transported 
simultaneously using QD. Combination therapy, in which 
various medications are administered together to improve 
treatment outcomes using complementary mechanisms of 
action, is made possible by this capability [82]. The type 
and stage of the patient’s cancer, genetic makeup, and drug 
sensitivity can all be taken into account when designing 
quantum dot-based drug delivery systems [60, 83]. The 
efficacy of treatment is maximized by this personalized 
approach. Quantum dots can be used as imaging tools 
as well as drug delivery systems. Clinicians can see 
drug distribution in real-time by incorporating imaging 
agents into the QD-based delivery system, guiding the 
clinicians to visualize drug distribution in real-time, by 
the delivery process [82, 84]. Jha et al. [85] synthesized 
biodots, carbon dots derived from DNA, for treating 
non-small lung cancer. They developed liposomes loaded 
with ETP and conjugated with cetuximab, effectively 
targeting tumor cells [85]. Later, Yadav et al. [86] reported 
the synthesis of protein CDs (PND) from lysozyme, 
loaded with melatonin, a potent antioxidant with anti-
tumor properties. The resulting melatonin-loaded PNDs 
(MPND) demonstrated significant cellular uptake when 
treated with breast cancer cells [86]. To enhance the 
efficacy of Gemcitabine, a chemotherapy drug, Yunus et 
al. [87] conjugated it with CQDs derived from sucrose via 
ultrasonication. In vitro and in vivo studies revealed that 
the CDs-GEM conjugate selectively targeted cancerous 
cells and efficiently penetrated cell membranes [87]. 
To improve targeted drug delivery in gastric cancer 
treatment, Lei et al. [88] developed GIC@HM NPs, a 
nanomedicine using Graphene Oxide based QDs to co-
load ICG and CS-6, wrapped with a hybrid membrane 
(erythrocyte and gastric cancer cell membranes). This 
nanomedicine offered both photothermal therapy and 
chemotherapy, enhancing treatment efficacy [88]. DNA 
aptamer-conjugated QDs target growth factor receptors, 
crossing the BBB to accumulate in tumor cells for 
fluorescent visualization. QDs, as both probes and drug 
carriers, can deliver chemotherapeutic agents, enhancing 
drug permeability. For instance, carboxymethylcellulose-
based QDs conjugated with doxorubicin serve as 
photoluminescent probes targeting glioblastoma cells [3]. 
Similarly, carbon QDs conjugated with transcriptional 
factors and doxorubicin exhibit enhanced cytotoxicity 
against pediatric brain tumors in vitro, reducing 
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anti-inflammatory treatment option for colitis without 
observed toxicity or adverse effects on gut microbiota. 
Further, to explore the impact of nanoparticles on the 
gut and microbiota, BALB/c mice received intravenous 
cadmium telluride quantum dots (CdTe QDs). The study 
revealed that changes in gut microbiota were associated 
with the effects of CdTe QDs on the gut, liver immune 
systems, and lipid metabolism [19]. This suggests a 
potential interplay between nanomaterials and gut 
microbiota, highlighting the need for further investigation.

Quantum dots are also useful tools for developing 
and testing pharmaceuticals. They can be used to study 
drug behavior, efficacy, and safety in in vitro cell culture 
and in vivo animal models [97, 98]. Despite the fact that 
targeted and controlled release are just two benefits that 
QDs have to offer in terms of drug delivery, toxicity, 
and biodegradability, body clearance issues still need to 
be addressed [99, 100]. Drug delivery research focuses 
on creating safer and more biocompatible quantum dot 
materials and surface modifications [101, 102]. Quantum 
dots have the potential to significantly improve therapeutic 
outcomes, enhance drug delivery methods, and advance 
personalized medicine (Figure 3).

Quantum dots in Preventive Oncology
In preventive oncology, emphasis is made on early 

detection, risk assessment, and intervention strategies to 
lessen the incidence and effects of cancer. QDs have the 
potential to significantly contribute in this regard. QDs 
can be used in preventive oncology in the following ways: 

1. Biosensors for early cancer detection
To identify specific cancer biomarkers or genetic 

mutations linked to cancer predisposition, QDs can 
be incorporated into biosensors [65, 103, 104]. These 
biosensors are capable of offering sensitive and 
focused tests for early cancer detection, enabling 
prompt intervention. Due to their adjustable emission 
wavelengths, QDs can identify several cancer biomarkers 
at once [105]. This capability improves cancer diagnosis 
precision and offers a comprehensive disease profiling.

2. Genetic markers used in risk assessment and genetic 
screening

To find genetic mutations or variations linked to a 
higher risk of getting a particular type of cancer, QDs 
can be used in genetic screening assays [106, 107]. 
These screenings can aid the risk assessment and early 
intervention processes. To determine a person’s genetic 
propensity for cancer, QDs can be used in SNP genotyping 
assays [108]. For high-risk individuals, this information 
can direct preventive measures and screening procedures.

3. Environmental Monitoring
To monitor exposure to carcinogens or other 

environmental factors that may aid in the development of 
cancer, QDs can be used as components in nanoparticle-
based environmental sensors [109, 110]. This is crucial 
for preventive oncology because it enables people 
and communities to take proactive measures to lower 
exposure.

4. QDs 
QDs can be incorporated into wearable technology 

or sensors that monitor lifestyle and health metrics [111, 
112]. This data can be used to evaluate a person’s general 
health and cancer risk factors, enabling early intervention 
and prevention strategies. 

5. Vaccination Strategies
By utilizing QDs, vaccines based on nanoparticles 

that target antigens linked to cancer can be developed 
[113-115]. By boosting the immune system’s ability 
to identify and eradicate Personalized Preventive 
Strategies: According to an individual’s genetic and 
molecular profile, QDs can make it easier to develop 
personalized preventive strategies [116]. This could 
involve individualized screening plans, alterations to 
one’s lifestyle, or chemopreventive measures [117]. The 
removal of precancerous lesions or the start of preventive 
treatments may be possible as a result of earlier detection 
using QD-based biosensors.

6. Cancer cells 
Cancer cells at an early stage, these vaccinations may 

be able to prevent cancer.

7. Early-Stage Treatment
For highly treatable cancers in their early stages, QD-

based early detection methods can significantly increase 
the chances of a successful course of treatment and long-
term survival (Table 1 Figure 4).

In conclusion, safety, biocompatibility, and regulatory 
problems are only a few of the challenges that need to be 
considered in the burgeoning field of QD application in 
preventive oncology. Furthermore, an interdisciplinary 
approach incorporating the understanding of molecular 
biology, genetics, oncology, and nanotechnology is 
required to fully exploit the promise of QDs in preventive 
oncology [118-120]. Deep tissue penetration can be 
achieved by engineering QDs to absorb near-infrared 
light. QDs produce heat in response to this light, which 
enables targeted photothermal treatment to eliminate 
cancer cells or tumors while preserving healthy tissue 
[121]. By activating photosensitizing chemicals to 
produce ROS, which in turn destroy cancer cells, 
photodynamic treatment can be improved using quantum 
dots [122]. The efficiency of ROS production and light 
absorption can both be enhanced by QDs. In radiation 
treatment, QDs can be used as radiosensitizers. QDs can 
maximize the beneficial effects of radiotherapy while 
reducing side effects by increasing the susceptibility of 
cancer cells to radiation.
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