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Introduction

Malignant melanoma (MM) and Non-Melanoma 
Skin Cancer (NMSC) represent the two primary types 
of skin cancer. NMSCs consist of Basal Cell Carcinoma 
(BCC), Squamous Cell Carcinoma (SCC), and Bowen’s 
disease. Both NMSC and MM show a concerning 
increase in incidence rates [1, 2]. In addition to various 
factors, such as family or personal history, a weakened 
immune system, and pale skin color, the prevalence 
of this disease also depends on environmental factors. 
Prolonged exposure to UV radiation is recognized as 
the most significant environmental risk factor for skin 
cancer [3-8]. Based on primary epidemiological evidence, 
solar radiation plays a crucial role in the development 
of skin cancer. Environmental studies further indicate 
that the prevalence of this cancer is linked to changes in 
latitude and altitude [9]. According to these studies, skin 
cancer rates tend to increase at lower latitudes and higher 
altitudes. Additionally, evidence suggests that outdoor 
activities, increased exposure to UV radiation, and total 
sunshine hours can also contribute to the incidence of skin 
cancer [10]. In this regard, various types of skin cancer 
are significantly linked to environmental conditions and 
the level of ultraviolet (UV) radiation exposure [11]. The 
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role of environmental components, including pollution, 
outdoor activities, radiation exposure, and climate 
changes, has been studied concerning skin cancer [12, 13]. 
Wheeler et al (2013), examined the correlation between 
skin cancer rates and three factors: Radon, Arsenic, and 
sunshine hours in England. They found no association 
between arsenic exposure and skin cancer. However, there 
were significant correlations observed between sunshine 
hours and Radon density with cancer rates; sunshine had 
a high correlation, while Radon had a medium correlation 
[14]. Correspondingly, Hu et al (2014), applied spatial 
analysis to predict high-risk neighborhoods for late-stage 
skin cancer in Florida. Their study revealed that Hispanic 
whites and residents of poor neighborhoods were more 
likely to be diagnosed with skin cancer [15].

The recognition of epidemics holds great importance 
in public health, and understanding the geographical 
distribution of a disease is one of the most effective factors 
in this process. Since disease prevalence is related to the 
environment and climate, studying geographical conditions 
becomes essential [16, 17]. However, spatial data analysis 
for investigating epidemics often presents challenges, 
prompting public health experts to seek solutions. The use 
of maps was one of the initial methods for incorporating 
spatial analysis into epidemic investigations, and today, 
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Geographic Information Systems (GIS) serves as a 
powerful tool for decision-making in this field [18, 19].

The impact of climate change as an environmental 
factor on skin cancer has been the subject of study [20, 
21]. Wright et al (2019), concluded that climate change 
could impact current incidence rates of skin cancer in 
several ways. These impacts are associated with shifts 
in meteorological variables, particularly air pollution, 
temperature, rainfall, and cloud cover, which all affect 
solar ultraviolet radiation (UVR) levels at the Earth’s 
surface. While they emphasize more data are needed to 
fully understand these effects, it is likely that increasing 
air pollution could lead to cutaneous damage, thereby 
elevating the risk of skin cancer [22].

In Iran, skin cancer is among the most prevalent types 
of cancer, with the head and neck being the most affected 
areas [23, 24]. Additionally, skin cancer is reported to 
have a higher prevalence compared to other types of 
cancer, and Basal Cell Carcinoma (BCC) is the most 
common morphologic form of skin cancer in Iran [25, 
26]. In this regard, the role of climate change in skin 
cancer in Iran has been overlooked. Furthermore, studies 
concerning environmental factors and skin cancer in Iran 
have primarily focused on single factors. Therefore, the 
purpose of this study is to map the spatial distribution 
of skin cancer in Iran, considering its spatial correlation 
with various climate change factors using Geographical 
Weighted Regression and Remote Sensing data.

Materials and Methods

Process of study
Figure 1 illustrates the steps taken in this study.

Area of study
Iran, spanning over 1.6 million square kilometers, 

is situated between 25°N to 29°N latitude and 44°E to 
63°E longitude (Figure 2). As per the 2022 reports from 
the Statistical Center of Iran, the country’s population 
is approximately 82,011,735. Geographically, Iran is 
classified as a semi-arid region. Figure 2 illustrates the 
study area.

Data
Based on existing evidence and previous studies 

mentioned earlier, it is evident that environmental and 
climatic conditions significantly influence the spatial 
distribution of skin cancer. Consequently, demographic 
data, disease information, and climate change parameters 
were utilized for mapping the spatial dispersion of 
skin cancer. The required information was obtained 
from various sources. Demographic data for the year 
2022 was acquired from the Statistical Center of Iran. 
Similarly, information on skin cancer was gathered from 
the non-communicable diseases department of the Iran 
Tumor Bank for the same year. To mitigate the impact of 
population size on the results for both highly populated and 
low population cities, the data were adjusted to calculate 
the rate of skin cancer for each city using equation 1.

     (1)

The rate of skin cancer for every 100,000 individuals 
was represented by the value of 100,000. The sunshine 
hours map was obtained from the Ministry of Energy. 
Climate change data were acquired through satellite 
imageries. Altitude data was extracted from DEM maps 
sourced from SRTM images with a spatial resolution 
of 90 meters. In line with the increasing use of global 
database methods in recent years, other study parameters 
were collected using various satellite sensors, based on 
satellite estimations. The relevant information is presented 
in Table 1.

Additionally, remote data, including solar UV 
radiation, relative humidity, cloud cover, and incoming 
shortwave flux of solar radiation, were gathered from 
https://giovanni.gsfc.nasa.gov/giovanni/

Considering that skin cancer data were on counties 
while other data were in pixel form, zonal statistics in 
the ArcGIS environment were utilized to calculate the 
mean for each parameter against each city. Additionally, 
due to the variations in values for different parameters, 
normalization was conducted to standardize values 
measured on different scales to a common scale between 
0 and 1.

To determine the correlation between parameters 
influencing the incidence of skin cancer and the rate of skin 
cancer, the Pearson correlation coefficient was employed. 
Using the Pearson coefficient allowed for the identification 
of highly correlated parameters, which were subsequently 
omitted from the analysis.

Geostatistical analysis
For this study, where the spatial unit was a polygon, the 

Moran’s I index was chosen due to its higher efficiency in 
assessing spatial autocorrelation for polygon-shaped data 
compared to other approaches [27]. After determining the 
spatial autocorrelation of the data, hot spot analysis (Getis-
Ord Gi*) was applied to identify clusters, specifically hot 
and cold spots.

The Global Index of Spatial Autocorrelation (Moran’s I)
The spatial distribution of any phenomenon, such as 

skin cancer, in a geographical space result in a distinct 
pattern that can be analyzed using Moran’s index. The 
calculation of Moran’s index involves the following steps: 

             (2)

Where Zi is the difference between values of event 
i with an average of                                      is the spatial weight 
between events i and j. n is the total number of 
events and S0 is the sum of all spatial weights.

The total sum of the spatial weights is obtained using 
equation (3):

                                         (3)
 

The score of Zi as a standard for the Moran statistic 
and can be calculated as shown below.
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, where n is sample size, pi is predicted disease rate, 
Oi is the observed disease rate,       shows  the  ave rage 
predicted disease rates,     is the average observed 
disease rate, and  Spred  is the standard deviation for the 
predicted disease rate and Sobs shows the standard deviation 
of disease rates between model input and output.

Limitations
In delineating the temporal scope of our study, the 

year 2022 was chosen as the baseline. This decision was 
grounded in the utilization of two primary data points: the 
overall population of Iran and the statistics pertaining to 
individuals with cancer within the Iranian population. In 
crafting this article, our reliance on the most accessible 
and up-to-date data was paramount. our dataset includes 
additional variables, such as the solar UV index (focused 
primarily on the UVB fraction), incoming shortwave flux, 
sunshine hours, cloud coverage rate, and relative humidity. 
It is crucial to note that these data represent averages. 
The comprehensive analysis of the “time evolution of the 
climate” typically necessitates a temporal span of at least 
10 years and the application of intricate climatological 
models. Given the scale of our study, encompassing all 
synoptic stations across Iranian counties over a minimum 
10-year period would be an extensive undertaking. 
Instead, we adopted a standardized method detailed in 
Table 1, wherein average values of the studied indices for 
the year 2022 were considered. While these averages retain 
the capacity to reflect the time evolution of the climate 
by capturing changes in climatic indices, it is essential 
to acknowledge that methodologically, they differ from 
analyses utilizing complex climatological models.

Further, it is crucial to emphasize that this study 
directly extracted climate change parameters from 
remote sensing output products, and as a result, no image 
processing was undertaken.

Results

Geographical distribution of climate change parameters
Figure (3-a) illustrates the annual average UV index 

map, a numerical representation of erythemal irradiance. 
The UV index is a dimensionless quantity proportional 
to the solar UV radiation spectrum, with a predominant 
focus on the UVB range (290-320 nm) and a smaller 
fraction in the UVA range (320-400 nm). This map reveals 
a clear north-south flow pattern in spatial changes of solar 
UV radiation, with a decrease from south to north. The 
numerical values of the UV index serve as indicators of 
potential health risks associated with sun exposure, with 
higher values corresponding to elevated UV radiation 
levels. The maximum UV radiation is observed in the 
south-eastern and central regions, highlighting areas with 
the highest UV index values. Similarly, the annual average 
of spatial changes for incoming shortwave flux (Fig. 3-b) 
exhibits a consistent pattern with the UV changes. This 
alignment underscores the influence of solar UV radiation, 
particularly in the UVB range, on overall shortwave flux 
variations. The UV index, by virtue of its calculation 
and representation, provides valuable insights into the 
geographical distribution of solar UV radiation and its 
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Hot Spot Analysis (Getis-Ord Gi*)
The Getis-Ord Gi hot spot analysis is formulated as 

follows: 
 
                                                                        (7)

where xj is the attribute value for event j and wij is the 
spatial weight between events I and j. n shows the total 
number of events.

      

                                                                             (8)

                                                                             (9)

Geographical Weighted Regression (GWR)
Unlike global regression methods that apply the same 

relationship for all regions, GWR is a local method, which 
allows the regression relationship to vary across different 
regions [28]. This flexibility makes it superior to other 
regression approaches that assume a uniform relationship 
across the entire study area. Equation (10) formulates the 
geographical weighted regression method,

 
                                                 (10)

where Y is the dependent variable at point u, Xj is 
the independent variable at point u, β are the model 
estimators, and W shows the square weight matrix and is 
dependent on the location of point u in the region. The 
weights are completely reliant on spatial location and the 
location of a point in relation to other points in the region. 

Model Evaluation
After data preparation, geographical weighted 

regression was conducted using the data from 2022. The 
regression resulted in prediction maps for the prevalence 
of skin cancer. These prediction maps were then compared 
to the actual skin cancer rate maps to evaluate the 
performance of the geographical weighted regression. 
The determination coefficient (R2) was used to assess 
the accuracy of the modeling process. A higher R2 value 
implies a better fit of the model to the data, suggesting 
that the model captures a larger portion of the variation in 
the dependent variable based on the independent variables 
[29]. R2 can be calculated using equation (11). 
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Parameter Time Data source Unit Spatial Resolution
UV 2022 Annual average OMI UV Index 1°
Cloudiness 2022 Annual average MODIS % 1°
Incoming short-wave flux 2022 Annual average MERRA-2 W m-2 0.5°*0.625°
Humidity 2022 Annual average AIRS % 1°
Elevation 2022 SRTM Meter 90
Sunshine hours 2022 Niroo Research Institute Hours -

Table 1. Data of the Study

Parameter/Statistic Mean MAX Min
UV 7.74 8.61 6.54
Incoming shortwave flux 213 270 165
cloud 37.12 65.04 3.42
Relative humidity 14.22 37.18 0
Hours of Sunshine 3109 3567 1894
Digital Elevation Model (DEM) 2613 5593 -70

Global Index of Spatial Autocorrelation 
- Moran’s I

Hot Spot Analysis (Getis-Ord Gi*)

Conclusion

GWR

Output

Correlation

UV CloudIncoming shortwave 
flux Relative humidity Hours of Sunshine DEM

Skin cancer rate

Indicator Selection

Spatial riskGoal

The Incidence of Skin Cancer in Relation to 
Climatic Variables and Altitude in Iran

Literature Review

Modeling

Figure 1. Steps Taken of the Study

Table 2. Statistical Description of the Parameters

Parameter UV Relative humidity Cloud coverage Incoming shortwave flux Sunshine hours Altitude
The incidence rate 
of skin cancer

0.51 -0.43 -0.36 0.38 0.24 0.12

Table 3. Correlation Coefficient (R2) of Influential Parameters with the Incidence Rate of Skin Cancer

potential implications for human health.
The maximum value for incoming shortwave flux is 

also observed in the central and south-eastern regions. 

Moving on to the spatial changes in total sunshine hours 
for 2022 (Fiure 3-c), the maximum value is observed 
in the central and eastern regions. This pattern can be 
attributed to the smaller latitude in these regions, as 
compared to the more complex topography in the northern 
areas when compared to the southern and central regions. 
Figure (3-d) displays the annual average spatial change 
in cloud coverage. The northern and north-western strips 
show the highest cloud coverage, while the southern and 
south-eastern strips have the minimum cloud coverage. 
Additionally, western regions generally have higher cloud 
coverage compared to eastern regions. Therefore, the 
cloud cover index follows both a north-south flow pattern 
and a west-east pattern. The spatial changes in relative 
humidity (Figure 3-e) indicate higher humidity in the 
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Figure 2. Area of Study. (Source: The data have been acquired from Google Earth the and the map have been created 
using of ArcGIS software) 

Figure 3. Influential Parameters in the Incidence of Skin Cancer. (a): Annual Average UV Index. (b): Annual Average 
Incoming Shortwave Flux. (c): Total Sunshine Hours Distribution. (d): Annual Average Cloud Coverage. (e): Relative 
Humidity Distribution. (f): Spatial Changes in Altitude. (Source: The data have been acquired directly from the 
NASA’s EarthData 2022 and the maps have been created using of ArcGIS software). 
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Figure 4. The Ratio of the Population Suffering from Skin Cancer

Figure 5. Moran's Index

northern coastal regions, as well as both the north-western 
and north-eastern regions. Finally, Figure (3-f) illustrates 
the spatial changes in altitude. The Figure highlights a 
significant variation in altitude across the country, with 
western regions having higher altitudes compared to 
central and coastal regions.

Statistical analysis and correlation of data with skin 
cancer rates

A descriptive statistical analysis of the data proves 
useful in determining the range of different parameters 
in the study region. Table 2 provides the results of the 
descriptive statistical analysis of the collected data. It 
is evident that UV radiation in Iran varies between 6.54 
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Figure 6. Hot and Cold Spots 

Figure 7. The Modeled Map for the Incidence Rate of Skin Cancer

and 8.61, with the maximum value occurring in central 
regions. For incoming shortwave flux, values ranged 
from 1.65 to 2.7 W/m², showing a decrease as latitudes 
decreased. The percentage of humidity was between 0 
and 37.18, which is relatively low due to Iran’s arid and 
semi-arid climate. Cloud cover is another significant 
factor influencing skin cancer, with values ranging 
from 3.42% to 65.04%. Maximum cloud coverage was 
observed in the northern and southern coastal regions, 
while minimum values were found in central regions. The 

DEM parameter, indicating the altitude, varied from -70 
to 5593 meters, reflecting the high rate of altitude change 
within the country. Maximum altitudes were observed in 
the mountainous regions of Zagros and Alborz, whereas 
minimum altitudes were found in the coastal regions in 
the north of Iran.

Correlation analysis is indeed crucial in determining 
the relationships between different input parameters of 
a model. In this study, we investigated the correlation 
between various parameters, including UV radiation, 
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relative humidity, cloud coverage, incoming shortwave 
flux, altitude, sunshine hours, and the skin cancer rate. 
The correlation results are presented in Table 3.

The correlation coefficient between the mentioned 
parameters and skin cancer varied from -0.43 to 
0.51, indicating a relatively moderate and downward 
correlation. The parameter with the highest positive 
correlation was UV, while relative humidity had the 
lowest negative correlation with the skin cancer rate. UV 
radiation, incoming shortwave flux, altitude, and sunshine 
hours showed a positive relationship with the skin cancer 
rate, whereas relative humidity and cloud coverage 
exhibited a negative relationship with this disease. The 
positive relation between altitude and skin cancer rate 
was observed; as altitudes increased, skin cancer rates 
also went up, although this correlation was exceptionally 
low. Considering that the observed correlations ranged 
from -0.43 to 0.51, we noted that correlations within 
the range of -0.67 to 0.49 have the potential to result 
in diverse outcomes for the mentioned parameters. The 
reason for this variability is that correlations closer to 
the extremes of this range indicate a stronger negative or 
positive relationship, which could significantly impact 
the modeling results. Given the sensitivity to correlation 
values within this range, it becomes imperative to include 
all parameters in the modeling process. This ensures 
a comprehensive consideration of the interconnected 
influences of the variables and enhances the robustness 
and reliability of the modeling outcomes.

After preparing the data and obtaining spatial maps 
containing addresses of residents diagnosed with skin 
cancer, the addresses were linked with the political 
division maps of the country, and further analytical 
processes were conducted based on the final maps. 
Additionally, a population map was obtained using 
demographic data from the Statistical Center of Iran. 
This population map was merged with the previous map 
indicating the number of residents suffering from skin 
cancer. Finally, utilizing equation 1, the skin cancer rate 
was calculated, and the results are presented in Figure 4.

As shown in Figure 4, the southeastern, southwestern, 
and central regions of Iran exhibit a higher rate of skin 
cancer compared to other regions. This is likely attributed 
to the elevated levels of UV radiation and sunshine hours, 
as well as the lower humidity prevalent in these areas.

Spatial autocorrelation and cluster patterns 
Analysis were conducted in this study to examine 

the distribution of skin cancer. Initially, the spatial 
autocorrelation of skin cancer was assessed using Moran’s 
I index, assuming a null hypothesis that the distribution 
of skin cancer was entirely random.

According to Figure 5, the Moran’s I index was 
calculated to be 0.401095, with a p-value of zero and a 
z-score greater than 2.5. These results indicate that the 
skin cancer rate follows a clustered pattern. Thus, the 
null hypothesis, which assumes a random distribution of 
skin cancer, is rejected, and it is evident that the data are 
clustered. In other words, neighboring regions exhibit 
similar rates, forming clusters.

In the next stage, we conducted Getis-Ord Gi* to 

identify spatial clusters and regions associated with high 
skin cancer rates. As depicted in Figure 6, the analysis 
successfully identified clusters, hot spots, and cold spots. 
The results reveal that approximately 90 percent of the 
central regions of Iran are hot spots, showing statistically 
significant high rates of skin cancer. Conversely, the 
south-eastern and north-western areas of the country 
are identified as cold spots, indicating relatively lower 
rates. Consequently, the central area of Iran emerges 
as the primary focal point for skin cancer, with the rate 
decreasing as the distance from this central area increases, 
leading to the formation of cold spots.

Geographical Weighted Regression
After examining the spatial changes in skin cancer 

rates and performing geostatistical analysis, it was 
revealed that the distribution of skin cancer rates follows 
a clustered pattern, with specific regions marked as hot 
and cold spots across the country. Subsequently, an 
investigation into climate change variables demonstrated 
that skin cancer rates are influenced by changes in climate. 
This finding suggests that it is possible to model the 
spatial distribution of skin cancer using climate change 
parameters. To achieve this, geographical weighted 
regression with a comparative geographical core was 
utilized to model the skin cancer rate by considering 
relevant factors. The outcomes of this modeling process 
are presented in Figure 7.

Similar to Figure 4, Figure 7 also indicates that the 
highest skin cancer rates were observed in the central, 
southern, and south-eastern regions of Iran. A comparison 
between these two Figures reveals that the 0-5 and 15-24 
level regions have decreased in the regression model map 
compared to the actual observation map. On the other 
hand, increases are evident in the 5-8 and 11-15 level 
regions. These differences are attributed to the varying 
effects of the parameters used in the modeling process. 
Moreover, upon comparing the two maps, it becomes 
apparent that skin cancer rates estimated by geographical 
weighted regression are higher for the north-western 
regions of the country compared to their actual values. 
This discrepancy may arise due to changes in altitude, 
atmospheric stability, and additional exposure to sunlight 
in those regions. 

The R2 value was relatively high (R2 = 0.71) for the 
map modeled using geographical weighted regression in 
comparison to the actual map. This finding indicates that 
the skin cancer rate can be predicted fairly well using the 
effective variables introduced in this study.

Discussion

The results of the correlation between the effective 
parameters of skin cancer indicate a moderate initial 
relationship concerning the skin cancer rate. Consequently, 
focusing solely on one parameter and utilizing uni-
variable regression is not sufficient for modeling purposes. 
Therefore, a multi-variable regression involving various 
parameters is necessary for effective modeling. Moreover, 
when comparing the results of this study with previous 
research, it is evident that the detection coefficient 



Asian Pacific Journal of Cancer Prevention, Vol 25 1061

DOI:10.31557/APJCP.2024.25.3.1053
Geospatial Patterns of Non-Melanoma Skin Cancer in Relation to Climate Changes in Iran

obtained from the incidence rate and the modeled rate is 
reliable. The incorporation of remote sensing data and the 
consideration of spatial aspects can be identified as the 
main factors contributing to these outcomes.

Based on the statistical analysis conducted, both 
positive and negative signs taken into account, it was 
evident that relative humidity and UV radiation were 
identified as the most influential factors affecting the skin 
cancer rate. On the other hand, altitude was found to have 
the least impact on the skin cancer rate. Additionally, 
while examining the relationship and correlation between 
variables and skin cancer rate, the coefficients’ signs for 
altitude, UV radiation, incoming shortwave flux, and 
sunshine hours indicated a direct relationship between 
these factors and the skin cancer rate. This implies that 
increases in altitude, UV radiation, incoming shortwave 
flux, and sunshine hours would lead to an increase in 
the skin cancer rate. Furthermore, the results of the 
geostatistical analysis revealed that the skin cancer rate 
exhibited a high spatial autocorrelation and was distributed 
in a clustered pattern. The spatial clusters with the highest 
probability of occurrence were concentrated in the central 
areas of the country.

The results obtained from GWR demonstrate that all 
the factors included in this study are effective in predicting 
the skin cancer rate. The findings from Figures 4 and 7 
specify that the highest skin cancer rate was observed in 
the eastern, central, and southwestern regions of Iran. This 
is likely attributed to higher UV radiations and sunshine 
hours, as well as lower humidity and cloud coverage 
compared to other areas in the country. Even minor 
variations in latitude, along with the influence of high solar 
radiation resulting from the Azores high-pressure system 
in the atmosphere and clear skies, can have significant 
effects on skin cancer rates and contribute to the increase 
in the incidence of this disease.

The lowest rate of skin cancer was observed in the 
southern coastal regions of the Persian Gulf and the coastal 
regions of the Caspian Sea located in the northwest of Iran. 
This is likely attributed to higher relative humidity and 
cloud coverage in these areas, which effectively prevent 
direct exposure to sunlight. Additionally, as latitudes 
increase in the northern and northwestern coasts of Iran, 
solar rays change angles from vertical to oblique, resulting 
in lower skin cancer rates. The reduced sunshine hours in 
the northern regions of Iran also play a significant role in 
influencing the skin cancer rate.

As depicted in Figure 4, the southeastern, southwestern, 
and central regions of Iran exhibit a higher rate of skin 
cancer compared to other regions, aligning with findings 
in various international studies. In South Africa, the 
prevalence of skin cancer has shown a significant 
correlation with environmental factors such as solar 
ultraviolet radiation, ambient temperature, and rainfall 
[22]. Similarly, in Australia, a relationship has been 
found between temperature, humidity, ambient ultraviolet 
radiation, and UVR-related diseases such as cancer [30]. 
Furthermore, in the tropics, a study has indicated that 
environmental factors like solar ultraviolet radiation, air 
pollution, and variations in air temperature and relative 
humidity impact skin health [31].

The model validation of the GWR method revealed 
that when comparing the predicted map of the model 
with the actual map, the model exhibited a high 
coefficient of determination (0.71). This indicates that the 
geographical weighted regression model could account 
for approximately 71 percent of the data related to skin 
cancer rates.

In conclusion, the study aimed to leverage satellite 
data and GWR to generate predictive maps for the spatial 
distribution of skin cancer in Iran, with a specific focus 
on understanding the influence of climate changes. The 
utilization of remote sensing data was driven by several 
advantages, including the accessibility of digital and multi-
spectral information, timely updates, a comprehensive 
overview of the study area, exploration across various 
electromagnetic spectra, repetitious coverage, and 
compatibility with various data formats. The datasets 
employed in this study encompassed crucial climate 
change factors, including UV radiation, relative humidity, 
cloud coverage, incoming shortwave flux, altitude, and 
sunshine hours. These diverse datasets facilitated a 
robust analysis of the spatial distribution of skin cancer 
in Iran and its intricate relationship with climate change 
factors. The key findings of this study underscore the 
significant influence of UV radiation and relative humidity 
on the skin cancer rate, with the former showing the 
highest positive correlation and the latter exhibiting the 
most substantial negative correlation. Furthermore, the 
geostatistical analysis unveiled a non-random, clustered 
spatial distribution of the skin cancer rate. The application 
of GWR demonstrated the high accuracy of the proposed 
model in predicting the skin cancer rate.

In addressing contradicting possibilities, it is essential 
to acknowledge the inherent complexity of the skin cancer 
phenomenon and recognize that other contributing factors 
may exist. Considering this, it is crucial to emphasize the 
need for ongoing research to further explore and refine 
our understanding of the multifaceted determinants of 
skin cancer. Regarding potential variables influencing the 
skin cancer rate beyond the climatic and altitude variables 
considered in this study, it is important to note that factors 
such as the duration of population exposure to outdoor 
environments, genetic predispositions, and skin phototype 
were not explicitly examined in the present work. Future 
investigations should encompass a broader spectrum 
of variables to comprehensively unravel the intricate 
interplay of factors contributing to skin cancer incidence. 
While this study provides valuable insights into the spatial 
distribution of skin cancer in Iran in the context of climate 
changes, it is imperative to acknowledge the complexity 
of the phenomenon and encourage continued research to 
address conflicting possibilities and explore additional 
variables that may contribute to our understanding of skin 
cancer dynamics.
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