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Introduction

Prostate cancer is the first most common cancer and 
the second leading cause of cancer death among men 
[1]. Once diagnosed, treatment is defined according 
to type, staging, location and risk-benefit, but in cases 
where prostate cancer metastasizes cure is discredited 
and patients have a 5-year survival rate of only 30%. 
Furthermore, the incidence of metastatic prostate cancer 
appears to have increased in all races and age groups over 
the past decade [2, 1]. This scenario shows the need to 
develop new alternative therapeutic approaches.

Among the main preventive health strategies, 
chemoprevention appears as a therapeutic option, which 
consists of the use of natural or synthetic chemical agents 
to prevent, interrupt, stabilize or reverse the genesis of 
cancer. Therefore, there is a growing interest in research 
involving phytochemicals and bioactive compounds 
present in fruits, vegetables and other plants, as agents 
that act against cancer [3, 4].
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The Amazon region contains a range of fruit varieties 
with different aromas and exotic flavors, which have 
economic potential and an important prospect of 
appreciation for the region [5, 6]. Exotic fruits, such as 
murici (Byrsonima crassifolia (L.) Kunth and verbascifolia 
(L.) DC) and taperebá (Spondias mombin L.) have unique 
sensorial characteristics and high concentration of 
nutrients and bioactive compounds, with high antioxidant 
potential expressed in the scientific community that relate 
to health benefits [7].

There are several fields of research in the health area. 
Studies with cell cultures began in the 20th century with 
the aim of analyzing the behavior of these cells or animal 
tissues in specific and controlled situations outside the 
body [8]. Assays carried out with cell lines of prostate 
cancer make it possible to investigate not only the 
mechanisms of the pathogenesis of this cancer, but also the 
effects of treatments. The PC-3 cell line was established 
in 1979 from grade IV bone metastasis of prostate cancer 
in a 62-year-old Caucasian male. Due to the high capacity 
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for migration and tissue invasion, this strain has a highly 
aggressive behavior [9, 10].

Studies involving prostatic cell lines are still scarce 
in the scientific literature, especially among the more 
aggressive ones, of bone metastases. In addition, different 
phytochemicals have already been described for murici 
and taperebá species, but their anticancer effects are still 
poorly understood. The present study aimed to evaluate 
the antiproliferative and apoptotic effects of murici and 
taperebá extracts on the human prostate cell line (PC-3). 
Our hypothesis was that Amazonian fruits extracts selected 
according to phenolic compouds profile contain multiple 
molecules with antitumor activities that could be very 
effective in killing human prostate cancer cells.

Materials and Methods

Samples 
Pulps of murici (MU) and taperebá (TAP) packaged 

in sealed and labeled plastic bags (1 kg) were supplied 
by a company from Pará (PF, Castanhal, PA, Brazil) and 
stored at a controlled temperature (−18ºC). The frozen 
pulp was transported in an ice chest containing dry ice to 
the Laboratory for Analysis of Functional Foods (LAAF-
UNIRIO), Rio de Janeiro (Brazil), where they remained 
frozen (−18ºC) until the moment of analysis. 

Extraction of Samples 
Aqueous extract

Approximately 250 g of pulp of MU and TAP was 
extracted with 80 mL of distilled water and then shaken 
for 2 h. After the pulp maceration period, the aqueous 
murici (MA) and aqueous taperebá (TA) extracts were 
filtered through Whatman #1 filter paper. The extracts 
were then frozen at −86 ºC in an ultra-freezer (Indrel® 
Ultrafreezer) and lyophilized (Terroni® LD 300, São 
Carlos, SP, Brazil) for 24 h. After this process, extracts 
were frozen at −18ºC until use in the experiments [11].

Ethanolic extract
The process employed to develop the lyophilized 

ethanolic extracts of MU and TAP included the same 
extraction steps as the lyophilized aqueous extract. After 
the pulp maceration period, the ethanolic murici (ME) 
and ethanolic taperebá (TE) extracts were filtered through 
Whatman #1 filter paper and the secondary ethanol residue 
was evaporated under low pressure at 45°C. The extracts 
were then frozen at −86ºC in an ultra-freezer (Indrel® 
Ultrafreezer) and lyophilized (Terroni® LD 300, São 
Carlos, SP, Brazil) for 24-hours. After this process, extracts 
were frozen at −18ºC until usage in the experiments [12].

Cell Culture and Treatment Protocol 
Human cancer prostate cell line (PC-3) were obtained 

from the Federal University of Rio de Janeiro Cell Bank 
(Rio de Janeiro, Brazil). The cells were plated in 25 cm2 
tissue culture flasks, 5.0 × 106 cells/flask, and maintained 
routinely in Dulbecco’s medium supplemented (DMEM) 
with 10% fetal bovine serum and 2 g/L HEPES buffer, pH 
= 7.4, under 5% CO2 atmosphere. Cells were passaged at 
70–80% confluence, about twice a week by trypsinization. 

Cells were seeded at 2.0 × 104 cells/cm2 in 6-multiwell 
plates (2 mL of standard culture medium) for cell cycle 
progression and apoptosis analyses and in 96-multiwell 
plates (200 mL of standard culture medium) for cell 
viability analyses. A control group was included for all 
analyzed samples, being treated only with the culture 
maintenance medium, free from samples. All experiments 
were performed in triplicate.

Cytotoxic Analysis 
MTT Assay 

The status of cancer cell line viability was 
determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5- 
diphenyltetrazolium bromide; thiazolyl blue) assay 
(Sigma, New York, NY, USA), in which the substance is 
a pale yellow substrate that is reduced by living cells to 
yield a dark blue formazan product. This requires active 
mitochondria, and even recently dead cells do not reduce 
significant amounts of MTT. Exponentially growing cells 
were adjusted to 2.0 × 104/cm2 with DMEM, plated in 
96-well plates (Corning, Tewksbury, MA, USA) at 200 µL/
well and incubated for 24 hours according to the routine 
procedure. The cells were then incubated with MA, ME, 
TA and TE (0,05mg/mL to 20mg/mL) for another day. 
Each of the substances was also incubated with MTT 
(10 µL/well; 5 g/mL) for 4 hours. After 85 µL/well the 
liquid was removed and 50 µL/well sodium dodecyl 
sulfate was added to dissolve the solid residue. Finally, 
the absorbance was measured using a microplate reader 
(POLARIS-CELER®, Celer Biotecnologia, Minas Gerais, 
BH, Brazil) at 570 nm. The cell proliferation inhibition rate 
was calculated using the following formula: Cell viability 
(relative% of control) = (1 − average value of experimental 
group/average value of control group) × 100%.

Cell Cycle Analysis 
Human prostate cancer cell line (PC3) received 

treatment with MA, ME, TA and TE extracts at two 
concentrations (10 and 20 mg/mL). After incubation 
for 24 hours, the cells were briefly washed with PBS 
solution and resuspended in 500 µL of Vindelov’s solution 
containing 0.1% Triton X-100, 0.1% citrate buffer, 0.1 
mg/mL RNAse, and 50 mg/mL propionate iodide (Sigma 
Chemical Co., St. Louis, MO, USA) and left for 15 min 
at room temperature [13]. After 15 min of incubation, the 
cell suspension was analyzed for DNA content by flow 
cytometry using a FACS Calibur flow cytometer (Becton 
Dickinson, Mountain View, CA, USA). The relative 
proportions of cells with DNA content diploid G0–G1 
(2n), S phase (> 2n, but < 4n), and G2/M phase (4n) were 
acquired and analyzed with FlowJo software following 
the acquisition of 20,000 events. The percentage of cell 
population at a specific stage was estimated with FlowJo 
analysis software version 1.2.

Apoptosis 
The human prostate cell line was seeded in 6-well 

plates at concentrations similar to those used for cell 
cycle analysis. After 24 hours of treatment with the 
extracts (MA, ME, TA and TE) at concentrations of 10 
and 20 mg/mL, the cells were washed with buffered 
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Results

Cytotoxic Analysis - MTT
In the present work, the antiproliferative effect of 

MA, ME, TA and TE on the viability of human prostate 
adenocarcinoma cells (PC-3) was investigated. The MTT 
results showed a reduction in cell viability with decrease 
of 39.19% when incubated with MA (20mg / mL), 
mean reduction of 70.41% with ME (5 and 10mg/mL) 
and 38.17% for TA (10 and 20mg/ mL). The highest 
concentration of TE (20mg/mL) was able to promote 
the maximum decreasing (17.49%), compared to control 
(p<0.001). 

After 24 hours MA and TA, cell viability inhbition 
with lower doses studied (0.05mg/mL). As for the ME 
and TE, it was demonstrated a decrease in cell viability 
at concentrations of 5 and 20mg/mL (Figure 1).

Effect of murici and taperebá bioactive extracts on cell 
cycle progression

Based on the huge percentage of reduction in the MTT 
analysis the concentrations of 10mg/mL and 20mg/mL 
were chosen to assess the different phases of cell cycle 

saline solution (PBS), resuspended in a binding buffer 
with 5 µL annexin V-fluorescein isothiocyanate (FITC) 
and 5 µL of propidium iodide (PI) (Apoptosis Detection 
Kit II, BD Pharmingen, New Jersey, USA). FITC and PI 
staining were analyzed to determine the apoptotic rate. 
The percentage of total apoptotic cells was calculated 
by adding the percentages of early apoptotic gated cells 
(annexin V+/PI−) and late apoptotic gated cells (annexin 
V+/PI+). The reading was held on the flow cytometer 
(BD Biosciences, Franklin Lakes, NJ, USA), following 
the acquisition of 20,000 events on CellQuest, and the 
data analyzed using the FlowJo software (FlowJo v. 1.2).

Statistical Analysis
The results presented are the mean and the 

corresponding standard deviation of three independent 
experiments performed in triplicate (n=6). Data was 
analyzed using GraphPad Prism statistical software 
(version 5.04, GraphPad Software Inc., San Diego, CA, 
USA). The univariate analysis of variance (ANOVA) with 
the Tukey post-test at a 95% confidence level was used to 
test cell viability, cell cycle and apoptosis rate.

Figure 1. Effect of MA, ME, TA and TE on PC-3 Cell Viability. MA (A), ME (B), TA (C) and TE (D) were tested 
for their effect on PC-3 cell viability after 24h of treatmente using MTT assays. Significant differences between the 
untreated cells and those incubated with the respective extracts (10 and 20 mg/mL) were compared by one-way 
ANOVA, followed by Tukey’s post-test (* p < 0.05; ** p < 0.01,***p <0,001). Bar 100 μm.  
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Extract Phases Control 10mg/mL 20mg/mL
MA Viable cells (Annexin V- PI-) 99.08±0.35a 95.88±0.32b 82.53±2.97c

Early apoptotic (Annexin V+ PI-) 0.27±0.09a 1.28±0.65b 0.35±0.23a

Late apoptotic (Annexin V+ PI+) 1.10±0.15b 1.07±0.49b,c 11.96±4.39a,c

Non-apoptotic cells (Annexin V- PI+) 0.32±0.17a 0.90±0.42a 1.86±1.46a

ME Viable cells (Annexin V- PI-) 98.20±0.42a 95.40±0.56b 94.31±1.28b

Early apoptotic (Annexin V+ PI-) 0.21±0.04a 0.20±0.03a 0.20±0.06a

Late apoptotic (Annexin V+ PI+) 1.07±0.49c 3.64±0.45b,d 4.47±1.16a,d

Non-apoptotic cells (Annexin V- PI+) 0.52±0.13b 0.76±0.19b 0.99±0.19ª
TA Viable cells (Annexin V- PI-) 98.43±0.40a 96.06±1.00a 91.98±3.20b

Early apoptotic (Annexin V+ PI-) 0.10±0.04b 0.93±0.31a 0.64±0.34a

Late apoptotic (Annexin V+ PI+) 1.19±0.40b 2.61±0.71b 6,91±2,83a

Non-apoptotic cells (Annexin V- PI+) 0.35±0.16a 0.37±0.18a 0.51±0.15a

TE Viable cells (Annexin V- PI-) 98.40±0.57a 89.05±1.01a 85.98±6.10b

Early apoptotic (Annexin V+ PI-) 0.23±0.16b 2.68±1.50a 0.41±0.15b

Late apoptotic (Annexin V+ PI+) 1.01±0.64b 7.83±1.27a 12.56±5.62a

Non-apoptotic cells (Annexin V- PI+) 0.34±0.25a 0.43±0.21a 1.05±0.63a

Table 1. Effect of Murici (MA and ME) and Tapereba (TA and TE) Extracts on Different Stages of the PC-3 Cell Death 
Process for 24 h. PC-3 Cell Line was Treated with MA, ME, TA or TE for 24 h at 10 and 20 mg/mL. The results were 
espressed in percentages of viable, early apoptotic, late apoptotic, and non-apoptotic cells after treatment. Different 
letters (a,b,c) in the same row indicate statistically significant differences (p < 0.05).

progression. Cycle analysis revealed that MA (10mg/
mL) modulating cell cycle progression by promoting a 
reduction in the percentage of cells in the G0/G1 phase 
and an increase in the G2/M and S phases after the 24-hour 
incubation (Figure 2). During the incubation period with 
ME, an increase in the percentage of cells in the G0/G1 
phase and a reduction in the percentage of cells in the 
G2/M phase were observed in both concentrations (10 
and 20mg/mL) (Figure 3). 

As for the TA (Figure 4), different patterns of 
modification in the phases of the cell cycle were proven 
to be dependent on the treatment dose, where the highest 
concentration studied (20mg/mL) led to an increase in 
cells in the G0/G1 and G2/M phases, while the lowest 
concentration (10mg/mL) led to a reduction in the 
percentage of cells in the G0/G1 phase.

No significant changes in the cell cycle pattern could 
be observed (p<0.05) after treatment with TE, with the 
exception of the treatment with 20mg/mL of TE in the 
S phase, in which there was a significant increase when 
compared to the control group (p<0.05) (Figure 5).

Effect of murici and taperebá bioactive extracts on cell 
apoptosis rate

After incubation with MA, TA and ME (10mg/mL and 
20 mg/mL), a significant decrease (p<0.05) of viable cells 
in relation to untreated cells was observed. Furthermore, 
MA (20 mg/mL) and ME extracts demonstrated an 
increase on the percentage of cell on late apoptosis. MA 
extracts showed a significant advance on early apoptosis 
at the concentration at 10 mg/mL (p<0.05) in comparison 
on non-treated cells. In relation TA, there was a significant 
increase on early apoptosis at both concentrations. The 
proportion of non-apoptotic cells increased significantly 
(p<0.05) when ME was used in the highest concentration 

(20mg/mL). No change was observed in the percentage of 
non-apoptotic cells (p>0.05) when compared to untreated 
cells (control) after MA, TA and TE treatment (Table 1).

The relative increase rate of apoptosis in the PC-3 cells 
treated with murici and taperebá extracts at concentrations 
of 10mg/mL and 20mg/mL are illustrated in the graphs 
(Figure 6). TE (20mg/mL) had a profile of modification 
in apoptotic cells and decreased viable cells. A significant 
increase (p<0.05) was noticed in later apoptosis cells at 
both concentrations (10mg/mL and 20mg/mL) and an 
higher in early apoptosis cells at the concentration of 
10mg/mL when compared to the untreated cells (control).  
A growth in the rate of apoptotic cells was perceived in 
all extracts studied, with a maximum expansion of 10.25 
times in the rate of apoptotic cells for TE (20mg/mL).

Discussion

Murici and taperebá are exotic Amazonian fruits with 
high nutritional value, and present an elevated source 
of antioxidant activity. Murici is great a source of iron 
and vitamin C, also being rich in vitamin A and E [14]. 
Furthermore, Murici is an excelent source of antioxidants, 
with high amounts of phenolic compounds (159.9 mg 
gallic acid equivalent (GAE)/100g) [15].

The composition of taperebá reveals that lutein is 
present in higher amounts than zeaxanthins, in addition 
to containing cryptoxanthin β and α, β carotene [16]. De  
Souza et al. [17] found six carotenoids in the pulps of 
murici and taperebá: β-cryptoxanthin, lutein, zeinoxanthin, 
α- and β-carotene; and zeaxanthin. β-cryptoxanthin (89.81 
± 4.58 µg/g) and lutein (23.39 ± 1.41 µg/g) were the 
major components among the carotenoids identified in 
taperabá and murici, respectively. The nutritional and 
physicochemical composition of murici and taperebá was 
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Figure 2. MA inhibit PC-3 cell cycle progression. PC-3 cells were tested for cell cycle progression in response to 24 h 
treatment with MA extracts. Flow cytometric analysis results are shown after treatment for 24 h with control (A), 10 
mg/mL (B) and 20mg/mL (C) and bar graphs represent the percentage of PC-3 cells (D) in each cell cycle phase. The 
results are expressed as % of cells in G0/G1, S, and G2/M phases after cell treatment with CT, 10mg/m L and 20mg/
mL. Significant differences between the untreated cells and those incubated with the respective extracts (10 and 20 
mg/mL) were compared by one-way ANOVA, followed by Tukey’s post-test (* p < 0.05). Bar 100 μm. 

Figure 3. ME Inhibit PC-3 Cell Cycle Progression. PC-3 Cells were Tested for Cell Cycle Progression in Response 
to 24 h Treatment with ME Extracts. Flow cytometric analysis results are shown after treatment for 24 h with control 
(A), 10 mg/mL (B) and 20mg/mL (C) and bar graphs represent the percentage of PC-3 cells (D) in each cell cycle 
phase. The results are expressed as % of cells in G0/G1, S, and G2/M phases after cell treatment with CT, 10mg/m 
L and 20mg/mL. Significant differences between the untreated cells and those incubated with the respective extracts 
(10 and 20 mg/mL) were compared by one-way ANOVA, followed by Tukey’s post-test (* p < 0.05). Bar 100 μm.
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Figure 4. TA Inhibit PC-3 Cell Cycle Progression. PC-3 Cells were Tested for Cell Cycle Progression in Response to 
24 h Treatment with TA Extracts. Flow cytometric analysis results are shown after treatment for 24 h at control (A), 10 
mg/mL (B) and 20mg/mL (C) and bar graphs represent the percentage of PC-3 cells (D) in each cell cycle phase. The 
results are expressed as % of cells in G0/G1, S, and G2/M phases after cell treatment with CT, 10mg/m L and 20mg/
mL. Significant differences between the untreated cells and those incubated with the respective extracts (10 and 20 
mg/mL) were compared by one-way ANOVA, followed by Tukey’s post-test (* p < 0.05). Bar 100 μm.

Murici (*) Taperebá (**)
Moisture (g/100g) 76.18 86.87
Protein (g/100g) 1.33 0.71
Ask (g/100g) 0.81 0.58
Carbohydrate (g/100g) 12.98 13.90
Fat (g/100g) 4.27 0.44
Fiber (g/100g) 9.43 1.38
Sodium (g/100g) 45.43 4.28
Potassium (g/100g) 346.73 214.14
Calcium (g/100g) 83.38 20.88
Magnesium (g/100g) 43.70 13.55
Manganese (g/100 g) 0.08 0.02
Phosphorus (g/100g) 7.69 26.40
Zinc (g/100g) 0.37 0.17
Copper (g/100g) 0.09 0.07
Iron (g/100g) 1.00 0.76
Selenium (g/100g) 2.36 -
Cobalt (g/100g) 27.24 -
Nickel (g/100g) 26.41 -
Soluble solids (º Brix) 8.89 12.24
pH 3.93 2.91
Total sugar (g/100g) - 5.07
Total Soluble (g/100g) - -
Acidity (%) 0.47 1.68
Reducing sugars (g/100g) 2.97 4.80

Table 2. Nutritional and Physicochemical Composition 
of Murici and Taperebá

demonstrated in Table 2.
The bioactive compounds and antioxidative capacity 

of murici and taperebá fruits show the potential of their 
use in chemoprevention. The study of extracts from 
these fruits in cell lines is promising for evaluating the 
chemopreventive action, as growing evidence suggests 
that protective responses against cancer are not exclusively 
associated with a single factor, but with the presence of 
multiple factors acting synergistically [18, 19].

De Souza et al. [17] studied the effect of TA on human 
ovarian carcinoma cell lines (A2780 and ACRP). The 
concentration of 20 mg/mL promoted a significant decrease 
in cell viability of A2780 (69.40%) and ACRP (65.54%) 
lineages. Malta et al. [20] evaluated the antiproliferative 
activity of the extract (acetonic/methanolic) from Murici 
fruit on the growth of human liver cancer cells HepG2 
and showed that during 72 hours with doses of 25.0 to 
95.0 mg/mL, an amount higher than used in the present 
study. These results demonstrated that, murici and taperebá 
has different effects in inhibition of different cells lines 
viability, based in a concentration-dependent manner.

To explore the mechanism of action of murici and 
taperebá extracts to decrease cell viability, cell cycle 
assay was performed using flow cytometry. The transition 
from G1 to S, G2 to M phases are cell cycle checkpoints 
that function as surveillance mechanisms, wich can 
influence cell cycle arrest to prevent the defective DNA 
from replicating and buy some time for the DNA to be 
repaired [21].

Rafi et al. [22] showed that lutein, a carotenoid 
presents in murici and taperebá, altered the expression of 
biomarker genes associated with growth and apoptosis 
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Figure 5. TE Inhibit PC-3 Cell Cycle Progression. PC-3 Cells were Tested for Cell Cycle Progression in Rsponse to 24 
h Treatment with TE Extracts. Flow cytometric analysis results are shown after treatment for 24 h at control (A), 10 
mg/mL (B) and 20mg/mL (C) and bar graphs represent the percentage of PC-3 cells (D) in each cell cycle phase. The 
results are expressed as % of cells in G0/G1, S, and G2/M phases after cell treatment. Significant differences between 
the untreated cells and those incubated with the respective extracts (10 and 20 mg/mL) were compared by one-way 
ANOVA, followed by Tukey’s post-test (* p < 0.05). Bar 100 μm  

Figure 6. Effect of Murici (MA and ME) and Tapereba (TA and TE) Extracts on Apoptotic Rates in PC-3 Cell Line. 
Flow cytometric analysis results are shown after treatment for 24h with untreated cell (A) and MA, ME, TA or TE at 
10mg/mL (B) and 20 mg/mL (C). Relative rate of PC-3 apoptosis treated after 24h with MA, ME, TA or TE at 10mg/
mL and 20 mg/mL are shown in the graphs (D). Significant differences between the untreated cells and those incubated 
with the respective extracts (10 and 20 mg/mL) in relative rate were compared by one-way ANOVA, followed by 
Tukey’s post-test (* p < 0.05).
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in cells PC-3. Furthermore, analysis by flow cytometry 
showed that lutein improved drug-induced cell cycle 
arrest and also the induction of apoptosis in prostate 
cancer, confirming the potential for use in conjunction 
with chemotherapeutic agents capable of enhancing the 
death in prostate carcinoma cells PC-3.

The apoptotic death of cancer cells is considered a 
potential anticancer mechanism, which can control their 
proliferation [23]. Our apoptosis assays demonstrated an 
increase in the apoptosis rate in all extracts and these data 
reinforce the previously described cell viability results. 
De Souza et al. [17] tested aqueous extract of murici and 
taperebá in the A2780 parental cell line and showed an 
increase of apoptotic cells compared to untreated cells. 
Evidences reveals that carotenoids induce apoptosis in 
human cancer cells by regulating intrinsic pathways, 
such as Bcl-2 e and Bcl-xL family proteins by activating 
caspases and disrupting mitochondrial functions [24, 25].

This study demonstrated that the bioactive extracts of 
murici and taperebá were able to promote inhibition of cell 
growth, specific changes in the cell cycle and increase in 
the rate of apoptosis of human prostate adenocarcinoma 
(PC-3) cells. Further investigations are needed to identify 
the mechanisms of antiproliferative activity, the apoptosis 
induction pathways and changes in cell cycle patterns 
observed in the current study.
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