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Introduction

According to the International Cancer Society’s 
2018 statistics report, gastric cancer remains the fifth 
most commonly diagnosed cancer in hospitals globally 
and the third leading cause of cancer-related deaths as 
of 2020. Gastric cancer (GC) arises from a confluence 
of genetic and environmental factors, such as a familial 
predisposition, unhealthy dietary habits, frequent alcohol 
consumption, smoking, Helicobacter pylori infection, and 
Epstein-Barr virus (EBV) exposure [1, 2]. At present, 
the main tumor markers utilized within the clinic for 
early detection of GC are not very accurate, so they 
cannot be used to definitively prognostic and diagnose 
gastric cancer [3]. Therefore, it is very important to find 
accurate biomarkers for CG early detection, since most 
people don’t have any symptoms until it is already at an 
advanced stage [4]. The SLC16 family, part of the solute 
carrier (SLC) group, consists of transporters that shuttle 
monocarboxylates (MCTs), spanning from SLC16A1 
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to SLC16A14 (Halestrap and Denton 1974). Specific 
members, such as MCT1 and MCT4, facilitate the transport 
of L-lactate crucial for the metabolic processes of cancer 
cells, with expression levels varying across different tumor 
types and stages (Ganapathy et al. 2009; Bosshart et al. 
2021). Overexpression of the metastasis-associated colon 
cancer-1 transcription factor in gastric cancer cells leads to 
an increase in MCT1 protein levels (Wang et al. 2017a). 
MCTs 1–4 play a pivotal role in regulating intracellular pH 
levels by transporting substances like lactate (Halestrap 
2013). These transporters are known to be upregulated in 
various cancers, including breast, bone, colon, bladder, 
prostate, and renal cancers, correlating with poorer clinical 
outcomes [5].

RNA interference (RNAi) is a sequence-specific, 
post-transcriptional gene silencing mechanism that 
results in the degradation of homologous mRNAs. This 
powerful technology enables the study of gene function 
and expression through the use of short interfering 
RNAs (siRNAs), targeting genes with high specificity 
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and efficiency (Zarredar et al. 2018; Kamran et al. 2021). 
Given the unclear role of different SLC16A family 
members in human cancers, our study aims to investigate 
the effects of suppressing SLC16A13 on the stability of 
gastric cancer cells.

Materials and Methods

Cell Culture and Transfection Human gastric cancer 
cells (KATO2) were acquired from the Pasteur Institute 
in Tehran, Iran. These cells were cultured in Roswell 
Park Memorial Institute-1640 medium (Gibco, cat no. 
51800035) enriched with 10% fetal bovine serum (FBS) 
(Gibco, CA, cat no. 42G4184K). For transfection, we used 
1×106 KATO2 cells and the electroporation method in a 5% 
CO2 incubator. Transfection was performed using a Bio-
Rad Gene Pulser Xcell. The transfection mixture consisted 
of HEPES, NaCl, KCl, and Na2HPO4.7H2O in specified 
proportions. An electric pulse of 140V (exponential) for 
20 ms was applied to introduce 1µg of shRNA into the 
cells within a cuvette. Six hours post-transfection, the cells 
were supplemented with RPMI medium containing 20% 
FBS and incubated for an additional 48 hours. Subsequent 
assays included MTT, western blot, quantitative Real-
Time PCR, and Annexin-V/PI.

Cell Viability Assay (MTT) Cell viability was assessed 
using the MTT assay. Post-transfection, KATO2 cells were 
seeded in 96-well plates. After 48 hours of incubation, 
MTT solution (Sigma-Aldrich, St. Louis, Missouri, cat 
no. M8180) dissolved in phosphate-buffered saline was 
added to each well (50 µL per well containing 100 mL 
of RPMI). The plates were incubated in a CO2 incubator 
for 4 hours, followed by the addition of 100µL Dimethyl 
Sulfoxide (DMSO). The mixture was agitated at 1,000 
RPM before cell viability was measured using an ELISA 
reader at 570 nm (Biotek, ELx800, US).

Scratch-Wound Motility Assay The migration ability 
of KATO2 cells was evaluated using a scratch assay. 
Cells were seeded at 4×105 cells/well in a 6-well plate and 
allowed to adhere for 24 hours. A scratch was made using 
a yellow pipette tip, followed by a wash with PBS. The 
cells were imaged immediately using a light microscope 
and then incubated at 37°C with 5% CO2. Further images 
were taken at 24 and 48 hours to assess migration into the 
wound area. This assay was replicated three times.

Annexin V-FITC/PI Assay Apoptosis was quantified 
using the Annexin V-FITC/PI Apoptosis Detection Kit 
(Immunostep, Salamanca, Spain, lot no. 665580). Cells 
were treated with effective concentrations of therapeutics, 
harvested according to the manufacturer’s instructions, 
washed in cold PBS, and stained with Annexin V and PI. 
Following a 15-minute incubation, cells were analyzed 
on a BD FACSCalibur flow cytometer, with FlowJo-V10 
software used to determine the percentage of apoptotic 
cells.

Total RNA Isolation and Reverse Transcription 

Total RNA was extracted from transfected cells using 
RiboEx reagent (Gene All, Korea, cat no. 300-001). RNA 
quality and quantity were verified using a NanoDrop 
spectrophotometer and gel electrophoresis. cDNA 
synthesis was conducted using the BioFact™ RT-Kit (cat 
no. BR123-R10k) in a 20 µl reaction volume according 
to the manufacturer’s protocol (Table 1).

Quantitative Real-Time PCR The expression levels of 
SLC16A13 and related genes (BAX, BCL2, CASPASE-3, 
CASPASE-9, E-CADHERIN) were quantified using 
the RealQ plus Master Mix Green (Amplicon, cat no. 
A324499) on a StepOneTM qRT-PCR System (Applied 
Biosystem, California, USA). The housekeeping gene 
GAPDH was used as a reference. Primer sequences and 
specific conditions are detailed in Table 2.

Protein Extraction and Western Blot Analysis Protein 
samples were extracted using RIPA buffer (Santa Cruz 
Biotech, USA, cat no. sc-24948) and quantified. Proteins 
(100 µg) were separated on a 12.5% SDS-PAGE gel and 
transferred onto PVDF membranes. The membranes were 
blocked with 3% bovine serum albumin and incubated with 
primary antibodies against SLC16A13 (IU2H10, Novus 
Biologicals) and β-actin (ab8227, Abcam). Detection was 
performed using an HRP-conjugated secondary antibody 
and visualized with enhanced chemiluminescence (Roche 
Diagnostics GmbH, Germany).

Statistical Analysis Data were analyzed using 
GraphPad Prism (Version 6.0, San Diego, CA). Statistical 
significance among groups was determined using two-
way ANOVA with Tukey’s multiple comparisons test, 
considering P < 0.05 as significant.

Results

SLC16A13 Expression Downregulated After siRNA 
Transfection in KATO2 Cell Line Figure 1 illustrates the 
initial high expression level of SLC16A13 in the KATO2 
cell line (P < 0.001). Post-transfection with SLC16A13 
siRNA, a significant reduction in expression was observed 
at 48 hours (P < 0.0001), identified as the optimal time 
point (Figure 1A). This reduction was corroborated by 
western blot analysis (Figure 1B). Hence, the 48-hour 
mark was selected as the most effective time for siRNA 
intervention.

Impact of SLC16A13 Downregulation on KATO2 Cell 
Migration The influence of SLC16A13 downregulation on 
cell migration was evaluated using a wound-healing assay. 
The results indicated that decreased SLC16A13 expression 
does not significantly alter the migratory capability of 
KATO2 cells (Figure 2).

Decrease in Cell Viability Due to SLC16A13 
Downregulation MTT assays revealed that suppression 
of SLC16A13 expression significantly reduced KATO2 
cell viability at various intervals-24, 48, and 72 hours-with 
P-values of <0.01, <0.0001, and <0.0001, respectively 
(Figure 3). This suggests a consistent detrimental effect 

SLC16A13 si-RNA GGACC TTGTA ACAGA AGCAT  TCAAG AGATG CTTCT GTTAC AAGGT CCTTT TTT
CCTGG AACAT TGTCT TCGTA AGTTC TCTAC GAAGA CAATG TTCCA GGAAA AAA 

Table 1. Sequence of SLC16A13 siRNA 
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Figure 1. SLC16A13 mRNA and Protein Level Following the siRNA Knockdown. (A) qPCR and western blot analysis 
of SLC16A13 expression levels following the treatment of KATO2 cells with SLC16A13 si-RNA. 24h, 48h and 72h   
after transfection, mRNA expressions of transfected and control cells were evaluated. Transfection of KATO2 cells 
with SLC16A13 siRNA, but not control scrambled shRNA, remarkably attenuated SLC16A13 expression. Data are 
shown as mean SEM of triplicate experiments. (B) The control and transfected cells subjected to western blot analysis 
at 48h after transfection. Results are demonstrative of the decrease in transfected cell in after si-RNA transfection, 
as compared to the protein level in negative control group (scrambled siRNA). Anti- β-actin antibody was served as 
internal control.   

Genes Sequences Annealing temp (°C)
SLC16A13 Forward: 5' CCCAAACTCAGTTCCACCCTC 3' 60

Reverse: 5' GAGCTCGGAGCTGAGCTAGT 3'
GAPDH Forward: 5' AAGGTGAAGGTCGGAGTCAAC 3' 60

Reverse: 5' GGGGTCATTGATGGCAACAA 3'
BAX Forward: 5' GACTCCCCCCGAGAGGTCTT 3' 59

Reverse: 5' ACAGGGCCTTGAGCACCAGTT 3'
BCL2 Forward: 5' GAGCGTCAACCGGGAGATGTC 3' 59

Reverse: 5' TGCCGGTTCAGGTACTCAGTC 3'
Caspase-3 Forward: 5' ATGGTTTGAGCCTGAGCAGA 3' 59

Reverse: 5' GGCAGCATCATCCACACATAC 3'
Caspase-9 Forward: 5' GCAGGCTCTGGATCTCGGC 3' 59

Reverse: 5' GCTGCTTGCCTGTTAGTTCGC 3'
E-cadherian Forward: 5'AAG AAG CTG GCT GAC ATG TAC GGA3' 59

Reverse: 5'CCA CCA GCA ACG TGA TTT CTG CAT3'

Table 2. Sequence of Genes

on cell survival post-transfection across all time points.
Increased Apoptosis in KATO2 Cells Following 

SLC16A13 Downregulation Flow cytometry analysis 
demonstrated a significant increase in apoptosis in KATO2 
cells, especially 48 and 72 hours post-transfection with 
SLC16A13 siRNA (Figure 4). This indicates a crucial role 
of SLC16A13 in cell apoptosis regulation.

Modulation of Apoptosis-Related Genes by SLC16A13 
Downregulation 

Quantitative Real-Time PCR results, 48 hours 
post-transfection, showed significant alterations in 
apoptosis-related genes. CASPASE-3 and BAX expression 
levels increased (P<0.001 and P<0.01, respectively), while 
BCL-2 expression decreased (P<0.001). However, changes 
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Figure 2. In order to Determine the SLC16A13 Effect on Cell Migration of KATO-2 Cells, the Wound Healing Assay 
was Performed. Observing the KATO2 cells in wound area for 24, 48 and 72 hours exhibited that silencing SLC16A13 
has no effect on migration ability of KATO2 cells. 

Figure 3. Knockdown of SLC16A13 Suppress Cell 
Proliferation of KATO2 Cell Line. Cell viability was 
evaluated by MTT 24h, 48 h and 72h after transfection 
of anti SLC16A13 si-RNA. As shown, compared to 
control and blank wells, si-RNA transfection reduces the 
viability of malignant cells. 

Figure 4. Silencing Effect of SLC16A13 Gene Regulate 
the BAX, BCL-2, Caspase-3, Caspase-9 and E-Cadherin 
expression levels. The qRT-PCR analysis of these 
genes mRNA expression was measured in KATO2 
cells transfected with SLC16A13 si-RNA. Following 
SLC16A13 silencing, the mRNA level of BAX, 
Caspase-3 significantly increased however we observed 
significant reduction on BCL-2 levels. The SLC16A13 
reduction has no effects on mRNA levels of Caspase-9 
and E-Cadherian.

Figure 5. (A) SLC16A13 Knockdown increase the apoptosis level of KATO2 cells 48h and 72h after the transfection 
but has no effects on 24h. (B) Demonstration of the SLC16A13 Knockdown on KATO2 cells viability using Anexin_
PI test 48h after si-RNA transfection. 
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prognosis in HCC patients and helps reduce resistance 
to sorafenib and improve drug response [15]. Schumann 
et al. indicated that SLC16A13 and SLC2A1 expression 
levels were higher in lung cancer tissues which led to 
worse outcomes for patients, suggesting that they could 
be used for prognosis [16]. 

Zhu et al. found that SLC15A2 low expression was 
related to a worse outlook for lung cancer patients [17]. 

Xie et al. found that the SLC16A1 expression level was 
higher in metastatic melanoma and it is a poor prognosis 
biomarker for melanoma patients [18]. Sohrabi et al. 
revealed that SLC16A2 and SLC16A9 expression levels 
are important in breast cancer and are related to bad 
outcomes for breast cancer patients [19]. SLC16A3 is a 
protein strongly related to low oxygen levels in the body. 
Research has found that HIF-1 can increase the activity 
of the SLC16A3 gene, which can lead to increased growth 
and progression of colon cancer [20].

Pervious research indicated that  SLC16A7 
up-regulation is related to prostate cancer progression 
[21]. Additionally, research has found that Mei et al. 
showed that SLC16A12 downregulation in renal clear cell 
carcinoma is correlated to a negative outcome and poor 
prognosis [22]. One of the important limitations of this 
study is that it would be better if we used several different 
Gastric cancers to evaluate the role of the SLC16A13 gene 
in other cell lines. Also, it we must evaluate SLC16A13 
gene in vivo. In final, the SLC16 Members family 
especially SLC16A13 have potent biomarkers in tumor 
prognosis in many types of cancer. Also, SLC16 family 
members are concerned with tumor stem cells that make 
available new concepts for future cancer therapy. 
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