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Introduction

Breast cancer is a lethal difficult-to-treat type of cancer 
due to its high recurrent rate and risk of metastasis, as well 
as developing chemoresistance [1-3]. Therefore, there is 
pressing need for effective treatment that can overcome 
the resistance to treatment and attacking cancer cells by 
multiple therapeutic agents found to be better strategy 
by utilizing different mechanism for cancer cell death 
[4, 5]. Photodynamic therapy (PDT) is an emerging 
non-invasive treatment modality for superficial cancer 
that consists of two simple steps: the administration 
of a photosensitive agent (photosensitizer) PS, and the 
illumination of the tumor to photoactivate the PS drug 
[6, 7]. PSs are non-toxic inert materials that accumulate 
in host and tumor cells. The light activation of an applied 
PS generates a photodynamic reaction in the presence of 
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oxygen. Depending on the formation of reactive oxygen 
species, this reaction leads to cytotoxic and vasculotoxic 
shutdown rapidly, which is demonstrated to be highly 
effective a tumor-ablative therapy [8, 9]. Light dosimetry, 
oxygen availability and the characteristics of PS are 
considered as interfering factors that interfere with the 
effectiveness of PDT [10]. Aminolaevulinic acid (ALA) 
is a naturally occurring intermediate in the heme-synthesis 
pathway. It is normally synthesized in mitochondria via the 
reaction that is catalyzed by ALA synthase [11, 12]. Cells 
with elevated metabolic effectiveness, such as tumors, 
preferentially uptake ALA. Rather than the formation of 
heme, the conversion of ALA in these cells leads to the 
accumulation of protoporphyrin IX (PPIX) because the 
absence of ferrochelatase, the enzyme that converts PPIX 
into heme [13, 14]. Thus, non-photosensitive 5-ALA 
is metabolized into sensitive protoporphyrin IX which 
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accumulates in cancer cells due to their ferrochelatase 
deficiency. On the other side, a nuclear transcription 
factor-kappa B (NF-κB) is involved in many cellular 
processes such as cell proliferation, differentiation, 
angiogenesis, metastasis and apoptosis [15] [16]. NF-
κB is known to regulate the diverse genes of cytokines, 
growth factors, cell adhesion molecules, and pro and 
antiapoptotic proteins [17]. NF-κB molecules present in 
the cytoplasm as homodimer or heterodimer complexed 
with an inhibitory protein, IκB. After the pathway 
stimulation, the signaling cascade leads to activation of 
the IκB kinase (IKK), which phosphorylates IκB. By 
proteasome degradation, IκB dissociates from the NF-κB 
dimer and then moves into the nucleus, and stimulates 
the production of specific proteins [18]. Many reports 
have highlighted the activation of the NF-κB following 
PDT treatment and suggested that NF-κB play a crucial 
role to increase proliferation of cells via the transcription 
of anti-apoptotic proteins [19, 20]. DMF is a drug that 
is clinically used to treat relapsing-remitting multiple 
sclerosis or as a systemic medication for moderate to 
severe psoriasis [21]. It is believed that the mechanism of 
action of DMF consists of two pathways, nuclear factor 
erythroid-derived 2-related factor (Nrf2)-dependent and 
independent pathways. This leads to an immune response 
(anti-inflammatory) caused by type II myeloid cell and 
Th2 cell differentiation that leads to neuroprotection [22, 
23]. A number of molecular or immunological factors have 
been investigated to explore their potency to sensitize 
breast cancer cells [24-27] alongside other cancers [28, 
29] for therapeutic agents. Many researchers indicated the 
ability of DMF to inhibit NF-κB in many types of cancers 
and tumors [30, 31]. The current work aims to explore the 
combination of PDT and DMF for NF-kB inhibition as 
a novel strategy against triple negative breast cancer, as 
both treatments are already clinically approved therapies 
in human patients.

Materials and Methods

Chemicals
The photosensitizing agent, aminolaevulinic acid 

(ALA), and precursors were purchased from Santa Cruz 
Biotechnology (Texas, USA). As a solvent, phosphate 
buffer saline was used to dissolve ALA in a dark room. 
NaOH (5M) was used to adjust the pH to 7.0. Sixty mM 
of ALA was prepared as a stock solution and kept at -20 
° C prior to use. DMF Pharmaceuticals (Almirall, S.A.) 
was purchased from the market pharmacy. This agent was 
diluted with a phosphate buffer saline just before use for 
in vitro studies.

Cell culture 
The Iraqi breast cancer cell line AMJ13 was obtained 

from the Iraqi Center for Cancer and Medical Genetics 
Research (ICCMGR), Mustansiriyah University, Baghdad, 
Iraq. Cells were maintained in RPMI-1640 medium 
containing sodium bicarbonate (2.0 g/L) and L-glutamine 
(0.3 g/L) and supplemented with 10% fetal bovine 
serum (FBS) and 25 mM HEPES, 100 U/ml penicillin, 
100 μg/ml streptomycin. All materials were supplied by 

Capricorn Scientific, Germany. The cells were grown to 
reach near 60-70 confluence, they were passaged using 
Trypsin-EDTA (US Biological, Salem, MA, USA). After 
that, they were incubated in a 5 % CO2 incubator at 37˚C 
[32].

Exposure of the cells to laser
Twenty-four hours after cells seeding in 96 wells 

microplate, 100 µl of 1 or 2 mM of ALA were added to 
the wells and incubated for 4 h at 37°C and then, fresh 
SFM was used instead of the old media after washing the 
cells with physiologic saline. After that, we employed 
a low power Helium-Neon (He-Ne) atomic gas laser 
(Model DL30, LG Lasers, USA) at wavelength of 632.8 
nm with output power of 20 mW for the proposed energy 
doses provided as continuous wave mode application. In 
terms of control cells, neither irradiation nor ALA was 
used, instead they were incubated with fresh media. The 
low-power helium-neon atomic laser lamp was used for 
irradiation in this study. The laser light was oriented from 
the top of the plate to ensure uniform delivery to each well. 
To calibrate the laser density, a power meter was used. 
We adjusted the exposure time to obtain a laser energy 
density of 16.2 or 10.8 J/cm2. Fresh media was added to 
irradiated wells and cells were incubated for 24 h at 37°C. 
Subsequently, dimethyl fumarate, at concentrations of 2.5, 
1.25, or 0.652 µg/ml was added and then the cells were 
incubated at 37°C for 72 hours. To detect the inhibition 
ratio, an MTT assay was used to determine the cell 
viability. For the MTT assay, the cells in 96 well plates 
were incubated with 20 μl of 5X MTT and incubated for 3 
h. at 37oC. After that, 200 μl of Dimethyl sulfoxide DMSO 
was added to the cells. The plate was shaken slowly for 15 
min and the absorbance was measured with a microplate 
reader (FLUOstar, Optima, Germany) at 492 nm. The 
measured values represent the mean of the absorbance 
values. The cell inhibitory rate was calculated according 
to the formula: 

Cell inhibitive rate (%) = [OD of control cells - OD of 
treated cells)/OD of control cells] x100% [33]. 

By plotting x-y and fitting the data with a straight line, 
IC50 was measured. The IC50 value was then estimated 
using the fitted line, that is, Y = a * X + b, IC50 = (0.5 - b)/a

Or by Y=Bottom + (Top-Bottom)/(1+10^((X-LogIC50))

Laser irradiation dose measurements
In this study, the He-Ne laser doses (energy density) 

applied were 16.2 J/ cm2 or 10.8 J/cm2 according to the 
formula (D (Dose in J/cm2) = P (Power output in watts) 
× T (irradiation time in sec) /A (area of irradiation spot in 
cm2)), where the respective laser exposure times were 68 
sec and 102 sec on the irradiation spot of 4mm diameter.

To calculate the photodynamic dose, we used the 
formula: 

Photodynamic dose = ∫ t ε . φ (t ‘) ρ. 0 h ν
where:
- ‘ρ’ is the density of cells (g/cm3)
- ‘φ’ is the laser output power (W/cm2)
- ‘hν’ is the energy of a photon (J/ph)
- ‘c’ is the drug concentration in cells (μM)
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ANOVA Tukey’s multiple comparisons test analysis was 
performed using GraphPad Prism version 6, version 6.07 
(USA). The level of significance was set at P < 0.05.

Results

PDT killing effect
In this study, different concentrations of ALA (1 and 2 

mM) with different laser doses (16.2 and 10.8 J/cm2) were 
used. Cytotoxicity (MTT) was used to evaluate the effect 
on the AMJ13 cell line. The results showed that increasing 
the concentrations of ALA with laser doses caused a mild 
increase in cytotoxicity. Therefore, the cytotoxicity of 
6,172 followed by 5,092 ph/gm was 26.9 and 25.6 % with 
a highly significant difference compared to the control 
(cell without PDT) as shown in Figure 1. 

Chemotherapeutic agent cytotoxicity 
Three concentrations of dimethyl fumarate (2.5, 1.25 

or 0.652 µg/ml) were used in this experiment. All these 
three concentrations showed cytotoxicity against AMJ13 
(52.4, 46, 43.9 %) respectively. The highest concentration 
(2.5 µg/ml) reflects the highest cytotoxicity among them, 

- ‘ε’ is the extinction coefficient of the photosensitizer 
drug (1/cm/μM) [34, 35]

For example, when we used 1mM ALA with 
10.8 J/cm2, the photodynamic dose was 2160 photons/gm. 

According to the equations, and as we used two 
concentrations of ALA, 2 or 1 mM, with two laser doses 
(16.2 or 10.8 J/cm2), the photodynamic doses used were 
6,172.8, 5,092, 3,164.2 or 2,160 ph/gm respectively. 

Combination index and Chou–Talalay Analysis
To analyze the combination of NF-κB inhibitor DMF 

with PDT (ALA/Laser), this relationship was studied as a 
non-constant ratio to detect the synergistic effect. Chou–
Talalay combination indices (CI) for this combination 
were determined by CompuSyn software (Combo Syn, 
Inc., Paramus, NJ, USA). Nonfixed ratios of DMF and 
phototherapy, as well as mutually exclusive equations, 
were used to determine the Cis. A CI between 0.9 and 
1.1 is considered additive, while CI < 0.9 and CI > 1.1 
indicate synergism and antagonism, respectively [36, 37].

Statistical analysis 
All results were presented as means ± SEM. One way 
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Figure 2. The Cytotoxicity % of Dimethyl Fumarate against the AMJ13 Cell Line (p ≤ 0.01). 

Figure 1. The Percentage of Cytotoxicity of Photodynamic Therapy against the AMJ13 Cancer Cell Line (p ≤ 0.01). 
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Figure 3. a, IC50 of NF-κB inhibitor DMF; b, IC50 of phototherapy (ALA / Laser) using GraphPad Prism software. 
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Figure 4. Cytotoxicity Percentage (mean ± SD) of Three Concentrations of NF-κB Inhibitor a; 2.5, b; 1.25, c; 0.652 
µg/ml combined with 4 doses of phototherapy (6172.8, 5092, 3164.2 or 2160 ph/gm) respectively (p ≤ 0.01). 

52.4 % (PR=47.6 %) as shown in Figure 2. The difference 
in optical density is shown in Figure 2. 

Determination of IC50
The value of the half-maximum inhibitory concentration 

(IC50) was estimated to evaluate the effect of each 
treatment of photodynamic therapy or NF-κB inhibitor 
on cell proliferation. The results showed that 50 µg/ml 
was needed to kill the AMJ13 cell line, while the PDT 
dose needed to kill AMJ13 was 5,106 ph/gm. Therefore, 
IC50-related doses of PDT and DMF were chosen for the 
combination study (Figure 3 a and b).

Combination NF-κB inhibitor and phototherapy in vitro
Nearly similar cytotoxicity was achieved at 2.5 and 

1.25 µg/ml of DMF when combined with 3,164 ph / g 
of PDT. Greater cytotoxicity of 58.9 and 46.9 (nearly 
two folds) were achieved for the synergism of DMF and 
phototherapy at 2.5 µg/ml followed by 1.25 µg/ml at 
6,172 and 5,092 ph/gm respectively. Whereas PDT alone 
had 26.9 and 25.6 % (PR= 73.1 and 74.4) respectively as 
shown in Figure 4 a, b, c.

Using the dose-oriented isobologram technique, the 
AMJ13 cancer cell line had synergism between DMF and 
phototherapy at 50% growth inhibition doses, as shown 
in (Figure 5a), which explains the synergism effect at 
combination points 1(CI: 0.54331), 5 (CI: 0.55110) and 9 
(CI: 0.58281) (Figure 5a). The details of the combination 
point dose are described in Figure 5b. 

Discussion

This study focused on developing novel approaches 
to treat hormone-unresponsive breast cancer derived 
from an Iraqi patient. Breast cancer is a complex disease 
that develops chemoresistance to conventional therapies, 
making it difficult to treat. This complexity manifested 
by the presence of imbalances in many elements may 
contribute to its development and progression [38]. There 
is need for precise diagnostic tools to guide treatment 
decisions [39]. Novel breast cancer treatment can help 
overcome resistance to therapy by inducing apoptosis in 
cancer cells [40, 41]. Developing new treatments, such 
as biological therapies, is important to overcome the 
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Points DMF Dose µm/ml PDT dose (ph/g) Effect CI
1 2.5 6172 0.58 0.54331
2 2.5 5092 0.46 2.5458
3 2.5 3164 0.43 3.77405
4 2.5 2160 0.37 9.23516
5 1.25 6172 0.54 0.5511
6 1.25 5092 0.47 1.23175
7 1.25 3164 0.43 1.9836
8 1.25 2160 0.32 10.5297
9 0.652 6172 0.5 0.58281
10 0.652 5092 0.43 1.24475
11 0.652 3164 0.41 1.4824
12 0.652 2160 0.3 7.86764

Figure 5. Combination Cytotoxicity (AMJ13 Cell Line). According to Isobologram analysis, generally high doses 
(CI value < 1) represent synergism between DMF and phototherapy, lower doses (CI value > 1) represent antagonism 
between the agents. The points that are extremely antagonized will not be able to be included as their value is above 
2 and will not show in this figure. 

(a)

(b)

complexity of breast cancer [42, 43]. Very recent studies 
have focused on the gene expression signature to sensitized 
breast cancer cells to particular chemotherapeutic agents 
such as Hesperetin [44]. However, more research is needed 
to fully understand and overcome the challenges in treating 
this complex disease. Therefore, we choose to combine 
two FDA-approved treatments against breast cancer, both 
targeting biological processes inside the cancer cells. 
Many studies have shown that photodynamic therapy 
(PDT) may be an excellent alternative in the treatment of 
different kinds of cancer, including breast cancer. When 
PS is triggered, acute reactions lead to the activation of 
cytokines and proteins that react to phosphorylation. 
Therefore, the ability of these proteins to bind to other 
proteins will be changed. In addition to many cellular 
responses in mitochondria. These changes lead to the 
stimulation of apoptosis and, in certain circumstances, 
to necrosis [45]. 

This work was carried out to explore whether PDT 
can be enhanced by combination with an inhibitor 
of the NF-κB pathway. However, the mechanism of 
synergistic activity is not clear, and oxidation of a wide 
range of biomolecules in cells occurs due to PDT. These 

molecules include nucleic acids, lipids, and proteins, 
leading to severe alteration in cell signaling cascades or 
gene expression regulation [46, 47]. The cycloxygenase-2 
(COX-2) enzyme plays a crucial role in the conversion of 
arachidonic acid to prostaglandin G2 [48]. It was shown 
that PDT induces proangiogenic factors released in vitro 
and in vivo and promotes the expression of the inducible 
cyclooxygenase-2 (COX-2) enzyme which depends on 
the activation of NF-κB pathway in different mechanisms 
among different cell types [49, 50]. However, using 
NF-κB inhibitor might reduce COX-2 enzyme leading 
to support PDT effectiveness. Matrix Metalloproteinase 
(MMP) are proteins that digest extracellular matrix which 
contains collagens, fibronectin, and elastin [51]. They were 
shown to be involved in the progression of breast cancer 
[52]. To establish a relationship between PDT and MMP 
activation, [53] used fibroblasts exposed to conditioned 
medium from 5-ALA-treated keratinocytes. These results 
showed an increase in MMP-1 expression in addition to -3 
dependent on IL-la release. Furthermore, because IL-la is a 
well-known inducer of NF-κB, we could conclude that the 
activation of MMP-1 and -3 is mediated by NF-κB. Hence, 
using NF-κB inhibitors might prevent the formation of 
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MMPs and lead to amending the activity of PDT [54, 55]. 
However, it is believed that the mechanism of action of 
DMF includes nuclear factor erythroid-derived 2-related 
factor Nrf2 -dependent pathway which is crucial in an anti-
inflammatory immune response [22]. However, increasing 
Nrf2 can decrease the effect of PDT [56]. Thus, targeting 
Nrf2 could increase the efficiency of this combination 
therapy. Moreover, photodynamic therapy (PDT) is 
shown to activate NF-кB and the activation of NF-кB 
directly and indirectly enhance several pathways related 
to cell survival, including proliferation, inflammation, 
and survival [57]. Another reason in favor of NF-κB 
suppression is its ability to regulate antiapoptotic genes 
expression that will help tumor cell survival and prevent 
the response to proapoptotic therapeutics [58]. Thus, its 
inhibition is crucial to increase PDT killing activity.

In conclusion, this study suggests a promising 
combination of He-Ne-PDT with DMF that could be a 
promising novel treatment against hormone-unresponsive 
breast cancer cells after photosensitizing by ALA. This 
novel treatment could be applied clinically as a therapeutic 
regimen to treat breast cancer patients since all the 
involved agents are already clinically approved therapies. 
Further research is needed to optimize the combination 
to induce higher photosensitization killing rates and to 
explore the mechanism of action behind this effect.
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