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Introduction

Prostate cancer ranks among the prevalent malignancies 
in men worldwide, with approximately 1,600,000 cases 
and 366,000 annual fatalities [1]. Androgen deprivation 
therapy (ADT) typically serves as the primary approach 
for advanced prostate cancer, yet the majority eventually 
advance despite ADT, leading to castration-resistant 
prostate cancer (CRPC). The underlying mechanisms 
propelling the transition from androgen-dependent 
(hormone-sensitive or castration-sensitive) prostate 
cancer to CRPC remain largely unresolved, although it 
is associated with sustained androgen receptor signaling 
amidst diminished circulating androgens and androgen 
receptor blockade.

Systemic inflammation is believed to contribute 
to prostate cancer initiation and progression [2]. The 
presence of systemic inflammatory responses has 
independently indicated an adverse long-term prognosis 
for prostate cancer patients [3].

Retinoid X receptors (RXRs) are pivotal components 
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of the nuclear receptor (NR) superfamily, wielding diverse 
roles in regulating various physiological processes. RARs 
govern the expression of numerous genes overseeing cell 
proliferation, differentiation, survival, and overall bodily 
homeostasis. RARs comprise three subtypes—RARα 
(NR1B1), RARβ (NR1B2), and RARγ (NR1B3)—
encoded by distinct genes [4]. RXRα is notably expressed 
in the liver, kidney, epidermis, and spleen; RXRβ is 
universally present; and RXRγ, the least abundant of the 
trio, is prominent in muscular and cerebral tissues.

Considering that RXRα is pivotal for maintaining the 
suppressive function of T regulatory cells (Tregs), RXR 
agonists could offer dual benefits as a therapeutic approach 
for managing inflammatory disorders [5]. Substantial 
preclinical evidence underscores the therapeutic potential 
of RXRs as drug targets for treating neurodegenerative 
and inflammatory ailments. However, the exploration 
of this therapeutic potential has been hampered by the 
scarcity of safer RXR ligands. Systemic inflammatory 
responses have been independently linked to unfavorable 
long-term outcomes in prostate cancer patients. Hence, 
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investigating the modulatory and inhibitory interactions 
of such natural compounds alongside RXRs assumes 
paramount significance. To this end, phytoestrogenic 
compounds Farmononetin, Kaempferol, and Luteolin 
were selected [6].

This study delves into and researches the comprehensive 
investigation of ligands that inhibit RXRα and RXRβ 
receptors, pivotal players in the inflammatory response 
associated with prostate cancer. Notably, Luteolin emerged 
as the most versatile and efficacious drug for inhibiting 
both receptors, potentially paving the way for further in 
vitro and in vivo studies for prostate cancer treatment.

Materials and Methods

Geometric Optimization
In our ongoing research, the selection of precise and 

accurate ligands for inhibiting LXR-alpha and LXR-beta 
was guided by scientific literature. Subsequently, these 
chosen structures, along with their most stable molecular 
geometries, underwent processing through the Gaussian 09 
program [7], employing density functional theory (DFT)/
B3LYP functional [8,9], and utilizing the 6-31G(d,p) 
principle. This procedure gathered the most stable 
molecular configurations of Formononetin, Kaempferol, 
and Luteolin, paving the way for further computational 
and simulation-based investigations. For input file 
preparation of DFT calculations and post-processing 
of output files, Gauss View 6.0 and Avogadro software 
tools [10] were employed. The study of small molecule 
interactions, termed ligands, with macromolecules like 
DNA and proteins, referred to as receptors, bears relevance 
to anticancer exploration [11–14]. The initial geometries 
of Farmononetin, Kaempferol, and Luteolin molecules 
were sourced from PubChem [12,15,16].

The crystal structure of human RXRα and RXRβ 
receptors, complexed as targets within the context of 
inflammatory response in prostate cancer, from the 
AlphaFold protein database [17] (AF_K4MR37_F1_
model_v4, AF-K4MU26-F1-model_v4) were sourced.

Molecular Docking Simulations
Molecular docking simulations were executed 

using AutoDock Vina 1.1.2. [18], encompassing 100 
posed simulations, culminating in 600 poses. The 
drugs Formononetin, Kaempferol, and Luteolin were 
graphically represented in Gaussview, optimized using 
both Gaussview and Avogadro, and then subjected to 
simulations, illustrating interactions and bindings with 
receptor fragments of RXRα and RXRβ, utilizing IDs AF_
K4MR37_F1_model_v4 and AF-K4MU26-F1-model_v4 
from the AlphaFold Database. The grid box dimensions 
were set at 40 × 40 × 40 Å3. The docking scores were 
quantified in kcal/mol, denoting Gibbs free binding energy. 
From the best-clustered data, docking poses featuring the 
most accurate and favorable binding energy were selected 
as initial structures for subsequent MD simulations for 
each drug. The Gaussian 09 program was employed to 
determine the most stable geometric structure of these 
molecules. For Farmononetin, Kaempferol, and Luteolin 
molecules, optimized geometries were chosen for insertion 

analysis utilizing Gaussian 09 software [19–21].

Molecular Dynamics (MD) Simulations
Utilizing Schrödinger’s Desmond program [20], MD 

simulations were conducted for all ligands, involving 
intervals of 50 ns, each comprising 5000 poses at 10 
ps intervals. Each molecular dynamics simulation was 
repeated three times using different seed numbers to ensure 
accuracy of simulation parameters and protein-bound 
ligand complex structures. The aim of MD simulations 
was to assess dynamic attributes of the ligand-receptor 
complex over time. The grid box dimensions were 
set at 120 × 120 × 120 Å3, with a 0.5 Å spacing for 
protein receptors. TIP3P-type water molecules were 
introduced into the system, and 0.15 M NaCl ions were 
incorporated to neutralize the setup. The initial structures 
for MD simulations were derived from the docking poses 
exhibiting optimal and favorable binding energy based 
on docking results [22–24]. Temperature and pressure 
parameters included NPT at 310 K with Nose-Hoover 
temperature coupling [25], and constant pressure of 1.01 
bar via Martyna Tobias−Klein pressure coupling [26]. The 
systems had no constraints, and default initial velocity 
values were employed for forcefield calculations. The 
study encompassed MD simulations of varying drug-
receptor complexes as well as non-ligand bound protein 
fragments. Investigation of hydrogen bonds formed 
between drugs and amino acid domains of RXRα and 
RXRβ chains was also undertaken.

Results

The Molecular Dynamics Analysis and Characterizations
The Molecular Dynamics Characterizations of 
Formononetin-RXRα and Formononetin-RXRβ Complexes 

As depicted in Figures 1, 2, and Table 1, the MD 
poses captured after the 2500th frame out of the total 
5000 frames, where complex stabilization takes place, 
are observable. Formononetin engages with the external 
active site of the RXRα protein, forming a robust hydrogen 
bond at a distance of 1.92 Å, accompanied by a binding 
energy of -13.3 kcal/mol. Meanwhile, its inhibition 
constant remains approximately 239.5 µM. This suggests 
Formononetin’s effectiveness as a hydrogen bond binder in 
suppressing RXRα, with its binding energy of -13.3 kcal/
mol indicating substantial protein inhibition, a recognized 
hallmark in scientific literature, achieved when values 
should range minimum of -10 to -11 kcal/mol for excellent 
inhibition [23, 24, 27].

Formononetin displays heightened efficacy in terms 
of binding mode and inhibition constant when interacting 
with RXRβ, featuring distances of 1.79 Å and 1.80 Å. 
Exhibiting an inhibition constant of 2.5 µM, its binding 
mechanism showcases the modulation of two α-helices, 
hinting at a more potent suppressor role. By exerting 
pressure on the two α-helices, it obstructs and reshapes 
the active site of RXRβ, leading to complete protein 
shutdown. This mode of blockage proves notably more 
efficient.



Asian Pacific Journal of Cancer Prevention, Vol 25 2331

DOI:10.31557/APJCP.2024.25.7.2329
The Inhibition of RXRα and RXRβ Receptors Provides Valuable Insights

Molecular Dynamics Ligand-Receptor Binding Data
Complex Binding Energy ∆(∆G) kcal/mol Inhibition Constant µM Mode of Inhibition
Formononetin-RXRα -13.3 239.5 Active site inhibitor
Formononetin-RXRβ -10 2.5 Double α-helix modulator
Kaempferol-RXRα -13.2 265.7 Single α-helix modulator via intercalation
Kaempferol-RXRβ -14.1 53.3 Single α-helix modulator
Luteolin-RXRα -16 6.3 Double α-helix modulator via intercalation
Luteolin-RXRβ -15.9 11.4 Single α-helix modulator

Table 1. The Post-MD Characterizations of Drug-Receptor Complexes

1.92 Å

Figure 1. The Best Favored Pose from the Molecular Dynamics Video when the Formononetin-RXRα Complex 
becomes Stabilized. 

1.80 Å

1.79 Å

Figure 2. The Best Favored Pose from the Molecular Dynamics Video when the Formononetin-RXRβ Complex 
becomes Stabilized. 
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1.87 Å

Figure 3. The Best Favored Pose from the Molecular Dynamics Video when the Kaempferol-RXRα Complex becomes 
Stabilized. 

2.03 Å 2.23 Å

Figure 4. The Best Favored Pose from the Molecular Dynamics Video when the Kaempferol-RXRβ Complex becomes 
Stabilized.

The Molecular Dynamics Characterizations of 
Kaempferol-RXRα and Kaempferol-RXRβ Complexes 

Based on Figures 3, 4, and Table 1, the preferred MD 
poses are evident after the 2500th frame out of the 5000 

frames, reflecting the stabilization of the complexes. When 
Kaempferol binds to RXRα and RXRβ, it distinctly targets 
a single α-helix, functioning as a protein modulator that 
influences the morphology/topology and form.
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Figure 5. The Best Favored Pose from the Molecular Dynamics Video when the Luteolin-RXRα Complex becomes 
Stabilized. 

Figure 6. The Best Favored Pose from the Molecular Dynamics video when the Luteolin-RXRβ Complex becomes 
Stabilized. 

With  binding energies  of  -13.2  and 14.1 
kcal/mol respectively, it first intercalates with RXRα 
and subsequently establishes effective inhibition through 
hydrogen bonds, while exclusively forming hydrogen 
bonds with RXRβ. In terms of inhibition constants, 
the RXRβ complex, with a value of 53.3 µM, exhibits 
significantly greater inhibition efficiency compared to 

the RXRα complex, which has an inhibition constant of 
265.7 µM. This disparity can be attributed to the disruptive 
impact on protein structure caused by the intercalation 
mechanism in RXRα. Consequently, a more stabilized 
and effective complex is less likely to form with later 
hydrogen bonding, as opposed to the promptly stabilizing 
Kaempferol-RXRβ complex.



Soykan Agar et al

Asian Pacific Journal of Cancer Prevention, Vol 252334

using phytoestrogen ligands/drugs like Formononetin, 
Kaempferol, and Luteolin is of paramount importance in 
treatment strategies. The comprehensive computational 
findings of this study vividly illustrate Luteolin’s 
remarkable efficacy in inhibiting and modulating 
RXRα and RXRβ, with Formononetin showing notable 
potency as a suppressor of RXRβ. Kaempferol, the third 
compound, also demonstrates commendable inhibitory 
properties, albeit slightly less pronounced compared to the 
other two. These results underscore the significant binding 
and inhibition capabilities to RXRα and RXRβ, providing 
valuable insights for potential avenues in prostate cancer 
treatment that merit further investigation through both in 
vitro and in vivo analyses.
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