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Introduction

The concept of the Hardy-Weinberg Equilibrium (HWE) 
holds significant importance in the realm of population 
genetics and the study of evolution [1]. It posits that the 
frequencies of genotypes within a population remain 
constant over successive generations, unless external 
factors disrupt this equilibrium [2]. Rather than solely 
focusing on the genetic makeup of two parental species, 
HWE suggests examining the entire population in 
order to comprehend the process of evolution [3]. By 
analyzing the variation in allele frequency within the 
initial generation, one can make predictions about 
the corresponding variation in future generations [4]. 
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Deviations from HWE may indicate errors in genotyping 
or the occurrence of natural selection [5,6]. While HWE 
equations are commonly employed to forecast allele 
frequencies, their application becomes more complex as 
population models become more intricate. Computational 
intelligence techniques, such as the Mamdani Fuzzy 
Inference System and Back Propagation Theory, have 
been utilized to automate HWE analysis and prediction 
[7]. Fuzzy logic inference systems, such as the Mamdani 
method, are employed to replicate real-life decision-
making processes by utilizing fuzzy set theory, fuzzy 
rules, and fuzzy reasoning. These systems have found 
application in various domains, including transportation 
and cybernetics [7,8]. On the other hand, back propagation 
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theory serves as a learning algorithm within artificial 
neural networks, adjusting the weights and biases of the 
network based on the discrepancy between predicted and 
actual outputs [9–11]. These techniques amalgamate the 
fields of engineering and ecology, furnishing researchers 
with efficient tools to study the diversity of population 
genetics, infer evolutionary history, and comprehend 
the ecological relationship between organisms and their 
environment.

HWE in Meta-Analysis Studies
In the context of meta-analytical research, the evaluation 
of the association between genetic polymorphisms and 
the risk of disease is carried out through the utilization 
of HWE [5,12]. HWE can be violated even without 
genotyping errors, making it challenging to use HWE 
testing for data quality assessment [5,13]. In this particular 
context, the significance of HWE assumes considerable 
importance, as genetic markers that contravene HWE 
may be identified as errors in genotyping or subjected 
to scrutiny for discernible evolutionary patterns [14]. 
However, the existence of population structure can 
contribute to the failure of genetic markers in passing 
HWE tests, thereby posing a predicament, given that a 
substantial majority of natural populations exhibit varying 
degrees of structure [15–17]. Furthermore, deviations 
from HWE can arise due to various factors including 
consanguinity, population differentiation, or technical 
issues encountered during the process of genotyping [18–
20]. The identification of HWE within control populations 
indicates the existence of an authentic connection between 
a genetic locus and a particular trait. Conversely, the 
presence of Hardy-Weinberg disequilibrium (HWD) 
affecting both cases and controls can be accounted for 
by factors such as consanguinity, stratification of the 
population, or technical complications encountered during 
the genotyping process [12,21,22]. Within the scope of 
meta-analytical investigations, the adherence to HWE is of 
utmost importance as it ensures the reliability and validity 
of the pooled findings [6,23,24]. Therefore, it is advised 
that future research endeavors uphold the recommendation 
of conducting well-designed studies that do not deviate 
from HWE in control groups [25,26].
The HWE possesses both advantages and disadvantages 
in the field of meta-analysis studies. On the positive side, 
HWE tests are widely employed to assess the quality of 
genotypes and identify errors in genotyping. Furthermore, 
they can be utilized to estimate the number of individuals 
who carry homozygous and heterozygous variants, 
based on the frequency of alleles [5,6,27]. Nevertheless, 
it is important to note that HWE tests can be sensitive 
to deviations from equilibrium, potentially resulting in 
biased estimations of heritability and association test 
outcomes [28]. Particularly in diverse populations, HWE 
can be violated even in the absence of genotyping errors, 
posing a challenge in the evaluation of genotype data 
quality [15,29]. The disregard of population structure 
and genotype uncertainty in HWE tests may lead to an 
inflation of false positive rates [30–32]. Moreover, the 
drawbacks associated with the utilization of the HWE in 
the context of meta-analysis encompass the incapability 

to deduce random mating within a population solely based 
on the observation of the HWE. Moreover, deviations 
from the HWE may indicate the occurrence of natural 
selection, thereby posing challenges in differentiating 
between genotyping errors and advantageous variations 
[33,34]. Additionally, it should be noted that the commonly 
employed linear mixed-effect model in genetic association 
studies can be highly sensitive to deviations from the 
HWE, consequently leading to biased estimations of 
heritability and association test results [28,35]. Thus, it 
is crucial to consider population structure and potential 
biases when undertaking HWE meta-analysis, despite its 
usefulness in evaluating genotype quality and estimating 
variant carriers [36,37].

HWE in the Large-Scale Genomic Sequencing Era
The HWE is frequently utilized as a means of quality 
control in genetic investigations, particularly in the context 
of extensive genomic sequencing studies [3,38]. HWE 
refers to a state wherein the frequencies of genotypes in 
a given population remain constant across generations in 
the absence of evolutionary influences [39]. Departures 
from HWE can imply errors in genotyping or suggest 
evolutionary phenomena [40]. Nevertheless, the testing 
of HWE in diverse populations can be complicated by 
factors such as population structure and uncertainty 
surrounding genotypes [4]. Numerous studies have 
examined the impact of HWE filtering on the inference of 
population genetics, especially in methods like RADseq 
that involve reduced representation sequencing (RRS) 
[41,42]. Research has demonstrated that the elimination 
of loci that exhibit deviations from HWE can significantly 
influence the inference of population structure [42,43]. 
Furthermore, traditional HWE tests may be affected by 
population structure and genotype uncertainty, resulting 
in elevated rates of false positives [5,44]. To tackle 
these challenges, novel methods have been developed to 
account for population structure and genotype uncertainty 
during HWE testing [45]. Abramovs et al. have devised a 
filtering strategy to identify variants displaying extreme 
excess of heterozygotes (HetExc) and have identified 
HetExc variants that are enriched in genes associated 
with autosomal recessive diseases [6]. Kwong et al. have 
presented the Robust Unified Test for HWE (RUTH), 
which takes into consideration population structure and 
genotype uncertainty, and have demonstrated its efficacy 
in assessing the quality of genotype data [5]. Meisner and 
Albrechtsen have proposed a method that incorporates 
population structure in HWE testing, allowing for the 
identification of other factors that may contribute to 
deviations from HWE [41]. These methods offer valuable 
tools for the analysis of HWE in the era of large-scale 
genomic sequencing [46].
The RUTH is a methodology utilized to assess the 
equilibrium of the HWE, accounting for both population 
structure and uncertainty within genotypes [5,47]. This 
approach tackles the limitations observed in traditional 
HWE tests, which are susceptible to the influence of 
population heterogeneity and uncertain genotypes, thereby 
producing an elevated number of false positive results. 
RUTH is an accessible and scalable software tool that can 
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detect variants with HetExc and successfully identified 
161 such variants in 149 genes, predominantly observed 
in African/African American populations. They put forth 
the notion that an excess of heterozygotes might indicate 
natural selection, particularly for advantageous recessive 
disease-causing variants [6]. In a separate discourse, 
Milkman discussed the Wahlund effect, which can 
produce an abundance of heterozygotes when populations 
with varying allele frequencies intermingle [75,76]. The 
phenomenon known as the Wahlund effect pertains to 
the deviation from HWE that arises as a consequence 
of the division and amalgamation of individuals from 
distinct genetic populations [42,77]. This effect can lead 
to an overabundance of homozygotes and a shortage 
of heterozygotes within a group of individuals under 
examination [64,78,79]. The Wahlund effect exhibits 
susceptibility to various factors, including null alleles and 
sampling variation among limited local breeding clusters 
[80,81]. Additionally, Balloux suggested employing 
heterozygote excess as a means to estimate the effective 
population size in small populations, including self-
incompatible monoecious species [50]. On the other 
hand, there is evidence of genotype-specific selection at 
a BRCA2 polymorphism, with an excess of heterozygotes 
in women but a shortage in newborn boys [82]. These 
investigations underscore the potential significance of 
heterozygote excess in comprehending genetic diversity, 
natural selection, and population dynamics in the human 
species [83,84].
In summary, HWE is frequently utilized for the purpose 
of quality control in genetic investigations, encompassing 
case-control studies, meta-analysis studies and large-
scale genomic sequencing. Departures from HWE may 
signify errors in genotyping or evolutionary factors such 
as natural selection. Several investigations have devised 
approaches to identify variants that deviate from HWE 
and applied them to extensive population databases. 
These investigations have detected numerous variants 
that HetExc, particularly in African/African American 
populations. Although the majority of these variants 
are not linked to known diseases, they are concentrated 
in genes associated with autosomal recessive diseases. 
Moreover, variants known to cause recessive diseases 
and exhibit evidence of heterozygote advantage have 
been identified. Techniques that consider population 
structure in HWE testing have been proposed to enhance 
accuracy. These techniques take into account factors like 
population heterogeneity and genotype uncertainty, which 
can influence the outcomes of HWE tests.
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effectively carry out HWE tests across a vast number of 
markers and individuals [5,48]. It consistently exhibits 
excellent performance in terms of false positive rates and 
statistical power, establishing itself as one of the most 
reliable methods for HWE testing [49].
HetExc can arise from a myriad of factors, encompassing 
a substantial effective population size , natural selection 
favoring a surplus of heterozygotes, as well as clonality 
within populations [33,50,51]. The occurrence of HetExc 
has been witnessed in various plant species, including 
Dioon caputoi and Cestrum miradorense [52]. These 
particular species manifest heightened levels of genetic 
diversity, as evidenced by elevated genetic diversity 
values (He) and an overabundance of heterozygotes 
(FIT and FIS) [51,53]. Another investigation conducted 
by Cabrera-Toledo et al. discovered an excess of 
heterozygotes in all four populations of Dioon caputoi, 
which implies a significant degree of genetic diversity 
[54–56]. Likewise, Reyes-Zepeda et al. observed a surplus 
of heterozygotes in all life stages of the shrub Cestrum 
miradorense, indicating that natural selection and gene 
flow contribute to this phenomenon [52]. Stoeckel et al. 
carried out a study on wild cherry populations and found 
pronounced heterozygote excess, which they attributed to 
clonality and asexual reproduction [57,58]. Furthermore, 
Stevens et al. identified a departure from the equilibrium 
of Hardy-Weinberg due to an excess of heterozygotes 
in populations of Elymus trachycaulus, potentially due 
to the polyploid nature of the species [59,60]. In marine 
species, instances of extreme reproductive events can lead 
to a scenario where a small number of parents dominate 
the population, resulting in a decrease in genetic diversity. 
Nevertheless, complete absence of heterozygosity is not 
attained, indicating that populations may experience 
decline without overt loss of genetic variation [61,62]. 
The distribution of heterozygosity across generations 
can also exhibit peculiarities, with the positions of these 
singular points subtly deviating under circumstances of 
high reproductive variance [63,64]. The overabundance 
of heterozygotes is believed to be the consequence of 
natural selection favoring heterozygotes, as well as a 
combination of reproductive systems and mechanisms 
of gene flow that foster genetic diversity [63]. The 
method of heterozygote excess has been proposed as a 
means to estimate effective population size (Ne) in small 
populations, including dioecious and self-incompatible 
species [65,66]. The HetExc observed in the urochordate 
Ciona savignyi is ascribed to its substantial effective 
population size and the presence of compelling evidence 
for robust purifying selection [67,68]. However, the 
efficacy of this method may be limited to populations 
with a small number of reproducing individuals [69,70]. 
This particular approach utilizes the heterozygote surplus 
detected at neutral markers to evaluate the effective size. 
It can be utilized with small dioecious populations as well 
as self-incompatible monoecious species [65,71].
HetExc can exert significant impacts on the population 
dynamics of species. It has the ability to result in 
elevated genetic diversity and reduced population 
differentiation [72–74]. In the investigation conducted 
by Abramovs et al., they devised a filtering strategy to 
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