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Introduction

Colorectal cancer is a significant public health concern 
and one of the most prevalent cancers with high fatality 
rates [1]. The incidence of colon cancer has been rapidly 
increasing in recent decades in Asian countries, making it 
the third most common cause of cancer-related deaths in 
Korea [2]. In 2020, 1.15 million new cases of colon cancer 
were reported globally, accounting for about 60% of all 
colorectal cancer cases [3]. Additionally, there has been 
an increase in the prevalence of cancers (3.3% to 11.1% 
depending on types) among diagnosed individuals with 
colorectal cancer [4]. 

The examination of cancer at a cellular level has 
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uncovered chromosomal instability as a critical factor 
linked to disease progression and survival outcomes [5]. 
Detailed analysis focusing on alterations in DNA copy 
numbers has revealed that over 85% of cancers exhibit 
chromosomal abnormalities, emphasizing how crucial 
chromosomal instability is, within this particular type 
of cancer [6]. Moreover, the presence and activity of 
proteins, for repairing DNA double strand breaks, ATM 
and BRCA1 have been associated with predicting the 
likelihood of survival in individuals with colorectal cancer. 
This connection highlights the significance of instability, 
in influencing patient outcomes [7]. Additionally, the study 
highlighted the occurrence of chromosomal aberrations 
in colorectal tumors, further underlining the role of 
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chromosomal instability in the pathogenesis of colorectal 
cancer [8].

Silibinin, extracted from the seeds of milk thistle 
(Silybum marianum), is a component of silymarin [9]. 
It possesses a range of activities, including antioxidant, 
anti-inflammatory and antineoplastic effects [10]. Silibinin 
has been utilized for years in treating diseases like early 
phase hepatocirrhosis and fatty liver [11]. Moreover, 
it shows promising potential as a cancer therapy by 
combating tumor chemoresistance across various cancer 
types [12]. Research has demonstrated that silibinin 
exhibits antineoplastic properties, making it a potential 
candidate for cancer treatment [13, 14]. Studies have 
revealed its ability to induce apoptosis and inhibit cell 
proliferation in cancer cell lines, such as lung, gastric, 
breast, and oral cancers [15-17]. Furthermore, silibinin 
has demonstrated its ability to enhance the efficacy of 
anticancer drugs like nintedanib while overcoming tumor 
cell resistance to specific treatments [14].

However, the poor solubility of silibinin in aqueous 
environments is a major obstacle in its clinical application 
[18]. To address this limitation effectively and improve 
its bioavailability extensive research has focused on 
formulation strategies for enhancing the solubility of drugs 
[19, 20]. Numerous research studies have investigated the 
use of nanoparticles and micelles to enhance the solubility 
and targeted delivery of silibinin [21, 22]. For instance, 
Hossainzadeh et al. demonstrated the encapsulation of 
silibinin in polymersome nanoparticles to overcome its 
low solubility and enhance its delivery to cancerous cells 
[22].

Niosomes are a novel drug delivery system that has 
gained attention due to their potential for sustained, 
controlled, and targeted medication delivery with 
high stability [23]. Niosomes are similar structures 
to liposomes. However, their composition differs as 
they are formed from ionic surfactants and cholesterol 
[24]. Niosomes have shown potential in improving the 
solubility and availability of drugs [25]. For example, 
niosomes have been investigated for the in vitro delivery 
of SIL, resulting in improved in vitro dissolution profiles 
compared to aqueous suspensions [26].

PEGylation is a commonly used technique in drug 
delivery systems. It involves attaching polyethylene glycol 
(PEG) to biomolecules and nanoparticles [27]. PEGylation 
has been successful, in enhancing drug delivery systems 
by increasing protein stability, prolonging shelf life, and 
maintaining bioactivity [28]. The utilization of PEGylated 
nanocarriers has demonstrated promising outcomes in 
enhancing drug delivery efficiency, reducing toxicity 
risks, and extending the lifespan of drugs within the 
bloodstream [29].

PEGylated niosomes have gained attention as potential 
drug delivery systems due to their ability to improve 
stability and circulation half-life of drugs [30]. Studies 
have shown that PEGylated niosomes can serve as 
effective vehicles for the simultaneous delivery of different 
chemotherapy agents, exhibiting synergistic interactions 
to enhance antitumor efficacy [31].

In this research, silibinin was employed as an 
anti-cancer agent targeting human colorectal cancer cells. 

Our investigation encompassed the assessment of cell 
proliferation and analyzing the expression of key cancer-
related genes, including bax, bcl-2, and p53. To address 
the challenge of silibinin’s limited solubility, we developed 
a PEGylated-niosomal nanoparticle (NPs) system for 
enhanced delivery.

Materials and Methods

Synthesis of PEGylated niosomal NPs 
The PEGylated niosomal nanoparticles (blank NIO) 

were prepared using the thin film hydration method in 
combination with sonication. Briefly, a mixture of Span 60, 
cholesterol, and PEG (in a 1:2:1 ratio) were dissolved in 
chloroform (3 mL) and methanol (6 mL), and the solvent 
was evaporated under reduced pressure (0.46 atm) at 
60 °C using a rotary evaporator. Hydration of the film 
was performed by adding 10 ml of phosphate-buffered 
saline (PBS, pH 7.4) to the round-bottomed flask. The 
flask was then placed in the water bath shaker set at 100 
rpm and 60 °C. Then, probe sonication was applied with 
an amplitude set at 40% for 15 cycles of two minutes each, 
with a 30-second rest in between. The fabricated blank 
NIO was stored at 4°C for future use [25]. 

Preparation of stock silibinin and silibinin-loaded 
PEGylated niosomal NPs

The stock solution of silibinin (pure silibinin) was 
prepared by dissolving 4.8 mg of silibinin in 10 mL of 
RPMI (containing 10% FBS and 0.05% DMSO) under 
continuous stirring for 1 h at 25°C. The same steps 
as above were repeated to fabricate silibinin-loaded 
PEGylated niosomal nanoparticles (NIO-SIL), except 
that in the first step, 4.8 mg of silibinin was dissolved in 
chloroform and methanol along with Span 60, cholesterol, 
and PEG [32].  

Characterization of blank NIO and NIO-SIL
Dynamic light scattering (DLS) was utilized to 

assess the mean size and surface charge of the fabricated 
liposomal nanoparticles. The niosomal samples were 
appropriately diluted (1:10) with PBS, and the dimensions 
and zeta potential of the samples were measured with Zeta 
sizer Nano ZS (Malvern Instruments Ltd., Malvern, UK) 
employing helium–neon laser at 630 nm at 24 °C. The 
morphology and microstructure of synthesized blank NIO 
and NIO-SIL NPs were studied using a scanning electron 
microscopy (SEM) system (MIRA3 TESCAN, Czech). 
Briefly, the fabricated blank NIO and NIO-SIL NPs rinsed 
twice with PBS, followed by freeze-drying (Dena Vacuum, 
FD-5005-BT, Iran) and subsequent scanning using an 
electron microscope. The interactions at functional groups 
of Span 60, cholesterol, PEG, and silibinin in blank NIO 
and NIO-SIL samples were determined using a Fourier 
transform infrared spectrophotometer (FT-IR Tensor 27 
spectrometer). The infrared spectra were scanned in a 
frequency range between 500 and 4000 cm− 1.

Silibinin entrapment efficiency 
Following the separation of the fabricated NIO-SIL NPs 

using the ultracentrifugation technique, the entrapment 
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synthesized using the RevertAid™ First-Strand cDNA 
Synthesis Kit (Thermo Fisher Scientific) according to the 
kit’s instructions. QRT-PCR was performed using a SYBR 
Green Real-time PCR master mix (Primer Design, UK) 
with a total volume of 20 μL on an ABI 7500 detection 
system (Applied biosystems) and the following primers 
(forward and reverse) were used: 

Expressions of selected genes were normalized to the 
GAPDH gene [34].

Apoptosis analysis
A 6-well plate was used for cell culture with an initial 

seeding of 104 cells. Followed treatments involving NIO-
SIL and pure silibinin for a duration of 48 hours. The 
apoptosis profile was assessed using the Annexin V-FITC 
Apoptosis Detection Kit (Beyotime, Biotechnology Co., 
Ltd., Nantong, China). The cells were detached using 
trypsin (Sigma, Germany), washed with PBS, subjected to 
centrifugation at 1,500 g for 5 minutes, and the supernatant 
was discarded. Subsequently, the pellet was resuspended 
in 500 μL of 1× binding buffer. The resulting solution 
was treated with 5 μL of Annexin V-FITC and 5 μL of 
PI, followed by transfer to FACS tubes after thorough 
mixing and a 15-minute incubation in the dark. Finally, 
the samples were analyzed using the FACSCalibur Flow 
Cytometer (FACSCalibur, BD Biosciences, USA). The 
experimental procedure was repeated three times [35].

Cell cycle analysis
Initially, 1 × 106 cancerous cells were seeded per well 

in 6-well plates and allowed to attach by incubation for 24 
hours. Subsequently, the cells underwent treatment with 
NIO-SIL and pure silibinin at their IC50 concentratons. 
After 48 hours of incubation, the cells were trypsinized, 
washed twice with PBS, and then fixed with 70% ethanol, 
being held at -20 ◦C overnight. The collected cells were 
re-suspended in PBS, and a staining solution containing 
1 μg/mL RNase and 100 μg/mL PI was added. The cell 
mixture was transferred to an incubator for 30 minutes at 
37°C. The FACSCalibur flow cytometer (FACSCalibur, 
BD Biosciences, USA) was used to assess the cell cycle.

Statistical analysis
The results were subjected to statistical analysis using 

Graph Pad Prism 8.4 software. The data is presented 
as mean ± standard deviation from three independent 

efficiency (%) was determined by comparing the total 
entrapped SIL content within the NIO-SIL NPs with the 
pure silibinin in the supernatant. The concentration of 
pure silibinin in the supernatant was detected using UV 
spectrophotometry (PerkinElmer instrument, Fremont, 
CA, USA) at 288 nm (λmax of silibinin) [33]. The 
calculation of entrapment efficiency (EE) percentage was 
performed as follows:

Silibinin release rate from NIO-SIL NPs
A Dialysis bag (with a molecular weight cutoff of 12–

14 KD) containing 1 ml of NIO-SIL NPs was immersed 
in PBS buffers with pH levels of 5.2 and 7.4. The buffer 
magneticly stirred at 150 rpm at 37 °C. At specified 
intervals, 2 ml of the leaked solution exchanged with same 
amount of fresh PSB. The concentration of the silibinin 
was subsequently assessed spectrophotometrically 
(PerkinElmer instrument, Fremont, CA, USA) at 288 nm. 
The percentage of released silibinin was calculated by 
determining the ratio of the released amount of silibinin 
in the dialysis bag to the total silibinin [26].

Cancerous and normal cell culture
Human normal cell line (HEK-293) and human 

colon carcinoma (SW480) cells were purchased 
from the Institute Pasteur of Iran and cultured in T75 
flasks containing RPMI (Gibco, Hong Kong, China), 
supplemented with fetal bovine serum (10% FBS, v /v), 
10 μg/ml of streptomycin (Sigma, Germany), and 10 U/
mL of penicillin (Sigma, Germany) at 37 °C in 5% CO2 
atmosphere [25]. 

In-vitro cytotoxicity study
SW480 and HEK-293 cells were seeded into 96-well 

plates (104 cells per well) containing RPMI-1640 medium 
(with 1% penicillin-streptomycin and 10% FBS) and 
incubated for 24 hours at 37°C in a 5% CO2 atmosphere. 
Cells were treated with different concentrations of NIO-
SIL (0, 25, 50, 100, 150, and 200 µM) and pure silibinin 
(0, 25, 50, 100, 150, and 200 µM) for 48 hours under the 
same conditions. 100 µL of MTT was added to the treated 
cell medium and incubated for 4 hours. The supernatant 
was removed, and 100 µL of DMSO was added to 
dissolve the formazan crystals generated by the living 
cells. Finally, the absorbance of the samples was measured 
using an EL × 800 Microplate Absorbance Reader (Bio-
Tek Instruments) at 570 nm. The rate of cytotoxicity was 
calculated by comparing the absorbance of treated cells 
with that of untreated cells.

Gene expression study
Cancerous cells (1 x 106) were seeded in each well 

of a 6-well plate and incubated for 24 hours at 37°C 
in a 5% CO2 atmosphere. The cells were exposed to 
NIO-SIL and pure silibinin at their IC50 concentrations 
for 48 hours. Afterward, an RNeasy Mini kit (Qiagen) 
was used to extract total RNA from cells following the 
manufacturer’s instructions. The first-strand cDNA was 

GAPDH 5′-GCGCCCAATACGACCAAATC-3′
5′-GCGCCCAATACGACCAAATC-3′ 

Bax 5′-CCAGAGGCGGGGTTTCAT-3′ 
5′-TGTCCAGCCCATGATGGTTC-3′

Bcl-2 5′-AAAAATACAACATCACAGAGGAAGT-3′ 
5′-TCCCGGTTATCGTACCCTGT-3′ 

p53 5′-AAGTCTAGAGCCACCGTCCA-3′ 
5′-ACCATCGCTATCTGAGCAGC-3′

Cyclin 
D1

5′-GACACCTAGTGCCACGGAAA-3′ 
5′-AAAGGATAACACGGGGCAGG-3′ 
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experiments. Statistical comparisons between groups 
were conducted using ANOVA test, with a significance 
level set at p < 0.05.

Results

Nanoparticles have emerged as a highly promising tool 
in cancer therapy, leveraging their distinctive properties 
and potential for precise drug delivery to targeted sites [36]. 
These nanoscale carriers can be designed to selectively 
bind and target cancer cells, thereby enhancing treatment 
efficacy while simultaneously modifying undesirable 
side effects [37]. Nanoparticle-based therapeutics have 
demonstrated heightened efficacy and improved safety 
profiles in contrast to conventional anticancer treatments 
[38]. Their ability to precisely localize within tumors and 
undergo active cellular uptake contributes significantly 
to more efficacious treatment outcomes [39]. Niosomes 
present a promising path in drug delivery for cancer 
therapy, given their capacity to selectively target cancer 
cells, prolong treatment duration, moderate side effects, 
and enhance drug stability [40]. Niosomes, as vesicular 
structures composed of nonionic surfactants, exhibit the 
capability to encapsulate both hydrophilic and lipophilic 
drugs. This characteristic makes them versatile carriers 
suitable for a diverse range of pharmaceutical compounds 
[41].

Furthermore, the size of nanoparticles, including 
niosomes, plays a crucial role in their effectiveness, 
with smaller particle sizes being optimal for drug 
delivery to the deep layers of the skin and potentially 
enhancing therapeutic efficacy [42]. A critical determinant 
influencing the size of niosomes is the composition of 
the lipid bilayer. The inclusion of cholesterol has been 
demonstrated to elevate the particle size of these vesicles. 
This arises from the membrane-rigidity-inducing property 
of cholesterol, which diminishes the impact of sonication, 
thereby facilitating the formation of larger niosomes [43, 
44].

In addition to lipid composition, various factors such 
as sonication time and pH value influences on niosome 
size notably. Prolonged sonication times exhibit a negative 
correlation with niosome size, indicating that extended 

sonication results in smaller vesicles. This outcome is 
likely attributed to the disruptive effects of sonication 
on the lipid bilayer, leading to formation of smaller 
vesicles [45]. The pH of the environment emerges as 
another critical factor influencing the stability and size of 
niosomes [46]. Additionally, the presence of encapsulated 
substances within niosomes introduces an additional 
dimension to size [47]. It is noteworthy that the size of 
niosomes exhibits variability depend on the formulation 
and preparation method, spanning a range from 100 to 
2000 nm [48]. Figure 1 demonstrates the size of blank 
NIO-SIL NPs (nm) assessed with DLS. A size difference 
of 26.8 nm is observed between the two nanoparticles, 
which, according to recent explanations, is related to 
silibinin loading between the two membranes.

Polydispersity Index (PDI) in nanoparticles is a 
crucial parameter that indicates the distribution of particle 
sizes within a sample. A PDI equal to or below 0.3 is 
typically acceptable, signifying a uniform dispersion of 
nanoparticles. In the context of niosomes employed in 
drug delivery, a low PDI value indicates a homogeneous 
population of vesicles [49, 50]. Table 1. Listed the size, 
PDI, and zeta potential of blank NIO and NIO-SIL NPs.

Zeta potential serves as a metric for appraising the 
surface charge of particles or surfaces within a liquid 
medium, constituting a crucial parameter in various 
fields, including colloid science, materials science, and 
biology [51]. Several factors, such as the composition 
of the vesicles, the presence of additives, and the pH of 
the medium, can influence the zeta potential of niosomes 
[52, 53]. The zeta (ζ)-potential of blank NIO NPs was 
-26.1 mV, while NIS-SIL NPs had a significantly higher 
ζ-potential of -39.4 ± 7.6 mV (Table 1). 

The morphology of NPs is another important 
aspect that influences their properties, applications, and 
interactions with biological systems. For example, the 

Figure 1. The Dynamic Light Scattering (DLS) Analysis of NIO-SIL Nanoparticles Revealed an Average Diameter 
Size of 150.8 nm (A), and a Zeta Potential of -39.4 mV for These Nanoparticles (B).

Sample PDI Zeta-potential (mV) Size by DLS (nm)

Blank NIO 124±7.24 −26.1±4.7 0.546

NIO-SIL 150.8±27.6 −39.4±7.6 1

Table 1. Physical Properties Including Zeta-Potential, 
Polydispersity Index, and particle size of blank niosome 
and silibinin-loaded PEGylated niosome NPs.
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Figure 2. Field Emission Scanning Electron Microscopy (FE-SEM) Image of the Surface Morphology of NIO-SIL 
NPs Showed a Spherical Morphology.

Figure 3. The AFM Image of NIO-SIL NPs Confirmed Previously Obtained Data about These NPs Using SEM. 

Figure 4. The Cumulative Release Profile of Silibinin in pH 7.4 and 5 from the PEGylated Niosomal NPs (An Initial 
Burst Release Followed by the Gradual Release). The data are presented as mean ± SD (n = 3).

morphology of nanoparticles can impact their cellular 
uptake, biodistribution, and toxicity [54]. Based on the 

previous studies, it is evident that niosomes exhibit 
a spherical morphology [55]. Figure 2 shows the 
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Figure 5. FTIR spectra of (A) PEG, (B) blank NIO NPs, (C) PEG-NIO, (D) silibinin, and (E) NIO-SIL. The spectra 
indicate the encapsulation of silibinin in the PEGylated niosome NPs. 

Figure 6. In vitro Cytotoxicity Analysis by MTT. The viability of SW480 and HEK-293 cells after incubation with 
pure silibinin and silibinin-loaded PEGylated niosome NPs after 48 h treatment. (*P value < 0.05, **P value < 0.001)

Figure 7. Changes in Expression Level of Bax, Bcl-2, p53, and Cyclin D1 Genes in Human Cancerous Cells Treated 
with Pure Silibinin and Silibinin-Loaded PEGylated Niosome NPs after 48 h Treatment. (p value < 0.001 *** and 
p value < 0.01 **).
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Figure 8. Identification of Apoptosis Using the Flow Cytometric Assay (Annexin V/PI staining). (A) Control group, 
(B) treated SW480 cells with pure silibinin, and (C) treated SW480 cells with silibinin-loaded PEGylated niosome 
NPs after 48 hours. (p-value < 0.001 ***, p-value < 0.01 **, and p-value < 0.05 *).

Figure 9. Suppression Effects of Pure Silibinin and Silibinin-Loaded PEGylated Niosome NPs on the Cell Cycle of 
SW480 Cells. Treatment with pure silibinin and silibinin-loaded PEGylated niosome NPs causes cell cycle arrest at 
the Sub G1 phase.

microscopic images of NIO-SIL NPs obtained with SEM. 
These NPs have mostly spherical morphology, which is 
consistent with previous studies. Figure 3 illustrates the 
AFM image of NIO-SIL NPs with good dispersion and 
no aggregation.

Discussion

Drug release in nanoparticles (NPs) is a critical aspect 
of their functionality, impacting their therapeutic efficacy 
and toxicity in vivo [56]. The release profile of drugs 
from NPs is influenced by various factors, including 
the physicochemical characteristics of the NPs [56]. 
For instance, the initial burst release from NPs can be 
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attributed to the immediate desorption of drug molecules 
adsorbed onto the particle surface, as well as the shorter 
average diffusion path due to the nanoscale of the NPs, 
leading to rapid drug molecule release [57]. Figure 4 
demonstrates the 96-hour drug release profile of NIO-
SIL in human physiological pH (7.4) and cancerous cell 
cytoplasmic pH (5). It shows a cumulative profile that 
follows two distinct phases in both pH. As mentioned 
above, the initial burst release of silibinin from niosome 
NPs can result from the immediate desorption of silibinin 
molecules adsorbed onto the niosome surface.

Encapsulation efficiency is another factor in the 
development of carriers and delivery systems. It is defined 
as the ratio of the quantity of encapsulated material to 
the total quantity initially added, and it is a key indicator 
of the effectiveness of the encapsulation process. Higher 
encapsulation efficiency is desirable because it ensures that 
a greater amount of the drug is successfully encapsulated 
within the NPs, resulting in enhanced drug delivery and 
therapeutic outcome [58]. The encapsulation efficiency 
of NiO-SiL NPs was found to be 76.4%, indicating a 
significant loading effectiveness.

In Figure 5, the spectrum of pure silibinin shows a 
distinct absorption peak at 3452 cm−1, which is attributed 
to the –OH stretching vibration [59]. Additionally, the 
pure silibinin spectrum shows increased absorbance in the 
carbonyl band at 1642.9 cm−1, indicating the presence of 
the ring ketonic group in silibinin [60]. The cholesterol 
spectrum exhibited distinctive peaks corresponding to 
methylene rocking at 802 cm−1, C–O stretching at 1055 
cm−1, C–H bond stretching in the range of 2800–3000 
cm−1, C–H bond bending at 1376 cm−1, and –OH 
stretching with a broad peak spanning 3100–3600 cm−1. 
In contrast, Span 60 manifested peaks indicative of C=O 
stretching at 1738 cm−1, –C–CO–O– at 1171 cm−1, 
aliphatic CH stretching (asymmetric and symmetric at 
2916 cm−1 and 2849 cm−1, respectively), and aliphatic 
–CH2– rocking at 722 cm−1 [61]. The NIO-SIL NPs FTIR 
spectra featured characteristic peaks corresponding to 
pure silibinin, cholesterol, Span 60, and PEG, affirming 
the lack of discernible chemical interactions among them.

The MTT assay, based on the reduction of 
(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) to formazan by living cells, is a widely 
used method for measuring cell viability and proliferation 
[62]. This assay determines mitochondrial activity and 
is utilized to assess cell survival, proliferation, and 
cytotoxicity [63]. It has been used to evaluate the effects 
of different compounds on cell viability and proliferation 
[64]. Figure 6 illustrates the cytotoxic effects of pure 
silibinin and NIO-SIL NPs on the human normal cell 
line (HEK-293) and the human colon cancer cell line 
(SW480). The pure silibinin shows toxicity on cancerous 
cells at different concentrations; however, it slightly 
inhibits the proliferation of normal cells at the highest 
concentration. The results of NIO-SIL NPs demonstrate 
enhanced effects of silibinin when using PEGylated 
niosomal NPs as carriers against SW480 cells. The results 
of NIO-SIL nanoparticles show significantly improved 
effects of silibinin when using PEGylated niosomal NPs 
as a carrier against cancer cells at concentrations of 25, 

100, and 200 µM. As evident, NIO-SIL NPs show better 
results than pure silibinin even at lower concentrations. 
The remarkable point is the non-toxicity of NIO-SIL 
NPs on normal human cells. Considering that lower 
concentrations of silibinin were used in NIO-SIL NPs, 
these results can be justified. Based on the obtained 
results, the blank NIO NPs were excluded from further 
tests due to their insignificant toxicity towards cell lines 
and pure silibinin and NIO-SIL were used at their IC50 
concentrations for next tests.

Gene expression analysis is a tool utilized to comprehend 
the underlying mechanisms of biological processes 
and complex diseases. It involves the identification of 
expressed genes. Determining their level of expression 
under different circumstances. In this study (Figure 7), we 
assessed the expression of Bax, Bcl-2, p53, and Cyclin D1 
genes using real-time PCR. Bax is a protein belonging to 
the Bcl-2 family of proteins. It plays a role in regulating 
apoptosis in both cancer cells. The activation of Bax leads 
to membrane permeabilization, which subsequently results 
in the release of cytochrome c and eventual cell death in 
cancer cells [65, 66]. Quantifying Bax protein levels can 
provide valuable information for cancer treatment and 
research, as it is closely associated with drug resistance in 
tumor cells [67]. Studies have demonstrated that colorectal 
cancer tissues typically exhibit increased Bax expression. 
Its absence can lead to reduced proliferation and colony 
formation ability in cancer cells [68]. On the other hand, 
Bcl-2 is a gene that significantly influences the regulation 
of apoptosis, or programmed cell death, in cancer cells. 
Aberrant expression of the Bcl-2 gene strongly correlates 
with chemotherapy and radiation resistance, contributing 
to tumorigenesis while promoting cell survival [69, 70]. 
The Bcl-2 protein family is composed of members that 
can either promote or prevent cell death, working together 
to maintain an equilibrium in cells [69]. In the realm 
of cancer, p53 is a protein that possesses the ability to 
regulate cellular processes such as the cell cycle, DNA 
repair, and programmed cell death [71]. Mutations in the 
TP53 gene, which encodes p53, can result in the loss or 
gain of tumor-suppressor function [72]. The results show 
a decrease in the expression of the Bcl-2 and Cyclin D1 
genes and an overexpression of the bax and p53 genes in 
both silibinin-treated and NIO-SIL-treated cells. However, 
these changes in gene expression are more evident in NIO-
Sil treated cells compared to other cells. As mentioned 
earlier, this can be achieved due to the enhanced effects of 
silibinin when using PEGylated niosomal NPs as a carrier 
against cancer cells. 

Apoptosis, also known as programmed cell death, is a 
highly regulated process crucial for various physiological 
events, including development, tissue homeostasis, and 
immune response [73]. It involves a series of signaling 
pathways that can be broadly categorized into intrinsic 
and extrinsic pathways. The intrinsic pathway is triggered 
by intracellular stresses, leading to the release of pro-
apoptotic factors from mitochondria, while the extrinsic 
pathway is initiated by external signals binding to death 
receptors on the cell surface [74]. Previous studies have 
confirmed the apoptotic effects of silibinin on breast 
[75], lung [76], pancreatic [77] and other cancers. 
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Figure 8 shows the induction of apoptosis in SW480 cells 
with pure silibinin and NIO-SIL NPs. The NIO-SIL NPs 
could significantly reduce amount of viable cell at 24 hours 
of treatment. Both pure silibinin and NIO-SIL NPs induce 
early and late apoptosis in cancerous cells.

The cell cycle is a highly regulated process involving 
a series of events that lead to cell division. It is controlled 
by a complex interplay of intracellular and extracellular 
signals [75]. Key regulators of the cell cycle include 
cyclin-dependent kinases and cyclins, which coordinate 
various phases of the cycle [78]. As demonstrated in 
Figure 9, the untreated SW480 cells (control cells) are 
mostly in the G0/G1 phase. After 24 hours of treatment 
with pure silibinin and NIO-SIL NPs, a shift in these cells 
to the Sub G1 phase occurs. The G0/G1 to sub-G1 cycle 
is controlled by cyclin D1 expression. These results are 
consistent with the RT-PCR findings, which confirmed 
a reduction in the expression of the cyclin D1 gene, 
leading to cell cycle arrest at the Sub-G1 phase. In this 
study, silibinin was applied as a therapeutic agent against 
human colorectal cancer cells. The research involved 
evaluating cell proliferation and examining the expression 
of pivotal cancer-associated genes such as bax, bcl-2, 
and p53. To overcome the issue of silibinin’s restricted 
solubility, a PEGylated-niosomal nanoparticle (NPs) 
platform was devised to improve its delivery efficiency. 
Future investigations will explore additional types of 
colon cancer cells and other pathways implicated in cancer 
advancement.

In conclusion, in this study, PEGylated niosomal 
NPs fabricated using the thin-film hydration method 
were employed as carriers for the delivery of silibinin 
into colorectal cancer cells (SW480). Based on our 
results, the fabricated PEGylated niosomal NPs have no 
negative effects on the proliferation of human normal 
cells. Furthermore, nano-delivery of silibinin could reduce 
the proliferation of SW480 cancer cells more effectively 
than pure silibinin at the same dosage. These results 
highlight the promising effects of PEGylated-niosomal 
NPs as a nanodrug delivery system. We hope that this 
work will lay the scientific foundation for future clinical 
trials of nanotherapy using silibinin for the treatment of 
colorectal cancer.
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