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Introduction

Solid tumors are considered one of the leading causes of 
cancer-related deaths, due to their rapid tumor growth and 
local or distant metastasis. They pose critical challenges 
due to physiological characteristics and limitations in 
treatment options [1, 2]. Among the markers that have been 
extensively studied in these types of tumors are non coding 
RNAs (ncRNAs). There are several families of ncRNAs 
in mammals, some of which are: microRNAs (miRNAs), 
small interfering RNAs (siRNAs), piwi-interacting RNAs 
(piRNAs), transfer RNAs (tRNAs) and small nucleolar 
RNAs (snoRNAs) [3].

snoRNAs have an average size of 60-70 nucleotides 
(nt) and are widely distributed in the nucleolus of 
eukaryotic cells [4]. snoRNAs do not have a poly-A tail 
and are 5′-capped. While this modification is typical 
for their nuclear localization, it does not necessarily 
mean they are not exported from the nucleus. They can 
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be divided into two subtypes, according to the motif 
present in the molecule: H/ACA (SNORA) and C/D box 
(SNORD). A third group is the SCARNA, discovered in 
2002, which has presents both C/D and H/ACA domains 
and accumulates in Cajal bodies [5]. In vertebrates, most 
snoRNAs are encoded in intronic regions of coding genes 
or long non-coding RNAs (lncRNAs), and a small group 
of snoRNAs originate from intergenic regions [6].

Since their discovery, the functional role of snoRNAs 
under normal and pathological conditions has been 
investigated. SnoRNA expression can be modified 
by a variety of genetic alterations changes such as: a) 
overexpression; b) translocation; c) mutations; and d) copy 
number variations [7]. Epigenetic mechanisms can also 
alter gene expression such as: a) DNA methylation; and b) 
histone modification [7, 8]. Historically, the first snoRNA-
associated human disease described is Prader-Willi 
syndrome (PWS), a rare genetic disorder characterized by 
hypotonia and hyperphagia [9, 10]. Currently, snoRNAs 

Editorial Process: Submission:09/30/2023   Acceptance:08/18/2024

1State University of Maranhão, Zé Doca, MA, Brazil. 2Oncology Research Center, Federal University of Pará, Belém, Pará, Brazil.
3Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, Brazil.
4Postgraduate Program in Adult Health, Federal University of Maranhão, São Luís, Brazil. 5Faculty of Medicine of Ribeirão Preto, 
University of São Paulo, Ribeirão Preto, Brazil. 6Federal University of Pará, Institute of Biological Sciences, Belém-PA, Brazil. 
*For Correspondence: jackdpinho@gmail.com

Jaqueline Diniz Pinho1,2*, Gyl Eanes Barros Silva3,4, Wanderley da Costa Silva2, 
Ana Gabrielly de Melo Matos4, Larissa Rodrigues de Sousa4, Eldevan da Silva 
Barbosa1, Marcelli Geisse de Oliveira Prata da Silva2, Susanne Suely Santos da 
Fonseca2, Antonio Augusto Lima Teixeira Júnior5, Amanda Marques de Sousa2, 
Carolina Rosal Teixeira de Souza6, André Salim Khayat2,6



Jaqueline Diniz Pinho et al

Asian Pacific Journal of Cancer Prevention, Vol 252586

are known to  be participate in a wide range of human 
diseases, including, congenital heart defects, and cancer 
[11, 10].

The demonstration that snoRNA expression varies in 
cancerous tissues challenges the old dogma, according to 
which snoRNAs only function maintaining of ribosome 
biogenesis [8, 12]. In recent years, several studies have 
presented promising data on the involvement of these 
biomolecules in different types of malignant neoplasms, 
through the regulation of several molecular pathways [13, 
14]. In this context, the objective of this work was to carry 
out an integrative review addressing the main results, such 
as biological functions and clinical significance of these 
biomolecules in solid tumors.

Snornas in Lung Cancer
Works with snoRNAs in lung cancer began in 

2010 when Liao et al. [15] observed that six snoRNAs 
(SNORA80E, SNORA73B, SNORD33, SNORD66, 
SNORD76 and SNORD78) were overexpressed compared 
to tissue samples from individuals without cancer. Of 
these six snoRNAs, three (SNORD33, SNORD66, and 
SNORD76) had a sensitivity of 81.1% and a specificity of 
95.8% in distinguishing lung cancer patients from normal 
individuals.

Subsequently, Mei et al. [16] demonstrated in 
64 samples from patients with stage I lung cancer 
that SNORA42 genomic amplification resulted in an 
overexpression of tumor stem cells. Silencing of this 
small nucleolar RNA reduces the transcript levels of 
genes associated with pluripotency, such as OCT4, SOX2, 
NOTCH1, NANOG, SMO, and ABCG2. These results 
suggest that SNORA42 is essential for the expression of 

transcription factors in tumor stem cells.
Dysregulation of other snoRNAs such as SNORA21, 

SNORD28, SNORA47, SNORD66, SNORA68, and 
SNORA78 was associated with worse overall survival, in 
addition to allowing differentiation between patients with 
stage I lung cancer and normal tissue [17]. SNORD46  
knockdown results in decreased cell viability, inhibition 
of invasion, and migration capacity [13].

Recently, two studies have addressed the identification 
of these biomolecules in non-invasive samples. In the 
first one, Dong et al. [18] observed that the expression 
of SNORD55 was decreased in both plasma and tissue 
of patients in the early stages of the disease. Similar data 
were observed by Wang et al. [19] when investigating 
the expression of SNORD83A. These data support the 
potential of snoRNAs as biomarkers the early detection of 
lung cancer (Table 1). Another snoRNA, SNORA38B, was 
significantly expressed, and associated with poorer worse 
prognostic factors, including proliferation, migration, and 
cellular invasion, correlated with advanced disease stages, 
and decreased survival, thus representing a potential 
therapeutic target [20].

Two snoRNAs, SNORD42B and SNORD111, could 
serve as promising non-invasive biomarkers for early-
stage lung cancer, as they were shown to have good 
sensitivity and specificity[39]. Finally, Wan et al. [21] 
observed six snoRNAs (SNORD14A, SNORD59A, 
SNORD99, SNORD100, SNORD63, and SNORD19) 
which are related to infiltration into the tumor immune 
microenvironment, thus predicting the prognosis and 
responsiveness to immunotherapy in lung cancer patients.

snoRNAs Chromosomal 
location*

Host Gene** Biological Role and/or Clinical 
Significance

Expression 
Level

References

SNORD46 1p34.1 RPS8 Silencing of this snoRNA leads to a 
decrease in the invasive capacity of 
tumor cells

Upregulation Gong et al. 
[13]

SNORD33, SNORD66 and 
SNORD78

19q13.33, 3q27.1, 
1q25.1

RPL13A, EIF4G   GAS5 Sensitivity and specificity in distin-
guishing tumor and non-tumor tissue

Upregulation Liao et al. 
[15]

SNORA42 1q22 KIAA0907 Reduction of transcription levels 
of genes such as: OCT4, SOX2, 
NOTCH1, NANOG, SMO and 
ABCG2

Upregulation Mei et al. 
[16]

SNORA21, SNORD28, 
SNORA47, SNORD66, 
SNORA68 and SNORA78

17q12, 11q12.3, 
5q13.3, 3q27.1, 

19p13.11, 16p13.3

RPL23, SNHG1, 
ZBED3, EIF4G1, 
RPL18A, SNHG9

Associated with worse prognostic 
factors

Upregulation Gao et al. 
[17]

SNORD55 1p34.1 RPS8 Potential biomarker in non-invasive 
samples

Downregulated Dong et al. 
[18]

SNORD83A 22q13.1 RPL3 Potential biomarker in non-invasive 
samples

Upregulation Wang et al. 
[39] 

SNORA38B 17q24.2 NOL11 Associated with worse prognostic 
factors, Potential therapeutic target

 Upregulation Zhuo et al. 
[20]

SNORD42B and SNORD111 17q11.2, 16q22.1 RPL23A, SF3B3 Potential biomarker in non-invasive 
samples

Upregulation Wang et al., 
[19]

SNORD14A, SNORD59A, 
SNORD99, SNORD100, 
SNORD63 and SNORD19

11p15.1, 12q13.3, 
1p35.3, 6q23.2, 
5q31.2, 3p21.1

-, ATP5F1B, C1orf79, 
RPS12, HSPA9, GNL3

Potential biomarkers for immuno-
therapy

Upregulation Wan et al. 
[21]

SNORD78 1q25.1 GAS5 Acts on EMT and on the prolifera-
tion of tumor cells through the arrest 
of the cell cycle

 Upregulation Zheng et al. 
[40]

Table 1. List of snoRNAs Regarding Their Biological Role and Clinical Significance associated with Lung Cancer

*Host gene= https://bioinfo-scottgroup.med.usherbrooke.ca/snoDB/; **Chromosomal location = https://www.genenames.org/ 
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snoRNAs Chromosomal 
location*

Host Gene** Biological Role and/or Clinical 
Significance

Expression Level References

SNORA71A 20q11.23 SNHG17 Cell proliferation, migration, and 
invasion

Upregulation Zhang et al. [22]

SNORA15, 
SNORA41 and 
SNORD33

7p11.2, 2q33.3, 
19q13.33

CCT6A, EEF1B2 
and RPL13A

Associated with worse prognostic 
factors

SNORA15 and SNORA41 
Upregulation. SNORD33 
Downregulated

Yang et al. [23]

SNORD1C 17q25.1 SNHG16 Potential biomarker in non-inva-
sive samples

Upregulation Liu et al. [24]

SNORD15B and 
SNORA5C

11q13.4, 7p13 RPS3, TBRG4 Associated with worse prognostic 
factors

Upregulation Shen et al. [25]

SNORA21 17q12 RPL23 Potential biomarker for prognosis Upregulation Yoshida et al. [26]

SNORD126 14q11.2 CCNB1IP1 Activates the PI3K/AKT pathway Upregulation Fang et al. [27]

SNORA42 1q22 KIAA0907 Potential biomarker for recurrence 
and worse prognosis

Upregulation Okugawa et al. [41]

Table 2. List of snoRNAs in Terms of Their Biological Role and Clinical Significance associated with Colorectal 
Cancer

snoRNAs Chromosomal 
location*

Host 
Gene**

Biological Role and/or Clinical 
Significance

Expression 
Level

References

SNORD50A 6q14.3 SNHG5 Potential tumor suppressor Downregulated Siprashvili et al. [61]
SNORA55 1p34.3 PABPC4 Cell proliferation and migration Upregulation Crea et al. [29]
SNORA42 1q22 KIAA0907 Potential biomarker for prognosis Upregulation Yi et al. [42]
SNORD78 1q25.1 GAS5 Associated with worse prognostic Upregulation Martens-Uzonova et al. [43]

Table 3. List of snoRNAs about Their Biological Role and Clinical Significance associated with Prostate Cancer

snoRNAs Chromosomal 
location*

Host 
Gene**

Biological Role and/or Clinical Significance Expression 
Level

References

SNORA18L5 - CHRNA7 Tumor proliferation and growth p53 pathway Upregulation Cao et al. [30]

SNORA24 4q26 SNHG8 Associated with worse prognosis and mediates RAS 
oncogenic activity.

Upregulation McMahon et al. 
[31]

snoU2_19 - KIAA1731 Proliferation Wnt/B-catenin pathway Upregulation Wang et al. [36]

SNORD76 1q25.1 GAS5 Proliferation and EMT Wnt/B-catenin pathway Upregulation Jung et al. [32]

ACA11 4p16.3 WHSC1 Proliferation, migration, and invasion PI3K-Akt 
pathway

Upregulation Wu et al. [33] 

SNORD31 11q12.3 SNHG1 Associated with worse prognostic factors Downregulated Ding et al. [35]

SNORA52 11p15.5 RPLP2 Potential diagnostic and prognostic biomarker Downregulated Ding et al. [45]

SNORD52 6p21.33 C6orf48 Upregulates CDK1 and is associated with worse prog-
nostic factors

Upregulation Li et al. [46] 

SNORD113-1 14q32.31 MEG8 Able to inactivate the phosphorylation of ERK1/2 and 
SMAD2/3 in the MAPK/ERK and TGF-β pathways

Downregulated Xu et al. [47]

SNORD17 20p11.23 SNX5 Participate in cancer progression via p53 inhibition Upregulation Liang et al. [48] 

SNORA47 5q13.3 ZBED3 Cell proliferation and regulation of EMT-associated 
markers

Upregulation Li et al. [49]

Table 4. List of snoRNAs in Terms of Their Biological Role and Clinical Significance associated with Hepatocellular 
Carcinoma

Colorectal Cancer 
Changes in snoRNAs have also been reported in 

colorectal cancer (CRC) (Table 2), and the data presented 
demonstrate promising results.show demonstrate 
promising results. Among these studies is one by Zhang 
et al. [22], who observed that the high expression of 
SNORA71A was statistically significant in patients with 
TNM stages and lymph node metastases, in addition to 
playing having a role in the proliferation, migration, and 
invasion of CRC cells. In the same paper, the functional 

analysis of genes that are co-expressed with SNORA71A 
revealed that this snoRNA is involved in the NF-kappa 
B, Toll-like, Jak-STAT signaling pathways. Therefore, 
small nucleolar RNAs, in particular SNORA71A, may 
be involved in one of the hallmarks of cancer, namely 
immune surveillance.

In another study, SNORA15, SNORA41, and SNORD33 
were useful in the identification of cancerous tissue 
compared to normal tissue, so that the change in the 
expression of these biomolecules was also associated with 

*Host gene= https://bioinfo-scottgroup.med.usherbrooke.ca/snoDB/; **Chromosomal location = https://www.genenames.org/

*Host gene= https://bioinfo-scottgroup.med.usherbrooke.ca/snoDB/; **Chromosomal location = https://www.genenames.org/ 

*Host gene= https://bioinfo-scottgroup.med.usherbrooke.ca/snoDB/; **Chromosomal location = https://www.genenames.org/ 
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snoRNAs Chromosomal 
location*

Host Gene** Biological Role and/or 
Clinical Significance

Expression 
Level

Type of 
cancer

References

SNORA71B 20q11.23 SNHG17 Associated with worse 
prognostic factors

Upregulation Breast 
cancer

Duan et al. [50]

SNORA7B 3q21.3 RPL32P3 Proliferation, migration, and 
invasion

Upregulation Breast 
cancer

Sun et al. [51]

SNORD50A/ and 
SNORD50B

6q14.3 SNHG5 Oncogenic role in wild-type 
breast cancer p53 pathway

Downregulated Breast 
cancer

Su et al. [52] 

SNORA71A 20q11.23 SNHG17 Associated with metastasis. Upregulation Breast 
cancer

Hu et al. [53]

SNORD89 2q11.2 PPAN Proliferation, migration, and 
invasion

Upregulation Ovarium 
cancer

Zhu et al. [54]

SNORA72 8q22.2 RPL30 Able to activate the 
Notch1/c-Myc pathway

Upregulation Ovarium 
cancer

Zhang et al. [55]

SNORA70E 11q14.1 RAB30 Cell proliferation, decreased 
cell apoptosis, induced cell 
migration and invasion

Upregulation Ovarium 
cancer

Chen et al. [56] 

SNORA21 17q12 RPL23 Associated high expression 
and markers involved in 
EMT

Downregulated Gallbladder 
cancer

Qin et al. [57]

SNORA74B 5q35.1 ATP6V0E1 Activation of the AKT/
mTOR pathway

Upregulation Gallbladder 
cancer

Qin et al. [58]

ACA47, ACA10, 
SNORA58, HBII-
316, U70, U8 and 
U66

17q25.2, 
16p13.3,3q22.1, 
2p23.2, Xq28, 

17p13.1,1p22.1

SEC14L1, RPS2, 
MRPL3, WDR43, 
RPL10, ULK4 and 

RPL5

Associated with worse 
prognostic factors

Upregulation Gastric 
cancer

Wang et al. [37]

SNORD105B 19q13.2 HSPD1 Migration, invasion, 
proliferation via c-Myc

Upregulation Gastric 
cancer

Zhang et al. [38]

SNORD89 2q11.2 RNF149 Migration and proliferation Upregulation Endometrial 
cancer

Bao et al. [59]

SNORD6 11q21 JOSD3 E6-mediated degradation 
of p53

Upregulation Cervical 
cancer

Li et al. [60]

Table 5. List of snoRNAs about Their Biological Role and Clinical Significance associated with Other Types of 
Cancers

the presence of metastatic lymph nodes and the degree of 
differentiation [23]. Regarding the identification of these 
biomolecules in non-invasive samples, SNORD1C showed 
demonstrated overexpression in the serum of patients with 
colorectal cancer, in addition to being associated with 
worse prognostic factors [24].

Furthermore, the snoRNAs SNORD15B and 
SNORA5C were also dysregulated in CRC, and with their 
expression was being associated with clinical-pathological 
parameters, including age, lymphatic invasion, and history 
of colon polyps, suggesting they have oncogenic functions 
in neoplasia progression and could predict poor patient 
prognosis [25].

In addition to the above snoRNAs, SNORA21 has been 
previously implicated in cell proliferation and adhesion 
[26]. High levels of SNORD126 in CRC cells upregulated 
the PI3K/AKT pathway and increased FGFR2 expression. 
FGFR2 has attracted considerable attention as a potential 
therapeutic target in gastric cancer. Therefore, these data 
suggest that SNORD126, in addition to acting on critical 
processes of carcinogenesis via PI3/Akt regulation, may 
be a potential therapeutic target [27].

Prostate Cancer
Prostate cancer is regarded as a multistep disease 

resulting from the accumulation of genetic alterations, 

including the activation of oncogenes and the inactivation 
of tumor suppressor genes. One of the deleted regions is 
6q14-22, which encompasses the coding region of snoRNA 
U50, as observed by Dong et al. [28]. The deletion in this 
region is a candidate tumor suppressor gene. 

SNORD50A-SNORD50B has been found deleted 
in several cancer types, with its loss linked to reduced 
survival. Furthermore, a microarray screen revealed direct 
binding of SNORD50A and SNORD50B to K-Ras [61].

Crea et al. [29], showed that trevealed that SNORA55 
is upregulated in prostate cancer and was associated with 
poor a worse prognosis (Table 3), interacting with pro-
oncogenic and inflammatory pathways. Inhibition of this 
snoRNA, in turn, interfered with the growth of malignant 
cells, thus preventing their invasion.

Hepatocellular Carcinoma 
Another solid neoplasm in which the role of snoRNAs 

has been investigated is hepatocellular carcinoma 
(Table 4). SNORA18L5 has already been associated with 
cell proliferation and tumor growth [30]. Meanwhile, 
SNORA24 was associated with poor patient survival in 
addition to RAS-mediated oncogenic activity [31].

Aberrant expression of snoU2_19, in turn, facilitated 
the proliferation of hepatocellular carcionoma cells, 
inhibited apoptosis, and induced cell cycle progression, 

*Host gene= https://bioinfo-scottgroup.med.usherbrooke.ca/snoDB/; **Chromosomal location = https://www.genenames.org/
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