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Introduction

The prevalence of Epstein Barr Virus (EBV), a member 
of the herpes gamma virus family, in communities exceeds 
90% [1]. EBV is known to cause lymphoproliferation 
and is associated with B cell malignancies in immune 
deficient conditions. The virus alters the expression of 
microRNA (miRNA), a group of small non-coding RNAs, 
in infected cells, which in turn changes the expression of 
cellular genes. This can lead to the infected cell becoming 
immortal or cancerous [2].

miRNAs are non-coding RNAs that regulate gene 
expression in the post-transcriptional stage. They are 
18-23 nucleotides in size and are closely linked to various 
diseases, including cancer. Approximately one-third of 
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human gene expression is regulated by miRNAs [3].  
miRNAs play a crucial role in regulating various 

biological processes, such as organ development [4], 
stem cell self-replication, cell differentiation [5], growth, 
apoptosis, immune system regulation [6], tumorigenesis, 
tumor suppression, metastasis, and drug resistance [7]. The 
miRNAs miRNA-16-1-3p and miRNA-16-1-5p are located 
in the 13q14 gene locus and act as negative regulators of 
B-cell lymphoma protein 2 (Bcl-2). They are considered 
tumor suppressor miRNAs [8].

In many cancer cells infected with EBV, a decrease in 
the activity or deletion of miRNA-16-1 has been observed. 
As a result, the activity of the BCL-2 gene increases, 
leading to the uncontrolled proliferation of tumor cells. 
This decreases apoptosis and increases cell immortality 
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[9].
Post-transplantation lymphoid disorders (PTLD) are 

caused by the transmission of EBV from an EBV-positive 
transplant donor to a transplant recipient. Alternatively, 
PTLD may occur due to the activation of the virus in a 
transplant recipient who was latently infected with EBV 
before receiving the transplant, as a result of immune 
system weakening. Preventing PTLD in transplant patients 
is challenging due to the high prevalence of EBV in the 
community [10].

Antiviral drugs that are used to treat other diseases 
caused by EBV are ineffective in treating PTLD caused by 
EBV. Cyclophosphamide is one of the chemotherapy drugs 
used to treat lymphoproliferative disorders, lymphomas, 
and PTLD by apoptotic effect, but its use has many side 
effects [11]. PTLD can be treated with immunotherapy, 
such as rituximab, but it is expensive and only effective 
when combined with chemotherapy [12]. Reducing 
the prescription of immunosuppressive drugs is also 
recommended to avoid transplant rejection. However, 
there is currently no ideal treatment for PTLD [13].

Due to the adverse effects of conventional cancer 
treatment drugs [14, 15] and drug resistance [16], 
herbal compounds have recently been noticed for cancer 
treatment [17]. Plant derivatives, such as carotenoids, 
are significant in cancer treatment and provide a valuable 
source of anti-cancer agents. Evidence suggests that crocin 
and crocetin, carotenoids isolated from the saffron plant 
(Crocus sativus L), have anticancer effects and do not 
exhibit cytotoxic effects on normal cells [18, 19]. Crocin 
(C32H44O14, Molecular Weight: 652.68) and Crocetin 
(C20H24O, Molecular Weight: 328.40) are compounds 
that have shown promising therapeutic potentials in 
various medical contexts. Previously, reported that crocin 
and crocetin have inhibitory properties against various 
tumor cells [20-23].

By elucidating the impacts of these treatments on 
miRNA-16-1 regulation, this study aims to provide 
valuable insights into potential therapeutic strategies for 
EBV-associated diseases. To date, the effect of crocin 
and crocetin on the expression level of miRNA-16-1 in 
EBV-induced lymphoma has not been investigated. Given 
the high prevalence of organ transplantation and PTLD, 
as well as the lack of proper treatment for PTLD, it is 
important to explore the potential of these compounds in 
treating this condition. This research aims to investigate 
the cytotoxic effects of crocin and crocetin compared to 
cyclophosphamide, the main drug used in the treatment 
of lymphoma and PTLD, on B-cell lymphoma infected 
with EBV (cell line CO 88BV59-1). Additionally, the 
study examines the changes in miRNA-16-1 expression 
following these treatments in this cell line.

Materials and Methods

Cell line and reagents
This experimental study was done on CO 88BV59-1 

cell line. The human CO 88BV59-1 EBV-transformed 
B-lymphocyte (CRL-10624™) was purchased from ATCC 
(USA). The high-glucose Roswell Park Memorial Institute 
medium (RPMI 1640), penicillin-streptomycin, and fetal 

bovine serum (FBS) were obtained from Gibco BRL Life 
Technologies (USA). Additionally, Sigma-Aldrich (USA) 
provided 7-hydroxy-3H-phenoxazin-3-one-10-oxide 
(resazurin), crocin (>95%) CAS No.: 55750-85-1, crocetin 
(>95%) CAS No.: 27876-94-4, cyclophosphamide (>95%) 
CAS No: 6055-19-2, Fluorescein isothiocyanate (FITC) 
annexin V antibody, and propidium iodide (PI). TRIzol 
was obtained from Invitrogen (USA), while a real-time 
PCR Platinum SYBR Green qPCR Super Mix-UDG and 
a cDNA synthesis Kit were purchased from Invitrogen 
(USA) and Roche Diagnostic (Switzerland) and Fermentas 
(Lithuania), respectively. 

Cell culture
The CO 88BV59-1 cells were cultured in RPMI 

medium with 10% (v/v) FBS, 100 units/ml penicillin, and 
100 μg/ml streptomycin. The cells were maintained at 37 
ºC in a humidified atmosphere (90%) containing 5% CO2. 
The cells were incubated with varying concentrations of 
crocin, crocetin (0.2-200 μM), and cyclophosphamide 
(0.05-50 μM) for up to 72 hours. All treatments were 
performed in triplicate.

Cell viability assay
Cell viability was determined using the resazurin 

reagent. To achieve this, CO 88BV59-1 cells (1×105) 
were added to each well in 96-well culture plates treated 
with crocin, crocetin (0.2-200 μM), and cyclophosphamide 
(0.05-50 μM) for up to 72 hours. Afterwards, 20 μl of the 
resazurin reagent was added to each well, and the plates 
were incubated for 4 hours. The fluorescence intensity of 
the product resorufin, which is proportional to the number 
of viable cells per well, was measured using a fluorescence 
Victor X5 2030 Multilabel Plate Reader (Perkin Elmer, 
Shelton, Connecticut) with excitation at 530 nm and 
emission at 590 nm.

Cell apoptosis assay 
The apoptosis effects of crocin, crocetin, and 

cyclophosphamide on CO 88BV59-1 cells were assessed 
by FITC annexin V/PI staining. The cells were treated with 
crocin (177.4, 119.5, and 53.2 μM), crocetin (158.1, 105.7, 
and 13.1 μM), and Cyclophosphamide (142.5, 38.3, and 
4.7 μM) for different durations (24, 48, and 72 h) based 
on their respective IC50 values. 

Following treatment, the cells were incubated with 
FITC annexin V/PI and analyzed using a flow cytometer 
(BD Biosciences, USA). Data analysis was performed 
using FlowJo software (TreeStar Inc.).

Real-time PCR quantification 
Real-time PCR quantification was carried out using 

SYBR Green. The CO 88BV59-1 cells were treated with 
crocin (177.4, 119.5, and 53.2 μM), crocetin (158.1, 105.7, 
and 13.1 μM), and cyclophosphamide (142.5, 38.3, and 4.7 
μM) for up to 72 hours. RNA extraction was performed 
using TRIzol according to the manufacturer’s instructions. 
RNA concentration and purity were evaluated using 
spectrophotometry. Complementary DNA (cDNA) was 
synthesized for each sample using a cDNA synthesis kit 
with the universal step loop (USTL) primer [24] (Table 1).  
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Results

Effect of Crocin, crocetin and cyclophosphamide of the 
viability on CO 88BV59-1 LCL 

Crocin, crocetin and cyclophosphamide reduced cell 
viability in a dose- and time-dependent manner. The 
percentage of cell survival decreased with increasing 
concentration. The lowest cell viability was observed at 
a concentration of 200 μM for crocin and crocetin, and at 
a concentration of 50 μM for cyclophosphamide after 72 
hours of incubation (P>0.001) (Figure 1). Table 2 shows 
the IC50 values at different incubation times.

Apoptotic effect of Crocin, crocetin and cyclophosphamide 
on CO 88BV59-1 LCL 

To investigate the apoptotic effects of crocin, crocetin, 
and cyclophosphamide on the CO 88BV59-1 LCL cell 
line, the cells were treated with the compounds for 24, 48, 
and 72 hours, according to the obtained IC50 values. The 
apoptotic effects were then determined by flow cytometry 
using Annexin V and PI (Figure 2A). Figure 2B shows that 
crocin, crocetin, and cyclophosphamide had a significant 
apoptotic effect on the cell line compared to the control 
group’s cells (untreated) (P<0.001).

Effect of Crocin, crocetin and cyclophosphamide on 
miRNA-16-1 in CO 88BV59-1 LCL

Crocin, crocetin, and cyclophosphamide did not affect 

The primers for miRNA-16-1-3p and miRNA-16-1-5p 
were designed using the Beacon software (Applied 
Biosystems; see Table 1).

Gene expression changes for miRNA-16-1-3p and 
miRNA-16-1-5p were determined using Platinum SYBR 
Green qPCR Super Mix-UDG from Invitrogen and the 
Applied Biosystems Step One Plus Detection System 
(ABI, USA). The reaction mixture consisted of 1.5 μl of 
forward primers (10 μmol), 1.5 μl of Universal Reverse 
primer (10 μmol), 1 μl of cDNA (250-400 ng), 25 μl of 
SYBR mix, and 21 μl of dH2O. The thermocycler was 
optimized with a short hot-start at 95 °C for 15 min, 
followed by 40 cycles, each consisting of denaturing at 
95 °C for 15 secs, annealing at 60 °C for 45 secs, and 
extension at 72 °C for 30 sec [24] (Table 1).

Gene expressions were normalized to the housekeeping 
miRNA, mi-RNA U6. The samples were run in triplicate, 
and the fold difference of expression in the treated and 
untreated samples was calculated using the 2-ΔΔCt method 
[24]. 

Statistical analysis
The data were analyzed using one-way analysis of 

variance (ANOVA) with Tukey’s multiple comparisons 
post-hoc test in the Graph Pad PRISM software (Version 
6, Graph Pad Software, CA). The results were presented 
as mean ± SE. A p-value of less than 0.05 was considered 
statistically significant.

mi-RNA (5′ >3′) sequence (C º)
USTL primer 5-GAAGGCGAGGAGCAGATCGAGGAAGAAGACGGAA 90

GAATGTGCGTCTCGCCTTCTTTCNNNNNNNN-3
hsa-miR-16-1-3p 5-CCAGUAUUAACUGUGCUGCUGA-3
hsa-miR-16-1-3P-F primer 5-ACACTCCAGCTGGGCCAGTATTAACTGTGCTGCTG-3 60
hsa-miR-16-1-5p 5-UAGCAGCACGUAAAUAUUGGCG-3
hsa-miR-16-1-5P-F primer 3-5-ACACTCCAGCTGGGTAGCAGCACGTAAATATTGGC 60
Universal Revers primer 5-TGGTGTCGTGGAGTCG-3 59/8
U6 internal control F primer 5-AACGCTTCACGAATTTGCGT-3 59/1
U6 internal control R primer 5-CTCGCTTCGGCAGCACA-3 59/1

Table 1. Primers were Used to Determine the Expression of hsa-miR-16-1 

Figure 1. The Effects of Crocin (A), Crocetin (B), and Cyclophosphamide (C) on the Viability of CO 88BV59-1 
Cells were Investigated. The cells were treated with different concentrations of crocin, crocetin (0.2-200 μM), and 
cyclophosphamide (0.05-50 μM) for up to 72 hours. Cell viability was determined using the resazurin assay. However, 
the effect of cyclophosphamide on cell viability was not significant. The results show that treatment with crocin and 
crocetin had a significant effect on cell viability compared to untreated control cells (concentration of 0) (*p < 0.05, 
**p < 0.01, ***p < 0.001). 
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Figure 2. The Effects of Crocin, Crocetin, and Cyclophosphamide on the Apoptosis of CO 88BV59-1 Cells were 
Evaluated Using Annexin V and Propidium Iodide Double-Staining. The fluorescence intensity of annexin V and 
PI double-stained cells treated with crocin (177.4, 119.5, and 53.2 μM), crocetin (158.1, 105.7, and 13.1 μM), and 
cyclophosphamide (142.5, 38.3, and 4.7 μM) based on their IC50 value for 24, 48, and 72 h (based on table 2), was 
represented in a dot blot (2A). Quantitative analysis was performed using Flow Jo software. The data is presented as 
the mean ± SEM of three independent experiments performed in triplicate. Statistical analysis showed a significant 
difference between treated and untreated control cells (concentration of 0) (***p < 0.001) (2B). 

Figure 3. Effects of Crocin, Crocetin, and Cyclophosphamide on the Expression of miRNA-16-1-3p and miRNA-16-1-5p 
Genes in CO 88BV59-1 Cells were Investigated. The cells were treated with crocin (177.4, 119.5, and 53.2 μM), 
crocetin (158.1, 105.7, and 13.1 μM), and cyclophosphamide (142.5, 38.3, and 4.7 μM) based on their IC50 values 
for 24, 48, and 72 h (based on table 2). The expression levels of miRNA-16-1-3p and miRNA-16-1-5p genes were 
determined by real-time PCR. The data represent the mean ± SEM of three independent experiments performed in 
triplicate. Comparisons were made to untreated control cells (concentration of 0). 

24 h 48 h 72 h
Crocin (µM) 177.4±0.08 119.5±0.13 53.2±0.12
Crocetin (µM) 158.1±0.11 105.7±0.09 13.1±0.13
Cyclophosphamide (µM) 142.5±0.20 38.3±0.08 4.7±0.12

Table 2. The IC50 Values of Crocin, Crocetin, and Cyclophosphamide were Determined in the CO 88BV59-1 Cell Line 
after up to 72 hours of Incubation. 

the expression of miRNA-16-1-3p and miRNA-16-1-5p in 
CO 88BV59-1 cells. Figure 3 shows the effects of these 
treatments on the expression of miRNA-16-1-3p and 
miRNA-16-1-5p genes in CO 88BV59-1 cells up to 72 h. 
The expressions of miRNA-16-1-3p and miRNA-16-1-5p 

genes were not significantly altered in these cells treated 
with crocin, crocetin, and cyclophosphamide compared 
to control (untreated) cells (p >0.05).
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Discussion

The study aimed to investigate the effect of crocin and 
crocetin, compared to cyclophosphamide as a standard 
drug, on the expression level of miRNA-16-1 in B-cell 
lymphoma in vitro. The study found that crocin and 
crocetin had a significant effect on the expression level of 
miRNA-16-1 on CO 88BV59-1 LCL cell line, suggesting 
their potential as a treatment option. The study is the 
first of its kind to investigate this effect. In this study, the 
cytotoxicity and apoptotic effect of crocin and crocetin 
in different concentrations were evaluated in comparison 
with cyclophosphamide against CO 88BV59-1 LCL cell 
line, which is a type of transformed B cell infected with 
EBV virus.

The study results indicate that cyclophosphamide 
significantly reduces the viability of CO 88BV59-1 LCL 
cells, which is consistent with previous reports on the 
inhibitory and therapeutic properties of cyclophosphamide 
against various tumor cells [25]. Crocin and crocetin 
were found to significantly reduce the viability of CO 
88BV59-1 LCL cells, which is consistent with previously 
published reports on their inhibitory properties against 
various tumor cells [20-23].

The present study demonstrates that treatment 
with crocin, crocetin, and cyclophosphamide inhibits 
the growth of the CO 88BV59-1 LCL cell line in a 
time-dependent manner. This result is consistent with 
previous research investigating the induction of early 
and delayed apoptosis in lymphoma cells treated with 
cyclophosphamide [25]. 

The apoptotic effects of crocin and crocetin are 
consistent with previous research, although those studies 
were conducted on cell lines other than lymphoma. Crocin 
has been shown to be safe in in-vivo models and can induce 
significant apoptosis in the breast cancer cell line MCF-7 
[26]. Research has demonstrated that crocin can induce 
apoptosis in chemotherapy-resistant cervical cancer cells 
[27]. In a separate study, it was found that crocin exhibits 
antitumor properties and can improve melanoma tumors 
in vivo [28]. The anticancer properties of crocetin have 
been confirmed in in vitro tests by several studies [20, 
21, 29, 30]. The study evaluated the expression levels of 
miRNA-16-1 in cells treated with crocin, crocetin, and 
cyclophosphamide. The results showed no significant 
changes in the expression level of miRNA-16-1-3p and 
miRNA-16-1-5p in CO 88BV59-1 cells treated with the 
aforementioned substances compared to untreated cells.

Numerous studies have investigated the cytotoxic 
effects of crocin [19, 23, 26], crocetin [20, 21], and 
cyclophosphamide [25] on tumor cells. It is important 
to note that one miRNA can control the expression of 
several proteins at the translational level [31, 32], while 
conversely, the expression of one protein can be controlled 
by several miRNAs [32, 33]. Therefore, the lack of 
effect of crocin, crocetin, and cyclophosphamide on the 
expression level of miRNA-16-1-3p and miRNA-16-1-5p 
in CO 88BV59-1 LCL cell line can be interpreted as 
follows:

The initial interpretation posits that crocin, crocetin, 
and cyclophosphamide augmented apoptosis in the CO 

88BV59-1 LCL cell line via an independent mechanism 
involving miRNA [31, 32].

The second interpretation suggests that crocin, 
crocetin, and cyclophosphamide may have increased the 
expression of other miRNAs that control the Bcl-2 protein, 
such as miRNA-206 [34], miRNA-181b [35], miRNA-
216a [36], and miRNA-34a [37]. This increase in miRNA 
expression may have led to a decrease in the expression 
of the Bcl-2 protein and an increase in the production of 
P53 [32, 33], ultimately resulting in the apoptosis of the 
CO 88BV59-1 LCL cell line.

The third interpretation suggests that crocin, crocetin, 
and cyclophosphamide may have reduced the levels of 
EBV miRNA, including miR-BART16, BHRF1, and 
BART7-3p. These miRNAs inhibit the expression of 
proteins such as BAX [38], P27 [39], and P-10 [40], 
respectively, which are involved in the intrinsic pathway 
of apoptosis [41]. By increasing the production and 
expression of apoptotic proteins, these compounds may 
have induced apoptosis in the CO 88BV59-1 LCL cell 
line.

However, there has been no research conducted on 
the effect of crocin, crocetin, and cyclophosphamide on 
the expression of miRNA-16-1-3p and miRNA-16-1-5p 
in cancers, making it impossible to compare the present 
results with previous studies.

The study’s limitations include the lack of examination 
of apoptotic and anti-apoptotic genes, other miRNAs 
involved in the process of apoptosis, and the expression 
of genes and miRNA of the EBV virus. These limitations 
were due to budget constraints.Furthermore, the immune 
system is of great significance in the prevention and 
control of cancers, with cytokines playing a pivotal role 
in this function [42-44], It is recommended that the impact 
of crocin and crocetin on the cells of the immune system 
and the expression of cytokines be evaluated. Moving 
forward, further exploration of these compounds’ efficacy 
and safety profiles in the context of B cell transformation 
could pave the way for novel treatment approaches with 
potential clinical applications. 

In conclusions, crocin and crocetin induce apoptosis 
in a dose- and time-dependent manner, similar to 
cyclophosphamide, in the CO 88BV59-1 LCL cell line. 
These preclinical studies suggest evaluating the effect of 
crocin and crocetin in EBV-associated B-cell lymphoma.
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