
Asian Pacific Journal of Cancer Prevention, Vol 25 3609

DOI:10.31557/APJCP.2024.25.10.3609
Machine Learning Models for Predicting HER2 Status

Asian Pac J Cancer Prev, 25 (10), 3609-3618

Introduction

Breast cancer (BC), characterized by uncontrolled cell 
proliferation, presents a considerable challenge in the realm 
of global health, significantly contributing to morbidity 
and mortality among women [1, 2]. It is recognized as one 
of the most prevalent malignancies affecting the female 
population, with the World Health Organization reporting 
a notable incidence of approximately 2.3 million new 
cases in 2020 [3]. A pivotal factor in the diagnosis and 
treatment of BC is the Human Epidermal Growth Factor 
Receptor 2 (HER2) gene, known to be overexpressed in 
roughly 20% of BC cases [4, 5]. This overexpression 
is associated with aggressive molecular subtypes of 
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lobular and ductal carcinoma, underscoring the urgency 
for precise prediction of HER2 status [6, 7]. Accurate 
determination of HER2 status is crucial, as it not only 
influences prognosis but also guides the use of targeted 
therapies, highlighting the transition towards personalized 
treatment paradigms in oncology [8, 9]. Despite significant 
strides in the treatment of BC, accurately and reliably 
predicting HER2 status from clinical and pathological 
data remains a substantial gap in current practices. In 
light of the critical role of HER2 in BC prognosis and 
treatment, several studies have aspired to enhance the 
prediction accuracy of HER2 status. Machine learning 
(ML) approaches have emerged as a promising avenue, 
leveraging computational algorithms to refine diagnostic 
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accuracy and patient outcomes. The diagnostic process 
across various types of cancers can be time-consuming 
for experts, underscoring the essential role of computer-
assisted systems in BC diagnosis [10, 11]. Many studies 
have proved the important role of computer-aided 
diagnostics (CAD) in the early detection and classification 
of BC [12, 13]. This study distinguishes itself from prior 
research by focusing on HER2 status prediction using ML 
algorithms in BC diagnosis, while previous studies have 
highlighted the significance of HER2 as a biomarker and 
the efficacy of targeted therapies, with one or two models 
and a small dataset [14, 15]. These advancements in data 
mining and ML algorithms have significantly enhanced 
diagnostic precision. Umer et al. [16] have identified 
the challenges presented by the vast and heterogeneous 
nature of healthcare databases, highlighting the potential 
of Artificial Intelligence (AI) and ML to address these 
complexities through accurate and tailored diagnostic 
systems. Ming Ni et al. [17] utilized a Fisher discriminant 
analysis model based on radiomic features from MRI to 
predict clinicopathological subtypes of breast cancer with 
high accuracy. Researchers also developed an XGBoost 
machine learning model using radiomic fusion features 
from PET/CT images to predict HER2 expression status in 
breast cancer patients, demonstrating improved predictive 
performance compared to other models [18]. Additionally, 
a CNN approach was developed to predict HER2 status 
and response to trastuzumab therapy using hematoxylin 
& eosin (H&E) stained tumor samples, achieving high 
accuracy in predicting both slide-level HER2 status and 
treatment response [19]. Given the pivotal role of HER2 
status in guiding BC treatment and the existing gaps in its 
precise prediction, this study hypothesizes that advanced 
ML models can significantly improve the prediction 
accuracy of HER2 status from clinical and pathological 
data. This hypothesis is based on the idea that computer 
algorithms can find complex patterns in healthcare data 
that are hard to see with traditional diagnostic methods.  
The objective of this work is to evaluate the efficacy 
of various classification models, including Logistic 
Regression (LR), Random Forest (RF), LightGBM 
(LGBM), and CatBoost (CB), in predicting the HER2 
status in BC diagnosis. This study aims to bridge the gap 
in accurate HER2 status prediction, thereby facilitating 
the development of personalized treatment strategies. 
Effective treatment of BC depends on several clinical 
parameters; therefore, accurate assessment of HER2 
presence in BC is crucial for therapeutic decision-making 
[20]. Although targeted therapies such as trastuzumab and 
pertuzumab have significantly improved the prognosis 
for HER2-positive BC, these drugs are designed to 
target the overproduction of HER2, which can slow 
or stop tumour growth and improve patient outcomes 
[21, 22]. A significant contribution of this research lies 
in its comprehensive evaluation of ML models using 
a robust methodological framework that integrates a 
comprehensive evaluation of our models. This approach 
not only enhances the precision and reliability of 
predictions but also offers insights into the comparative 
performance of different algorithms, underscoring the 
strengths and weaknesses of each model, by leveraging 

a detailed analysis of clinical and pathological factors 
associated with BC outcomes. This study will refine HER2 
prediction, improving diagnostic tools and treatment 
planning in personalized oncology care.

Materials and Methods

Study design and data collection 
This prospective cohort study aims to investigate the 

determinants of BC outcomes. The study enrolled 109 
BC patients, and data collection occurred from 2018 
to 2020 at EHS Abdellah Nouaouria, El-Bouni-Annaba 
Hospital in Algeria, and the Anti-Cancer Center (CAC), 
University Hospital of Annaba, Algeria. The inclusion 
criteria consisted of histologically confirmed diagnosis 
of BC, availability of complete medical data including 
diagnostic test results, administered treatments, and 
follow-up outcomes, as well as sufficient information on 
clinical and pathological characteristics such as disease 
stage, histological type, hormone receptor (ER/PR) and 
HER2 status. Patients diagnosed with any other types of 
cancer in addition to BC, those with incomplete medical 
data or missing records, individuals with a history of 
prior illnesses or treatments that could potentially affect 
the study outcomes, and patients with significant co-
morbidities or underlying health conditions were excluded 
from the study. Data collection was performed using a 
standardized data collection form, extracting demographic 
information and clinical characteristics including age, 
tumour size, number of nodes, metastasis, histologic type, 
stage, hormone receptor status, and HER2 status from 
medical records. 

Ethics approval and consent to participate
The present study prospectively analyzes data retrieved 

from medical records. It adheres to the principles outlined 
in the Declaration of Helsinki and received approval from 
the local ethics committee at CHU Ibn Roched (No. 1726). 
Informed consent was obtained from all participants prior 
to their involvement in the study.

Machine Learning analysis
Four ML models, namely LR, RF, LGBM and 

CB, were implemented and evaluated using Python 
and supervised learning models were used. Data pre-
processing was conducted by removing records containing 
missing values before training the models, ensuring the 
quality and consistency of the training data.   

Baseline characteristic of BC cases according to HER2 
status

To describe the HER2 status in our dataset, we first 
summarized the study population using descriptive 
statistics. Categorical variables were presented as 
frequencies and percentages, providing an overview of 
the distribution of HER2 status. To further investigate 
the relationship between HER2 status, age, and hormonal 
subtype, we employed boxplots. The associations between 
the predictor variables (age, hormonal subtype) and the 
dependent variable (HER2 status) were assessed using 
LR. We examined the coefficients (odds ratios) and their 
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Positives)                                                                          (7)

At least, we employed two essential metrics to evaluate 
the performance of our classification models: AUC-
ROC (Area Under the Receiver Operating Characteristic 
Curve) and loss function. AUC-ROC is a commonly used 
measure to assess the discriminatory ability of a model by 
quantifying its capability to distinguish between positive 
and negative classes. It ranges from 0.5 to 1.0, with a value 
of 1.0 indicating perfect performance. Also, loss function 
quantifies the discrepancy between model predictions and 
actual values, with a lower loss value indicating a better 
alignment between predictions and ground truth [24].

The common approach to solve supervised learning 
tasks is to minimize the loss function L:

L(f(x), y) = Σ[wi x l(f(xi), yi)] + J(f)                                              (8)

Where: 
l(f(x), y) is the value of the loss function at the point 

(x, y). 
wi is the weight of the i-th object.
J(f) is the regularization term.

The loss function L measures the discrepancy 
between the predicted output f(x) and the true label y for 
a given input x. It is computed by summing the weighted 
individual losses l(f(xi), yi) over all training examples, 
where each example’s weight wi reflects its relative 
importance [25, 26].

Results

Baseline characteristic of BC cases according to HER2 
status

Table 1 showed that the median age at diagnosis was 
47 (31-75) years. Overall, 77 (77.46%) patientswere 
aged 50 years or below, while 32 (29.36%) patients were 
above 50 years. Upon HER2 biopsie’s evaluation, 85 
(77.98%) revealed positive expression, while 24 (22.01%) 
revealed no HER2 expression. Regarding the tumor grade, 
frequencies were 71.56%, 3.67% and 24.77% for grade II, 
grade I and grade III, respectively. The histological results 
showed that ductal carcinoma was the most common 
histological subtype (87.16%), while lobular carcinoma 
was less frequent (12.84%).

Regarding hormonal subtype, luminal A subtype 
was the most frequent (59.63%), followed by luminal B 
(21.10%), HER2 overexpression (8.26%), and basal-like 
subtype (11.01%).  We explored the relationship between 
HER2 status and the variables of interest; we used boxplots 
to visualize the distribution of HER2+ and HER2- cases 
and hormonal subtype across age (Figure 2). The median 
age for both HER2+ and HER2- groups was found to be 
47 years. The interquartile range (IQR) for the HER2+ 
and HER2- groups ranges from 43 to 50 and from 42 to 
54, respectively. In contrast, the HER2- group exhibits 
a wider spread of ages, suggesting greater variability in 
age within this group.  In the other hand, the median age 
for each subtype is as follows: 47 for Luminal A, 45 for 
Luminal B, 49 for HER2 overexpression, and 49.5 for 

associated p-values to determine the significance of these 
associations. In addition to LR, we utilized an RF model 
to identify different features associated with HER2 status.  
The importance score of each feature was calculated using 
the trained RF model, representing its contribution to the 
prediction accuracy.

Model Implementation
To create predictive models for HER2 status 

classification, we used four machine learning (ML) 
algorithms: Logistic Regression (LR), Random Forest 
(RF), LightGBM (LGBM), and CatBoost (CB). These 
models were chosen based on their effectiveness and 
established usage in similar tasks. For more details about 
RF, LGBM, and CB, readers are referred to Saber M et al. 
[23]. The different steps of this experimentation process 
are graphically represented in the flowchart (Figure 1). 
All metrics were performed with the same split test train, 
ensuring a more objective and reproducible approach.

Model performance evaluation
The model performance evaluation focused primarily 

on the accuracy metric, which provides a comprehensive 
measure of the overall precision of the models predictions 
compared to the true labels. 

Accuracy = TP + TN TP + FP + FN + TN × 100           (1)        

By training the models on a comprehensive dataset, 
the study leveraged the capabilities of these algorithms 
to achieve accurate classifications and predictions. 
Additional metrics, including precision, recall, F1-
score, sensibility and sensitivity were also computed to 
gain a deeper understanding of the model performance, 
considering true positives, false positives, and false 
negatives. 

Recall = TP / (TP + FN) x 100                                (2)
Precision = TP / (TP + FP) x 100                              (3)
F-measure = 2 x Precision x Recall / (Precision + Recall)                                                                                                                                          
                                                                                            (4)

The confusion matrix was calculated to further assess 
the model’s performance. 

ER = (FN + FP) / (TP + FP + FN + TN) = 1 - Accuracy   (5)

Sensitivity, also referred to as the true positive rate, 
is a crucial performance metric in binary classification 
models. It quantifies the model’s ability to correctly 
identify positive examples. 

Sensitivity = True Positives / (True Positives + False 
Negatives)                                                                        (6)

Specificity, also known as the true negative rate, is 
another important measure in binary classification. It 
assesses the model’s ability to correctly identify negative 
examples. 

Specificity = True Negatives / (True Negatives + False 
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All patients (n = 109)
n (%)

HER2+ (n = 85)
n (%)

HER2- (n = 24)
n (%)

Median Age (years) 47 (31-75) - -
     ≤ 50 77 (77.64) 58 (68.23) 19 (79.16)
     > 50 32 (29.36) 27 (31.76) 5 (20.83)
NTGM Grade
     I 4 (3.67) 3 (3.52) 1 (4.16)
     II 78 (71.56) 63 (74.11) 15 (62.50)
     III 27 (24.77) 19 (22.35) 8 (33.33)
Histological subtype
     Ductal carcinoma 95 (87.16) 72 (84.70) 23 (95.83)
     Lobular carcinoma 14 (12.84) 10 (11.76) 4 (16.66)
Hormonal subtype
     Luminal A 65 (59.63) 61 (71.76) 4 (16.66)
     Luminal B 23 (21.10) 12 (14.11) 11 (45.83)
     HER2 overexpression 9 (8.26) 0 (0.00) 9 (37.50)
     Basal Like 12 (11.01) 12 (14.11) 0 (0.00)

Table 1. Patient’s Distribution According to HER2 Status.

Figure 1. Methodology and Performance Evaluation of Predictive Models for HER2 Classification in Breast Cancer 

Triple Negative. The IQR represents the range between the 
25th and 75th percentiles of the age distribution. The IQR 
for Luminal A, Luminal B, and both HER2 overexpression 
and Triple Negative subtypes,  indicating that the age 
distribution in Luminal A has a wider spread compared 
to the other subtypes. Additionally, we performed LR 
analysis to evaluate the influence of these variables on 
HER2 status (Table 2). 

Furthermore, our analysis revealed that the variable 
“BMI” exhibits a significant negative association with 
HER2. Each unit increase in BMI is associated with a 
decrease of 69.17% in the odds of the dependent variable. 
The low p-value (p= 0.0098) confirms the significance 
of this association. The variable “Hormonal Subtype” 
exhibits a positive association with the dependent variable, 
but the p-value was > 0.05. The odds ratio of 2.0935 
suggests an increase in the odds of the dependent variable.

Based on the feature importance scores obtained for 

the RF model (Figure 3), the hormonal subtype is the most 
significant feature and has the highest significance score of 
0.30. The age and the tumour size (T) are also important 
features with scores of 0.20 and 0.09, respectively. 
This results suggests that the RF model’s prediction is 
significantly influenced by both age and tumour size. 
Other features such as Lymph Node (N), Progesterone 
Receptor (PR), and Estrogen Receptor (ER), as well as 
BMI, also have some importance with scores of 0.05 to 
0.07. However, Grade NGHT, Ki67, Metastasis (M), and 
Histological Type features have lower importance scores 
with values under 0.04

Machine learning models
The results presented in Figure 4 are based on 

evaluating the models. The performance of each model 
in predicting the HER2 status in BC is as follows: the LR 
model achieved an accuracy of 90.90% with a precision 
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Figure 2. (a) HER2 dependent and (b) Hormonal subtype-dependent variation in age distribution. 

Figure 3. Feature Importance Plot for Random Forest  

Variables Coefficient  p-value OR   (IC95%)
Age -0.0343 0.2617 0.9661 [0.9334 - 1.0000] 
BMI -1.1764 0.0098 0.3083 [0.0956  - 0.9998] 
Grade NGHT 0.2294 0.8371 1.2578 [0.9999 - 1.5835] 
Hormonal Subtype 0.7388 0.2330 2.0935 [1.0004 - 4.3847] 
T -0.2308 0.5368 0.7938 [0.6312 - 0.9999] 
N -0.1923 0.6263 0.8250 [0.6811 - 0.9999] 
M -0.0680 0.8884 0.9341 [0.8738 - 1.0000] 
Histological Type -0.1359 0.6833 0.8728 [0.7629 - 1.0000] 
Ki67 0.1082 0.8236 1.1142 [0.9329 - 0.9999]
PR 0.3119 0.2986 1.3660 [1.0004 - 1.8653] 
ER -0.4549 0.5622 0.6344 [0.4023 - 0.9992] 

Table 2. Association between the Infrared-AI Software Test Results and Patient Characteristics.

of 77.77%, recall of 100%, and F1-score of 87.5%. The 
RF and LGBM models achieved an accuracy of 86.36% 
with a precision of 75.0%, recall of 60.0%, and F1-score 
of 66.67%. The CB model outperformed the others with 

an accuracy of 95.45%, precision of 100%, recall of 
80.0%, and F1-score of 88.89%. These results highlight 
the superior performance of CB in predicting the HER2 
status in BC.
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Figure 4. The Performance Indicator (a) Accuracy, Recall, Precision and F1-Score; (b) Specificity and Sensitivity of 
the proposed models.  

Figure 5. Confusion Metrics of Logistic Regression (LR), Random Forest (RF), LightGBM (LGBM) and CatBoost 
(CB). 

The specificity and sensitivity values for each model 
represent specific outcomes obtained during the evaluation 
of classification model performance. For the LR model, 
it indicates that the model has a specificity of 86% and a 
sensitivity of 100%. This means that the LR model has a 
relatively high ability to correctly identify negative and 
positive examples.

For the RF model and LGBM model, the specificity 
and the sensitivity were 94% and 60%, respectively. 
Finally, CB showed high values of specificity and 
sensitivity (100% and 80%), indicating a good ability 
to identify both positive and negative examples. The 
LR model achieved an accuracy of 90.90%, indicating 
that it correctly predicted the HER2 status of BC with a 
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Figure 6. Area Under the Receiver Score and Loss for each model (a) ROC with AUC scores; (b) Loss for the 
implemented models 

Figure 7. The Cross-Validation Score/Value According to the Number of Features in each Iteration. LG, Logistic 
Regression; RF, Random Forest; LGBM, LightGBM; CB, CatBoost 

relatively high level of accuracy. As it is demonstrated in 
Figure 5, the confusion matrix for this model shows a true 
negative count of 13 true positive count, 7 false positives 
and 2 false negatives. The RF model and LGBM achieved 
an accuracy of 86.36%. The confusion matrix reveals 
16 true negatives, 3 true positives, 0 false positive and 
1 false negative. This indicates that the model correctly 
identified a significant portion of negative cases but had 
some misclassifications for positive cases. The CB model 
stands out with an impressive accuracy of 95.45%. The 
confusion matrix demonstrates its capability, with 17 true 
negatives, 4 true positives, 1 false positive and 0 false 
negative. This suggests a high level of correct predictions 

for both negative and positive cases.
Based on the obtained results, the used classification 

models have demonstrated good performance in terms 
of AUC-ROC for HER2 status prediction. Among the 
evaluated models, LR achieved an AUC-ROC of 0.930 
indicating a very good ability to discriminate HER2 status. 
Additionally, RF, LGBM and CB models exhibited good 
performance with AUC-ROC values of 0.89, 0.88 and 
0.87, respectively. The results of the loss function for the 
different classification models were also informative. LR 
presented a loss of 0.422, indicating some divergence 
between the predicted values and the actual values of 
HER2 status. The RF model displayed a slightly higher 
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loss with a value of 0.321, suggesting a slightly higher 
dispersion of predictions compared to the actual values. 
On the other hand, the LGBM and CB models exhibited 
remarkable performance with losses of 0.297 and 0.235, 
respectively. These low loss values indicate a high 
agreement between the predictions and the actual values 
of HER2 status, demonstrating the accuracy and quality 
of these models in predicting HER2 status (Figure 6).

Overall, the results suggest that CB stands out as 
the top-performing model for predicting HER2 status in 
BC. It demonstrates exceptional performance with high 
accuracy, precision, recall, AUC-ROC, and minimal loss. 
LR also performs well, especially in terms of accuracy 
and AUC-ROC. LGBM excels in AUC-ROC and 
demonstrates low loss, while RF, slightly less accurate, 
shows higher loss values. These results provide a distinct 
ranking of model performance, with CB and logistic 
regression emerging as the leading performers (Figure 7).

Discussion

HER2 positive cancers are associated with faster 
growth and are likely to respond to targeted therapy, 
while HER2 negative cancers grow more slowly and are 
less likely to recur or spread. About 20% of patients with 
metastatic BC have overexpression of HER2 gene [27]. 
The test is conducted via immunohistochemistry (IHC) to 
quantify the HER2 protein on cancer cells or fluorescence 
in situ hybridization (FISH) to detect additional copies of 
HER2 genes [28]. In metastatic BC, overexpression of the 
HER2 protein is associated with severe histology features, 
high mortality, a high risk of breast cancer recurrence, 
and a poor response to therapeutic interventions [29-31]. 
Recent research has centered on creating ML driven 
predictive frameworks for evaluating HER2 status in 
BC, with the aim of enhancing the comprehensibility and 
dependability of these models for healthcare practitioners. 
AI and ML techniques are transforming the field of 
oncology, particularly in the diagnosis and treatment 
of BC [32-33]. Our study conducted a comprehensive 
comparative analysis of classification models, including 
LR, RF, LGBM, and CB to predict the HER2 status in 
BC diagnosis. The findings indicated that the CB model 
outperformed others regarding precision, accuracy, and 
overall performance. This superiority can be attributed 
to CB’s advanced handling of categorical features. Its 
efficient gradient boosting mechanism significantly 
reduced overfitting, a common challenge in ML models 
[34]. Notably, the CB model demonstrated a remarkable 
balance between precision and recall, crucial for 
minimizing false negatives in clinical diagnoses, thereby, 
ensuring patients receive appropriate treatment. Precise 
assessment of HER2 is also essential for identifying 
patients who may benefit from HER2 targeted therapy, 
either alone or in combination with chemotherapy, to 
ensure precision chemotherapy [35-36]. The efficacy of 
CB in our study corroborates with existing literature that 
highlights the potential of gradient-boosting models in 
medical diagnostics. By leveraging a complex ensemble 
of decision trees, CB effectively captures intricate clinical 
and pathological data patterns, which more simplistic 

models often miss [37-38]. This detailed data parsing is 
particularly vital in oncology, where subtle variations in 
gene expression can drastically alter treatment pathways. 
Moreover, our application of multiple metrics for model 
evaluation, including accuracy, F1 score, and AUC-ROC, 
aligns with best practices in ML, ensuring a holistic 
assessment of model performance. Our study identified 
several factors influencing the prediction of HER2 status 
in BC patients, including BMI, age, hormonal subtype, 
nodal involvement, and tumor size. Specifically, higher 
BMI levels were significantly associated with a negative 
HER2 status. Obesity and overweight status have been 
linked to reduced chances of achieving a pathological 
complete response (pCR) in HER2-positive luminal BC, 
particularly in the context of neoadjuvant therapy [39]. 
Additionally, meta-analyses have confirmed the negative 
impact of BMI on pCR rates in patients undergoing 
anti-HER2-based neoadjuvant therapy. Leveraging 
comprehensive clinical and pathological data, clinicians 
can make more informed and personalized treatment 
decisions, significantly impacting the management of 
BC [40]. The main subtypes of BC, including Luminal 
A, Luminal B, HER2-positive, and Triple-negative BC 
(TNBC), exhibit distinct characteristics based on hormone 
receptor and HER2 status, influencing treatment strategies 
and patient outcomes. Furthermore, age, tumour size, and 
lymph node involvement play critical roles in determining 
the stage of BC and guiding treatment decisions [41] 
by analyzing a combination of these factors, predictive 
models can aid healthcare providers in making informed 
decisions regarding treatment strategies and patient care. 
In responding to our research hypothesis, the findings 
unequivocally demonstrate that advanced ML models can 
significantly improve the prediction accuracy of HER2 
status from clinical and pathological data. This study 
addresses the gap in precise HER2 status prediction and 
sets a precedent for applying advanced computational 
algorithms in personalizing BC treatment strategies. In 
pursuit of predicting HER2 status in BC and improving 
the clarity and reliability of these models for healthcare 
practitioners, our study demonstrates significant 
methodological rigor. Indeed, a ML model capable of 
better defining predictors associated with therapy response 
may influence therapeutic decisions for these patients in 
the near future. However, it is essential to acknowledge 
limitations, such as the reliance on the evaluation of 
model performance on a specific dataset. Further studies 
and validations are necessary to confirm and generalize 
these findings.

Conclusion and Future Perspective
The CB model exhibited the highest accuracy of 

95.45% among all the tested models. It demonstrated a 
strong performance in correctly classifying both negative 
and positive cases, with a low misclassification rate. 
These findings suggest that the CB model may be the 
most reliable choice for predicting hormonal subtypes 
of BC. However, it is essential to compare this model 
with other established or emerging models to determine 
the optimal approach for predicting HER2 status. Future 
research should focus on identifying additional prognostic 
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factors such as genetic information, sequencing data, or 
patient lifestyle data, to enrich and enhance the accuracy 
of existing models.

The use of AI paves the way for more precise 
personalized medicine, where therapeutic decisions can 
be guided by reliable diagnostic predictions. Comparisons 
with other existing or emerging models are also crucial 
to determine the best approaches for predicting HER2 
status. In addition, larger and more diverse patient cohorts 
are imperative to account for variations in genetic, 
environmental and lifestyle factors that can influence 
BC outcomes. Finally, exploring the potential of multi-
omics models could open new avenues for understanding 
the underlying biology of BC and improving patient 
outcomes.
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