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Introduction

Lung cancer is the most common cancer, with 
approximately 2.21 million confirmed cases and 1.8 
million deaths recorded annually [1]. The main reason 
for the high mortality rate is that late diagnosis leads to 
poor outcomes. Histologically, lung cancer is divided 
into non-small cell lung cancer (NSCLC) and small cell 
lung cancer (SCLC); SCLC accounts for approximately 
15% of all lung cancers [2]. NSCLC, which consists 
of 85% of all lung cancer, is further divided into lung 
adenocarcinoma (LUAD) and squamous cell carcinoma 
(LUSC) [3]. Smoking remains the most common risk 
factor for lung cancer [4, 5]. Conventional treatment 
modality is associated with increased resistance toward 
therapy and metastasis to distant organs. 

Abstract

Objective: Lactate dehydrogenase is dysregulated in several cancer types. However, the mechanism of its 
dysregulation in lung cancer is not fully understood. We utilized web-based computational databases to conduct 
gene expression analysis on LDHA, identified its regulator, and explored their role in the prognosis of lung cancer. 
Methods: We used various web-based computational tools, including the UALCAN, TIMER2.0, ENCORI, TCGA 
Portal, OncoDB, and GEPIA2 datasets for lung cancer analysis in this study. We also performed survival, biological 
processes, and metastasis analysis using various computational tools. We also carried out co-expression functional 
enrichment analysis using the Enrichr and TIMER databases, multivariate analysis of survival and pathological stage, 
and transcriptional regulation analysis using the ENCORI and OncoDB datasets. Furthermore, LDHA inhibitor binding 
of withanolides was analyzed using Auto Dock Tools 1.5.6, LigPlot+, and Pymol. Results: The study found that 
the higher levels of LDHA gene expression were associated with poor prognosis and overall survival in lung cancer 
patients. We identified 11 key genes co-expressed with LDHA; out of them, two genes, MKI67 and PGK1, showed 
a strong positive correlation with LDHA and associated poor survival outcomes in LUAD patients. Furthermore, we 
also identified hsa-let-7c-5p and TMPO-AS1 as potential regulators of LDHA in LUAD. It might be possible that the 
TMPO-AS1- hsa-let-7c-5p-LDHA ceRNA network could serve as a potential regulator of aerobic glycolysis in LUAD 
and can serve as prognostic biomarkers. Further, Withanolides can inhibit the activity of LDHA and can be tested as 
an adjuvant treatment. Conclusion: We conclude that LDHA is overexpressed in LUAD, and the patients with high 
expression of LDHA exhibit poor prognosis. Further, the TMPO-AS1-hsa-let-7c-5p-LDHA ceRNA network can regulate 
aerobic glycolysis, thereby facilitating tumor growth in lung cancer.

Keywords: LDHA- TMPO-AS1- hsa-let-7c-5p- lung adenocarcinoma- E2F8- aerobic glycolysis- Withanolides

RESEARCH ARTICLE

Competing Endogenous TMPO-AS1-let-7c-5p- LDHA RNA 
Network Predicts the Prognosis of Lung Adenocarcinoma 
Patients

Cancer cells demonstrate heightened aerobic 
glycolysis, also termed as ‘Warburg effect’. Lactate 
dehydrogenase A (LDHA), which catalyzes the conversion 
of pyruvate to lactate, plays a crucial role in aerobic 
glycolysis and is recognized as a therapeutic anticancer 
target. LDHA catalyzes this process by converting 
pyruvate and NADH to lactate, which also contributes 
to epithelial-mesenchymal transition and metastasis [6]. 
LDHA plays a crucial role in cancer development and 
distribution, impacting the prognosis for cancer cells and 
the immune system. The role of LDHA in the prognosis 
of NSCLC has not been fully explored.

The tumor microenvironment is a complex ecosystem 
that includes many healthy or noncancerous cells, such 
as the immune system, signaling molecules, fibroblasts, 
and extracellular matrix [7, 8]. Hypoxia affects the 
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oxygen supply from blood vessels, leading to the Warburg 
effect and excessive intracellular lactic acid production 
[9]. Excessive lactic acid production leads to protein 
denaturation and increased phospholipases, which damage 
cell walls and release lactic acid into the environment, 
thereby affecting neighboring cells [9-11]. 

Lung cancer is a heterogeneous disease, and the 
finding of new molecular prognostic markers is of utmost 
importance. Noncoding RNAs (ncRNAs), including long 
non-coding RNAs (lncRNAs), microRNA (miRNA), 
circular RNA (cirRNA), and piwi-RNA have been reported 
to regulate the tumorigenesis of numerous human cancers, 
including lung cancer. LncRNAs, when abnormally 
expressed, are linked to cancer development and influence 
gene expression, acting as microRNA sponges that affect 
cancer cell growth, proliferation, migration, and invasion. 
TMPO antisense RNA 1 (TMPO-AS1), a lncRNA, has 
been shown to promote the progression of NSCLC by 
regulating its natural antisense transcript TMPO [12, 13].

In this study, we investigated the role of LDHA and its 
ceRNA network as prognostic biomarkers. LDHA plays 
an important role in the growth and distribution of cancer 
and tumors that affect immunity. It inhibits glycolysis 
and reduces the oxygen demand of tumor cells, which 
is important in developing alternative cancer treatments 
[14]. The ceRNA network associated with LDHA controls 
the activity of genes involved in aerobic glycolysis, 
which leads to the Warburg effect in cancer cells [15]. 
This network includes various lncRNAs, miRNAs, and 
mRNAs that interact with LDHA, influencing its activity 
and expression levels to modulate the metabolic shift 
towards glycolysis. ceRNA interacts with LDHA to change 
its activity and expression levels, which in turn changes 
the metabolic shift toward glycolysis. Understanding 
the intricate interplay within this ceRNA network holds 
immense potential for identifying novel therapeutic targets 
and prognostic biomarkers in cancer patients. Naturally 
occurring C28 steroidal lactones with an ergostane-based 
skeleton have various biological activities, including 
antitumor activity [16]. The second objective of this 
study was to examine the inhibitory effect of withanolides 
on LDHA. This study aims to find a selective molecule, 
such as withanolide (withanolide D + NADH, withaferin 
A + NADH, withanolide O + NADH, withanolide E + 
NADH, withanolide G + NADH, and withasomnine + 
NADH), that targets LDH. We conclude that LDHA is 
overexpressed in LUAD and the patients with high express 
of LDHA exhibit poor prognosis. Further, TMPO-AS1- 
hsa-let-7c-5p-LDHA ceRNA network can regulate 
aerobic glycolysis thereby tumor growth in lung cancer. 
Furthermore, we found that withaferine A and withanolide 
D bind to LDHA with a strength of -9.3 kcal/mol and -10 
kcal/mol, respectively. 

Materials and Methods

Expression analysis of LDHA
This study used publicly available databases to conduct 

gene expression analyses of lung cancer. Web-based 
computational tools, UALCAN (https://ualcan.path.uab.
edu) [17], TIMER 2.0 (http://timer.cistrome.org) [18], and 

Firehose Broad GDCA (https://gdac.broadinstitute.org) 
were used for pan-cancer analysis. Differential expression 
analysis of LDHA mRNA in lung cancer patients was 
determined using UALCAN, ENCORI (https://rnasysu.
com/encori/) [19], TCGA Portal (http://tumorsurvival.
org/index.html), OncoDB (https://oncodb.org) [20], 
and GEPIA2 (http://gepia2.cancer-pku.cn/#index) [21]. 
The relationship between LDHA expression and patient 
clinicopathological characteristics such as sub-type, 
lymph node status, smoking history, and methylation was 
analyzed using UALCAN.

Survival Analysis 
We utilized the Kaplan-Meier Plotter (https://kmplot.

com/analysis/index.php?p=background) [22] for survival 
analysis on lung cancer datasets by categorizing the 
patients with low expression and high expression data sets 
for target genes. The analysis included overall survival 
(OS), first progression (FP), and post-progression survival 
(PPS) using a Jetset probe. “Gene symbol, Affymetrix 
id: LDHA, 200650_s_at”; MKI67, 212023_s_at; EIF2, 
201142_at; ENO1L1, 201231_s_at; PGK1, 227068_at; 
PPIA, 226336_at; PSMD14, 212296_at; Gsp1, 200749_at; 
TPI1, 210050_at; TUBA1C, 209251_x_at; VDAC1, 
212038_s_at; and VDAC2, 211662_s_at.

Functional Heterogeneity Analysis and Metastasis
CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/) 

[23] was used to determine the correlation between LDHA 
gene expression and various biological processes. We 
used TNMplot (https://tnmplot.com/analysis/) [24] and 
ctcRbase (http://www.origin-gene.cn/database/ctcRbase/
index.html) [25] datasets to analyze LDHA’s role in 
metastasis, and protein atlas (https://www.proteinatlas.
org) [26] for protein expression analysis.

Co-expressed functional enrichment analysis
We identified LDHA-co-expressed genes using the 

Enrichr (https://maayanlab.cloud/Enrichr/) database 
[27] and investigated the relationship between LDHA 
and co-expressed genes in lung cancer using the TIMER 
(https://cistrome.shinyapps.io/timer/) database. We 
further validated the data using the TNMplot, GEPIA, 
and UALCAN databases.

Multivariate survival and pathological stages analysis
Using the KM plotter database, we conducted a 

mean gene expression multivariate survival analysis that 
included overall survival (OS), histology, smoking habit, 
and histology, along with smoking habit, using a Jetset 
probe. “Gene symbol, Affy id: LDHA, 200650_s_at”; 
MKI67, 212023_s_at; PGK1, 227068_at. We visualized 
the gene expression of the selected genes in different 
pathological stages using the GSCA (https://guolab.
wchscu.cn/GSCA//#/) database [28].

Non-coding regulatory network analysis
We identified and validated miRNAs targeting 

the LDHA gene using the UALCAN database and 
ENCORI. We evaluated the prognostic significance of 
LDHA-associated miRNAs with pathological parameters 
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4.2e-86 and LUSC, P = 2.5e-82) and Gepia 2 (P<0.05), as 
shown in Figure 2C-I. Furthermore, the LDHA gene was 
hypomethylated (P = 7.1e-12) in tumor tissues, compared 
to normal (Supplementary Table 1). 

Survival analysis and correlation of LDHA with 
clinicopathological status 

Then, to assess the prognostic role of LDHA in 
NSCLC, the Kaplan-Meier graphs were plotted using 
the KM Plotter database. As shown in Figure 2J and 
Table 1, results indicated that NSCLC patients with 
higher LDHA expression had a poor prognosis, with 
a significant association with OS (HR = 1.54, 95% 
CI: 1.37-1.74, P = 1.2e-12). LDHA exhibited higher 
prognostic value for determining OS in LUAD (HR = 
1.7, 95% CI: 1.42-2.02, P = 2.5e-09) compared to LUSC 
(HR = 1.23, 95% CI: 1.01-1.49, P = 0.036) (Figure 2J-O 
and Supplementary Figure 1A-D). Thus, we focused our 
further study on LUAD. Then, we plotted OS KM plots for 
LDHA gene expression in LUAD patients with different 
clinicopathological conditions, including gender, age, and 
smoking status. LDHA showed an association with OS, 
both the males and females, and smokers and non-smokers 
(Figure 2J-O)

The role of LDHA in metastasis is enriched by functional 
heterogeneity analysis

Analysis using CancerSEA demonstrates a strong 
association between LDHA gene expression and several 
biological processes, such as invasion, DNA damage, cell 
cycle, metastasis, DNA repair, and EMT (Figure 3A–G). 
Cancer cells are primarily associated with invasion, DNA 
damage, metastasis, and EMT, making them resistant 
to therapy and difficult to treat. However, a negative 
association was found between LDHA gene expression 
and apoptosis (Figure 3H-I). An increased LDHA level 
in lung cancer cells aids in metastasis and the transition 
from epithelial to mesenchymal cells, thereby achieving 
resistance to available therapies. However, we found a 
negative association between LDHA gene expression and 
apoptosis (Figure 3H-I), confirming its role as an oncogene 
in lung cancer patients. Furthermore, the ctcRbase and 
TNMplot databases confirm that LDHA plays a crucial 
role in the progression of metastasis and the proliferation 
of circulating tumor cells (Figure 3 J-K). The expression 
of LDHA was much higher in lung metastatic tumors, 
compared to primary lung tumors (Figure 3K).

Then, using Enrichr, we identified co-expressed genes 
associated with the LDHA gene in LUAD and LUSC. 
The top 11 genes associated with LDHA expression in 
LUAD were as follows: MKI67, EIF2S1, ENO1, VDAC1, 
VDAC2, PGK1, PPIA, PSMD14, RAN (Gsp1), TPI1, and 
TUBA1C. We further validated these genes using the 
TIMER database for both LUAD and LUSC. We found a 
strong positive correlation (correlation > 0.35) between 
each gene and LDHA in LUAD patients (Figure 4A-B), 
underscoring the significance of LDHA in LUAD. We also 
validated the co-expression of LDHA and its associated 
genes using TNMplot, GEPIA, and UALCAN databases, 
revealing similar results (Supplementary Figures 
2A-J, Supplementary Figures 3A-V, Supplementary 

using CancerMIRNome and UALCAN. We utilized the 
atlas of non-coding RNAs in Cancer, LncTarD 2.0 (https://
lnctard.bio-database.com) [29], ENCORI, and UALCAN 
for lncRNA analysis.

The transcriptional regulation analysis
We looked at the transcriptional factors that control the 

LDHA gene’s function using the ENCORI and OncoDB 
datasets. We also looked at their prognostic value using the 
KM Plotter, looking at OS, histology, and histology with 
smoking history (Affy ID: 219990_at; E2F8). Using the 
UALCAN database, the expression of E2F8 in LUAD was 
examined based on different cancer stages, the patient’s 
race, smoking habits, and node metastasis status.

Protein and ligand data acquisition and molecular 
docking 

Human LDHA crystal structure with bound pyrazole 
derivative (PDB ID: 5W8L) was used for in silico docking 
calculations. Pymol [30] software was used to prepare the 
structure for molecular docking. Inhibitor binding pocket 
was analyzed by comparing different LDHA-inhibitor 
complexes available in literature (PDB IDs: 5W8H, 
5W8I, 5W8J, 5W8K, 5W8L). The chemical structures 
of six ligands were obtained from the PubChem database 
[31]. Structure minimization was done using UCSF 
Chimera [32]. Auto Dock Tools 1.5.6 [33, 34] was used 
to analyze binding interactions with the LDHA protein. 
Gasteiger partial charges were assigned to ligand atoms, 
while Kollman charges were used for the protein. Ten 
docked conformations were generated for each ligand, 
and the top two hits with a docking score greater than 
the known inhibitors were selected for further validation. 
The protein-ligand complex was visualized using UCSF 
Chimera and LigPlot+ [35].

Statistical Analysis
We analyzed LDHA gene expression using t-tests and 

online database models to compare tumors and tissues. We 
examined the relationship between LDHA gene expression 
and prognosis. LDHA performance heterogeneity and 
gene enrichment A log-rank test was used to compare 
survival rates, and the significance level was P<0.05.

Results

LDHA expression in lung cancer: A Pan-Cancer Approach
First of all, we compared the expression of LDHA 

in tumors and normal tissues from various cancer types. 
As shown in Figure 1A-C, the expression of LDHA was 
highly elevated in tumors from multiple cancer types, 
including LUAD and LUSC. We found that patients 
with LUSC and LUAD exhibited higher levels of LDHA 
gene expression, with a 9-fold increase in expression 
between normal and cancerous tissue, using the UALCAN 
database. As shown in Figure 2A-B (LUAD, P = 1.6e-
12 and LUSC, P = <1e-12), a consistent pattern of 
overexpression was observed in lung cancer patients 
using various databases, including ENCORI (LUAD, P = 
1.2e-37 and LUSC, P = 2.9e-40), TCGA Portal (LUAD, P 
= 4.2e-86 and LUSC, P = 2.5e-82), OncoDB (LUAD, P = 
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S.NO Index Patient 
Number 

Hazard 
Ratio 

CI Log (P) Survival in months

Low Expression 
Cohort

High Expression 
Cohort

NSCLC

1 OS 2166 1.54 1.37-1.74 1.20E-12 90 51

FP 1252 1.54 1.3-1.82 5.90E-07 25.73 12

PPS 477 1.02 0.83-1.25 0.87 13.45 13

LUAD

2 Histology OS 1161 1.7 1.42-2.02 2.50E-09 108.97 63

FP 906 1.82 1.49-2.23 4.00E-09 33.13 12

Gender Male (OS) 566 1.71 1.35-2.17 8.40E-06 99 55

Male (FP) 461 1.75 1.33-2.3 5.30E-05 27 10.43

Female (OS) 537 1.63 1.24-2.16 0.00049 108.97 86

Female (FP) 445 2 1.48-2.71 4.40E-06 45 14

Smoking 
History

Smoker (OS) 546 1.84 1.41-2.41 5.40E-06 48 21

Smoker (FP) 516 1.46 1.13-1.9 0.0042 102 48.73

Non-Smoker (OS) 192 2.19 1.18-4.04 0.01 88.7 49.4

Non-Smoker (FP) 189 2.29 1.37-3.81 0.0011 69 25

LUSC

3 Histology OS 780 1.23 1.01-1.49 0.036 63.03 46

FP 220 0.93 0.62-1.4 0.74 11.83 13

Gender Male (OS) 514 1.17 0.93-1.46 0.19 52 43.83

Male (FP) 185 0.97 0.63-1.5 0.89 10 13

Female (OS) 213 1.38 0.91-2.1 0.13 95.5 68.6

Female (FP) 35 0.8 0.24-2.68 0.72 21.42 89.3

Smoking 
History

Smoker (OS) 244 1.22 0.84-1.76 0.3 78.9 65.1

Smoker (FP) 57 0.43 0.17-1.04 0.053 12.55 62

Non-Smoker (OS) 9 Not detected - -

Non-Smoker (FP) 1 Not detected - -

Table 1. Survival Analysis of LDHA in Lung Cancer

S.NO. Gene Index Patient Number Hazard Ratio CI Log(P)
1 MKI67 OS 2166 1.52 1.35-1.71 4.70E-12
2 EIF2S1 OS 2166 1.15 1.02-1.29 0.023
3 ENO1 OS 2166 1.35 1.19-1.52 9.70E-07
4 PGK1 OS 1411 1.42 1.22-1.64 3.80E-06
5 PPIA OS 1411 0.74 0.63-0.85 4.50E-05
6 PSMD14 OS 2166 1.09 0.96-1.22 0.17
7 RAN (Gsp1) OS 2166 0.98 0.87-1.11 0.79
8 TPI1 OS 2166 1.17 1.04-1.32 0.008
9 TUBA1C OS 2166 1.47 1.3-1.65 2.20E-10
10 VDAC1 OS 2166 1.2 1.06-1.35 0.0033
11 VDAC2 OS 2166 1.54 1.36-1.73 2.00E-12

Table 2.Prognostic Role of LDHA co-expressed Genes in Lung Cancer

Figures 4A-K, and Supplementary Figures 5A-T). We 
further evaluated the prognostic role of the LDHA co-
expressed 11 genes, and found that 8 (MKI67, EIF2S1, 
ENO1, VDAC1, VDAC2, PGK1, TPI1, and TUBA1C) 
out of 11 genes, along with MKI67, were significantly 
associated with OS of NSCLC patients (Table 2 and 
Supplementary Figure 6A-K). Additionally, we analyzed 
these genes in relation to OS and LUAD, revealing that 
five co-expressed genes (MKI67, ENO1, VDAC2, PGK1, 

and TUBA1C) significantly correlate with poor survival 
outcomes of LUAD patients (Supplementary Table 2 and 
Supplementary Figures 7A-P). To assess the effect of 
confounding factors, clinicopathological conditions such 
as history of smoking, histology, and cancer stages were 
selected for multivariate analysis. PGK1 (HR = 1.73, 95% 
CI: 1.12-2.66, P = 0.012), TPI1 (HR = 1.64, 95% CI: 1.2-
2.66, P = 0.012), TUBA1C (HR = 2.07, 95% CI: 1.49-2.88, 
P = 1.1e-05), VDAC2 (HR = 1.81, 95% CI: 1.31-2.52, P 
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Figure 1. Expression Pattern of LDHA in Pan-Cancer (A) Expression profile of LDHA was determined by the UALCAN 
database for tumor versus normal samples; Red bars = Tumors, blue bars corresponding normal tissue. (B) expression 
of LDHA in pan-cancer by TIMER 2.0 meta-analysis; tumors compared with matched normal samples, red bar-dot 
plot = Tumors, blue bar-dot plot represents corresponding normal tissue. Error bars represent SD. ***p < 0.001. (C) 
Pan-cancer analysis of LDHA expression using Firehose database, red bars indicates tumor and blue bars normal 
tissues.

S.NO. Gene Fold Change Tumor vs Normal
1 LDHA 1.6
2 MKI67 2.57
3 PGK1 1.55
4 TUBA1C 0.99
5 TPI1 0.97
6 VDAC2 1.09

Table 3. Expression Analysis of LDHA Co-Expressed 
Genes

= 0.00029), MKI67 (HR = 1.87, 95% CI: 1.35-2.58, P = 
0.00011), and LDHA (HR = 1.96, 95% CI: 1.43-2.71, P 
= 2.6e-05) showed high prognostic value in multivariate 
analysis (Supplementary Table 3 and Supplementary 
Figure 8 A–G). Importantly, LUAD patients with high 
protein levels of LDHA show poor survival outcomes 
compared to LUAD patients with low LDHA expression 
(Supplementary Figure 9A). Tumor tissues show high 
immunoreactivity for LDHA (Supplementary Figure 
9B-C).
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Figure 2. Expression of LDHA in Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC) 
Patients. mRNA expression was analyzed in normal tissue and primary tumors from the publicly available databases 
using UALCAN (A) LDHA expression in LUAD (Normal n= 59, Tumor n= 515); (B) LDHA expression in LUSC 
(Normal n = 52, Tumor n = 503); ENCORI (C) LDHA expression in LUAD (Normal n = 59, Cancer n = 526); (D) 
LDHA expression in LUSC (Normal n = 49, Cancer n = 501); OncoDB (E) LDHA expression in LUAD (Normal n= 59, 
Tumor n= 540); (F) LDHA expression in LUSC (Normal n = 51, Tumor n = 503); TCGA portal (G) LDHA expression 
in LUAD; (H) LDHA expression in LUSC and GEPIA 2 (I) showing expression of LDHA in LUAD (Normal n= 347, 
Tumor n= 483) and expression of LDHA in LUSC (Normal n= 338, Tumor n= 486); (J-O) Prognostic role of mRNA 
expression of LDHA in lung cancer patients. Kaplan-Meier survival curves were plotted for overall survival (OS) 
in NSCLC patients (J) N=2166), lung adenocarcinoma patients (N=1161) (K), male lung adenocarcinoma patients 
(N=566) (L), female lung adenocarcinoma patients (N=537) (M), lung adenocarcinoma smoker patients (N=546) (N), 
and lung adenocarcinoma non-smoker patients (N=192) (O).
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Figure 3. LDHA expression associate with (A) different biological processes and (B-G) showing a positive correlation 
with (B) Invasion, (C) DNA damage, (D) Cell cycle, (E) Metastasis, (F) DNA repair, (G) EMT and negative correlation 
with (H-I) apoptosis in lung cancer patients using the CancerSEA database; LDHA expression in tumors from lung 
cancer patients with metastasis. (J) Boxplot of LDHA expression in normal tissue, circulatory tumor cells (CTC), and 
WBC count from lung cancer patients using ctcRbase database (K). Boxplot of LDHA expression between normal, 
primary lung tumor, and lung metastatic tissues using the Gene Chip- TNMplot database.
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Figure 4. Expression Correlation between LDHA and Top 10 Co-Expressed Genes by Using TIMER 2.0. Expression 
Pattern of all co-expressed genes in (A) LUAD and (B) LUSC patients. 

S.NO. Gene Index Patient Number Hazard Ratio CI Log (P)
1 LDHA + MKI67 + PGK1 NSCLS patients 1,411 1.57 1.35-1.82 2.10E-09

Adenocarcinoma 672 2.09 1.62-2.69 4.70E-09
Smoker 330 1.95 1.32-2.87 0.00063
Adenocarcinoma + Smoker 231 3.14 1.83-5.4 1.30E-05

Table 4. Multivariate Overall Survival Analysis

Furthermore, we compared the expression of 
co-expressed genes between tumor and normal tissue, 
and we found that MKI67 (Fc = 2.57) and PGK1 
(Fc = 1.55), showed elevated expression in tumors from 
lung cancer patients (Table 3). Based on these results, we 
conclude that only LDHA, MKI67, and PGK1 showed 
more than 1.5-fold consistent increased expression and 
were associated with the survival outcome of the LUAD 
patients, and thus, we chose these genes for further 
analysis. The study found a significant association for 
OS in NSCLC patients (P<0.05) and a highly significant 
association with smoker LUAD patients (HR 3.14, 
p = 1.3e-05) (Table 4 and Figure 5A-D). Furthermore, 
we used the GSCA database to analyze the expression of 
the LDHA, MKI67, and PGK1 genes in LUAD patients 
with different stages. Figure 5 E-G revealed a stronger 
association between the LDHA gene and stages with a 
false discovery rate (FDR) closer to 2.0, comparable 

to MKI67, the gold standard biomarker for cancer cell 
proliferation. We observed a consistent expression pattern 
for LDHA, which increased with advancing stages, while 
the expression patterns of PGK1 and MKI67 were not 
consistent. The results suggest that LDHA can be a better 
progression biomarker for LUAD compared to MKI67.

Regulation of LDHA expression by microRNAs
LDHA dysregulation has been associated with a poor 

prognosis in several cancer types, but the mechanism of 
its dysregulation is unclear. miR-16-5p has been shown 
to regulate aerobic glycolysis by targeting LDHA [36]. 
Toward this, we analyzed the miRNAs that could target 
and regulate the expression of LDHA. Using the UALCAN 
database, we identified 16 downregulated miRNAs in 
tumors from lung cancer patients. These are hsa-mir-5588, 
hsa-mir-490, hsa-mir-1-2, hsa-mir-211, hsa-mir-99a, hsa-
mir-29c, hsa-mir-548b, hsa-mir-4423, hsa-mir-101-1, hsa-
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Figure 5. Prognostic Role of mRNA Expression of LDHA, MKI67, and PGK1 in Lung Cancer Patients. Kaplan-Meier 
survival curves were plotted for (A) OS (n=1411), (B) Adenocarcinoma (n=672), (C) Smoker (n=330), (D) Smokers 
associated with adenocarcinoma (n=231); Expression pattern difference between stages using GSCA, (E) Difference 
in expression pattern of LDHA, MKI67 and PGK1 in lung cancer pathological stages, (F) heatmap showing expression 
tendency in pathological stages, (G) trend plot showing expression tendency in pathological stages.

S.NO. E2F Transcription 
Factors

Coefficient 
R value

P value

1 E2F1 0.186 1.83E-05
E2F2 0.207 1.60E-06
E2F3 0.106 1.53E-02
E2F4 0.115 8.13E-03
E2F5 0.077 7.81E-02
E2F6 0.074 8.91E-02
E2F7 0.277 1.02E-10
E2F8 0.328 1.29E-14

Table 5. Association of LDHA with E2F Transcriptional 
Factors

mir-584, hsa-mir-29a, hsa-mir-5680, hsa-mir-133a-1, hsa-
let-30b, and hsa-let-7c. Using the ENCORI database, we 
analyzed the association of the above-mentioned miRNAs 
with LDHA and its co-expressed genes. Importantly, 
we found a significant negative relationship between 
hsa-let-7c-5p and the expression of LDHA (r = -0.270, P 
= 5.22e-10), MKI67 (coefficient R = -0.368, P = 6.82e-
18), and PGK1 (coefficient R = -0.226, P = 2.25e-07) 
(Figure 6A-C). Furthermore, we found that hsa-let-7c-
5p is significantly down-regulated in LUAD patients 
(Figure 6 D). Analysis with CancerMIRNome database 
showed a significant sensitivity and specificity for the 
decreased expression of hsa-let-7c-5p with an AUC value 
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Figure 6. Co-Expression of miRNA and Gene in Lung Adenocarcinoma Samples, hsa-let-7c Showing Negative 
Correlation with (A) LDHA, (B) MKI67, (C) PGK1 using ENCORI database; (D) Individual miRNA expression of 
hsa-let-7c in tumor tissues from lung cancer patients vs normal samples using CancerMIRNome, (E) ROC analysis 
curve showing specificity of hsa-let-7c in lung cancer patients (AUC=0.95) and (F) correlation between hsa-let-7c-
5p and LDHA expression determined using CancerMIRNome. Validation of hsa-let-7c-5p downregulation in tumor 
samples as compared to normal by using (G) ENCORI and (H) UALCAN. Further, the UALCAN database to examine 
miRNA hsa-let-7c expression in LUAD based on (I) individual cancer stages, (J) smoking status, (K) patient’s race, 
and (L) nodal metastasis status. 

of 0.95 and a negative correlation with LDHA (Figure 6 
E-F). Furthermore, the study validated the downregulation 
of hsa-let-7c-5p using the ENCORI and UALCAN 

databases, revealing significant downregulation in LUAD 
patients, tumor cells, stages, nodes, races (Asian), and 
smokers (Figure 6G-L). The downregulation of hsa-
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Figure 7. (A-D) Correlation between lncRNA TMPO-AS1 expression with genes and miRNA in lung adenocarcinoma 
using ENCORI. (A) positive correlation between TMPO-AS1 and LDHA (n=526), (B) positive correlation between 
TMPO-AS1 and MKI67 (n=526), (C) positive correlation between TMPO-AS1 and PGK1 (n=526), (D) negative 
correlation between hsa-let-7c and TMPO-AS1. Boxplot of individual gene expression of TMPO-AS1 in lung 
adenocarcinoma using (E) UALCAN, (F) ENCORI. Using UALCAN to determine gene expression of TMPO-AS1 in 
LUAD based on (G) individual stages and (H) smoking status. 

let-7c-5p in LUAD patients, as confirmed by multiple 
databases, suggests its potential regulatory molecule for 
LDHA. The negative correlation observed between hsa-
let-7c-5p and LDHA expression, as well as other related 
genes, highlights the possibility of hsa-let-7c-5p playing 
a crucial role in the regulation of LDHA and its associated 
pathways. Further investigation into the functional 
mechanisms of hsa-let-7c-5p could provide valuable 
insights into the development and progression of LUAD. 
Indeed, prediction by miRTarbase demonstrate potential 

binding sites for hsa-let-7c-5p in LDHA gene.

Feedback loop between lncRNA-TMPO-AS1 and hsa-
let-7c-5p 

Then, we examined the interactions between 
hsa-let-7c-5p miRNA and lncRNAs to construct a 
competing endogenous RNA (ceRNA) network. We found 
the LncTarD 2.0 database identified several lncRNAs 
significantly associated with lung cancer patients, 
including SPRY4-IT1, HOTAIR, MALAT1, DSCAM-
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Figure 8. Transcriptional Regulation Analysis of E2F8 and Its Positive Correlation with (A-B) TMPO-AS1 Using 
(A) ENCORI (r = 0.594), (B) OncoDB (r = 0.4607), but negative correlation with hsa-let-7c-5p (r = -0.228) using 
ENCORI. Survival analysis of E2F8 using KM Plotter by analyzing (D) OS in NSCLC patients (E) OS  in LUAD 
patients, and (F) OS in smoker LUAD patients. (G-J) Expression of E2F8 in LUAD based on (G) individual cancer 
stages, (H) patient’s race, (I) smoking history, and (J) nodal metastasis status.

AS1, BCAR4, HCP5, DANCR, LINC00922, ST8SIA6-
AS1, ROR, LINC00460, NEAT 1, Linc8087, TINCR, 
LINP1, TMPO-AS1, CYTOR, HULC, EPIC1, NNT-AS1, 
EZR, PVT1, ATB, NEAT1, AC078883.3, MEG3, XIST, 
FENDRR, and LINC-PINT. However, the ENCORI 
database revealed that LDHA correlated positively 
with TMPO-AS1 (r = 0.222 and p = 2.56e-07), MKI67 
correlated positively with TMPO-AS1 (r = 0.633 and p = 

3.23e-60), and PGK1 correlated positively with TMPO-
AS1. Importantly, as shown in Figure 7A-D, TMPO-AS1 
negatively correlated with let-7c-5p (r = -0.229 and p = 
1.68e-07). This suggests that TMPO-AS1 can interact with 
let-7c-5p, reducing their regulatory effect on mRNA gene 
expression. The UALCAN and ENCORI databases found 
a strong link between TMPO-AS1 and people with lung 
cancer. Figure 7E–H shows that overexpression of TMPO-
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Figure 9. Human LDHA in complex with cofactor NADH (blue), reference inhibitor (Pubchem CID 131955127, 
green) and withanolides in the binding pocket. (B-E) LDHA interaction with Withaferin A (orange) and withanolide D 
(yellow) within the pocket. Zoom out views display the interactions (dashed lines) of withaferin A and withanolide D 
with active site residues Arg105, His192 and Ser 195.

(A)

(B) (C)

(D) (E)

Inhibitors Binding Energy (Kcal/mol)
Withanolide D +NADH -10
Withaferine A + NADH -9.3
Withanolide O + NADH -9.1
Withanolide E + NADH -8.9
Withanolide G +NADH -8.9
Withasomnine +NADH -6.3

Table 6. Binding Affinities between LDHA and Ligands AS1 was seen in smokers and people with different stages 
of LUAD. According to the available data, it is believed 
that the TMPO-AS1/hsa-let-7c-5p/LDHA/MKI67/PGK1 
feedback loop plays a role in lung cancer progression.
The transcriptional regulation of the LDHA gene

E2F transcription factors are vital to regulating cell 
activity and tumor growth. A study on lung cancer patients 
found increased expression of E2Fs such as 1, 2, 4, 5, 6, 
7, and 8 in LUAD tissues. According to Table 5, only the 
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E2F8 transcription factor is strongly associated with the 
LDHA gene in LUAD patients. Figure 8A-C shows a 
strong positive association between E2F8 and the TMPO-
AS1 genes but a negative association with the hsa-let-7c-
5p miRNA. Overexpression of E2F8 is associated with 
poor OS in lung cancer patients, particularly in LUAD 
and smokers (Figure 8 D-F). We also validated our 
results using the UALCAN database and saw that E2F8 
is significantly overexpressed in smoker LUAD patients, 
including those with node metastasis, Asian (race), and 
adenocarcinoma stages (Figure 8G-J). E2F8, along with 
LDHA/TMPO-AS1 and hsa-let-7c-5p, may be a potential 
ceRNA network that can regulate the progression of 
tumors and serve as prognostic predictors in LUAD 
patients. The fact that E2F8 and the hsa-let-7c-5p gene 
are negatively linked suggests that E2F8 expression may 
attenuate the expression of hsa-let-7c-5p. 

Analysis of protein-ligand interaction between LDHA 
inhibitors and Withanolide 

In silico docking and interactions of Withania 
somnifera bioactive molecules were studied to identify 
potential competitive inhibitors of LDHA. Six molecules 
were docking in the presence and absence of cofactor 
NADH. All the binding energies are mentioned in Table 
6. It is observed that binding affinities and interactions 
were improved in the presence of NADH. We also used a 
potent pyrazole based reported LDHA inhibitor Pubchem 
CID 131955127 (Pubmed  HYPERLINK “https://www.
rcsb.org/search?q=rcsb_pubmed_container_identifiers.
pubmed_id:29120638” 29120638) as a reference to 
compare the binding of withanolides. Best energies were 
observed in the case of withaferine A (-9.3 Kcal/mol) and 
withanolide D (-10 Kcal/mol). Binding interactions and 
poses of these two molecules were analyzed further to 
understand their interactions within the binding cavity. 
Withaferine A is engaged in hydrogen binding interactions 
with active site residues Arg105, Ser195, and His192 and 
hydrophobic contacts with Pro138, Ile141, Tyr238, Ile241, 
and Ile325. Withanolide D forms a strong interaction 
with LDHA. It forms four hydrogen bonds within the 
binding cavity which includes two hydrogen bonds with 
Arg105 and Ser195 and two hydrogen bonds with His192. 
The binding modes show ligands interacting within the 
substrate binding cavity, which is also the same for the 
reference inhibitor (PubChem CID 131955127). Docking 
and interactions of complexes are shown in Figure 9 
(A-E).

Discussion

Lactate dehydrogenase (LDH) is a crucial enzyme 
in tumor cells that is involved in the production of lactic 
acid. Overexpression of LDHA in tumors leads to lactic 
acid accumulation, releasing lactate in the TME, which 
is associated with tumor proliferation and growth [14]. 
High LDHA expression in lung cancer patients suggests a 
potential role for LDHA in tumorigenesis and progression. 
This suggests that further research into the mechanisms 
underlying LDHA overexpression and its impact on cancer 
metabolism could lead to targeted therapies and improved 

treatment strategies. High LDHA expression promotes 
aerobic glycolysis and inhibits oxidative phosphorylation, 
providing cancer cells with energy for rapid proliferation 
but also contributing to tumor progression, invasion, and 
resistance to therapy. Understanding these mechanisms 
could help identify novel therapeutic targets and 
improve treatment outcomes for lung cancer patients. 
However, owing to their high dosage and low potency, 
most glycolytic inhibitors available in the market could 
potentially lead to system toxicity [10, 14, 37]. Thus, 
it is vital to identify specific glycolytic inhibitors with 
increased potencies and low toxicity [38]. It has been 
observed that only intense anaerobic exercise can result 
in myoglobinuria due to hereditary LDHA deficiency, 
indicating that small molecules that inhibit LDHA 
enzymatic activity could be a safe chemotherapeutic 
agent [39]. Depending on their different growth 
conditions and cell types, cancer cells exhibit varying 
degrees of enhanced glycolysis. While normal cells 
generate most of their ATP through mitochondrial 
oxidative phosphorylation under aerobic conditions, 
some tumor cells tend to produce 60% of their ATP 
through glycolysis [40]. This increased dependence on the 
glycolytic pathway may serve as a basis for developing 
therapeutic strategies to kill cancer cells [38]. The study 
aimed to analyze the effects of LDHA overexpression in 
lung cancer using TIMER and the UALCAN database. 
Results showed that overexpression of LDHA in LUAD 
correlates with higher metastatic potential. Patients with 
LUSC and LUAD showed higher levels of LDHA gene 
expression, with about a 9-fold increase in expression 
pattern between normal and cancerous tissue. The patients 
with high LDHA expression had a poor prognosis, with 
a significant association with OS and FP but not PPS. 
The UALCAN database corroborated the findings, 
showing a positive correlation (P<0.05) between nodal 
status, smoking habits, and LDHA gene expression level 
in LUAD along all stages. The upregulation of LDHA 
could be due to the promoter hypomethylation of LDHA 
in tumor tissues. An increased LDHA level in lung cancer 
cells aids in metastasis and the transition from epithelial-
to-mesenchymal cells, making them resistant to available 
therapies. Two co-expressed genes of LDHA, MKI67, and 
PGK1 were highly upregulated and associated with the 
poor survival outcome of LUAD patients.

miRNAs are essential in controlling biological 
processes like cell division, differentiation, angiogenesis, 
migration, apoptosis, and oncogenesis [41]. They are 
found in introns or exons of protein-coding genes and 
intergenic regions. miRNA-based cancer treatment 
strategies involve suppressing oncomiRNAs and 
upregulating tumor suppressor miRNAs [42]. miRNAs 
are readily available for study due to their high biological 
stability. They can be used as prognostic and predictive 
biomarkers, aiding in early diagnosis and discrimination 
between cancer patients and healthy individuals. In this 
study, hsa-let-7c-5p was found to be negatively associated 
with LDHA, even with MKI67 and PGK1, in lung cancer 
patients. Receiver operator curve analysis for hsa-let-7c 
showed an AUC value of 0.95, suggesting that hsa-let-7c 
may be a regulatory molecule of LDHA. LncRNAs are 
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emerging crucial regulators of tumor progression and 
can interact with miRNAs as well as mRNA.  LncRNAs 
can inhibit glycolysis by downregulating LDHA protein 
levels and thereby enhance radiosensitivity in cutaneous 
malignant melanoma cells [43]. Our study showed a 
positive correlation of TMPO-AS1 with LDHA and a 
negative correlation with let-7c-5p in LUAD. TMPO-
AS1/hsa-let-7c-5p/LDHA ceRNA network is believed 
to play a crucial role in lung cancer progression and 
could serve as a prognostic indicator. A previous study 
has shown that TMPO-AS1 could regulate STRIP2 
expression in LUAD by sponging let-7c-5p and serve as 
a prognostic biomarker [44] miR-16-5p has been shown 
to regulate aerobic glycolysis by targeting LDHA [36]. 
Similarly, let-7b-5p inhibits breast cancer growth and 
aerobic glycolysis by targeting hexokinase 2 [45]. On 
the other hand, TMPO-AS1 has been shown to promote 
esophageal cancer by regulating TMPO transcription 
[46]. LncRNAs interact with transporters involved in 
glycolysis or metabolic enzymes, influencing glycolytic 
metabolism and cancer progression. Further research is 
needed to experimentally validate the direct interaction 
of TMPO-AS1 with let-7c-5p and LDHA and their role 
in aerobic glycolysis. 

There is evidence that hsa-let-7c-5p can inhibit tumor 
growth. This negative link suggests that higher levels 
of E2F8 may promote tumor growth and metastasis 
by inhibiting hsa-let-7c-5p. The study found a strong 
association between E2F8 and the LDHA gene, as well as 
with the TMPO-AS1 genes. These findings suggest that 
targeting E2F8, along with LDHA and TMPO-AS1, could 
be a potential therapeutic approach for LUAD patients. 
E2F8, LDHA, and TMPO-AS1 may act together to promote 
tumor growth and progression in LUAD patients. By 
blocking the effects of hsa-let-7c-5p on tumor-suppressing 
properties, E2F8 may play a part in the disruption of cell 
activity and the loss of tumor-suppressing properties. 
Also, E2F8 is strongly linked to the LDHA gene, which 
means that targeting E2F8, LDHA, and TMPO-AS1 could 
possibly stop important pathways that help tumors grow 
and change. This makes them promising therapeutic 
targets for people with LUAD.

E2F family components have been linked to various 
types of cancer, including bladder, lung, breast, prostate, 
and ovarian cancer [47–49]. LDHA, a direct transcriptional 
target of E2F1, was significantly overexpressed in 
metastatic LUAD tissues and played a crucial role 
in epithelial-mesenchymal-transition, promoting cell 
migration and invasion. E2F transcription factors are vital 
for regulating cell activity and tumor growth. A study on 
lung cancer patients found increased expression of E2F1/2, 
4, 5, 6, 7, and 8 in LUAD tissues. The E2F8 transcription 
factor is strongly associated with the LDHA gene in LUAD 
patients and is positively linked with the TMPO-AS1 genes 
but negatively associated with the hsa-let-7c-5p gene. 
Overexpression of E2F8 has been associat AD patients. 
Collectively, E2F8/LDHA/TMPO-AS1 and hsa-let-7c-5p 
may be potential therapeutic targets for LUAD patients. 

Strategies to target LDH for therapeutic intervention 
in LUAD include developing small-molecule inhibitors, 
using RNA interference or gene editing techniques, and 

exploring combination therapies targeting LDH along 
with other metabolic pathways or signaling pathways 
implicated in LUAD progression. Withanolides, primarily 
derived from Withania genus are based on the ergostane 
skeleton. Withanolides have shown anti-cancer activities 
in several cancer cell lines and animal models of cancers. 
Withanolide-LDHA complexes, particularly withaferine 
A and withanolide D, could be prominent scaffolds for 
developing small-molecule inhibitors to decrease LDH 
activity and thereby could be tested as adjuvant therapy.

In conclusion, The study reveals that LDHA is 
overexpressed in lung cancer tissues compared to normal 
tissues, and high expression of LDHA levels associate 
with poor OS and first progression outcomes in NSCLC. 
We identified 11 key genes co-expressed with LDHA out 
of them two genes MKI67 and PGK1 showed positive 
correlation with LDHA and associated poor survival 
outcomes in LUAD patients. Furthermore, we also 
identified hsa-let-7c-5p and TMPO-AS1 as potential 
regulator of LDHA in LUAD. It might be possible that 
TMPO-AS1- hsa-let-7c-5p-LDHA ceRNA network 
could serve as potential regulator of aerobic glycolysis in 
LUAD and can serve as prognostic biomarkers. Further, 
Withanolides can inhibit the activity of LDH and can be 
tested as adjuvant treatment.

Author Contribution Statement

Conception: RN, AK, SKS. Interpretation, or 
analysis of data: RN, PV, JS, SKS, AK. Preparation of 
the manuscript: RN, PV, JS, SKS, AK and, Supervision: 
RN, AK, SKS. 

Acknowledgements

Funding Support
RN would like to thank the funding support from 

Manipal University Jaipur for the Enhanced Seed Grant 
under Endowment Fund (No. E3/2023-24/QE-04-05) and 
DST-FIST project (DST/2022/1012) from Govt. of India 
to Department of Biosciences, Manipal University Jaipur. 
AK would like to thank the funding support from the 
Indian Council of Medical Research (ICMR 5/13/93/2020/
NCD-III). 

Conflicts of interest
The authors declare that they have no competing 

interests.

References

1. Sharma R. Mapping of global, regional and national incidence, 
mortality and mortality-to-incidence ratio of lung cancer in 
2020 and 2050. Int J Clin Oncol. 2022;27:665–75. https://
doi.org/10.1007/s10147-021-02108-2.

2. Basumallik N, Agarwal M. Small cell lung cancer. InStatPearls 
[internet]. Treasure Island (FL): StatPearls Publishing; 2024 
[cited 2024 May 29]. Available from: http://www.ncbi.nlm.
nih.gov/books/NBK482458/.

3. Wang W, Liu H, Li G. What’s the difference between lung 
adenocarcinoma and lung squamous cell carcinoma? 
Evidence from a retrospective analysis in a cohort of Chinese 



Rajeev Nema et al

Asian Pacific Journal of Cancer Prevention, Vol 253688

patients. Front Endocrinol. 2022;13:947443. https://doi.
org/10.3389/fendo.2022.947443.

4. Chen J. A Comparative Analysis of Lung Cancer Incidence 
and Tobacco Consumption in Canada, Norway and Sweden: 
A Population-Based Study. Int J Environ Res Public Health. 
2023;20:6930. https://doi.org/10.3390/ijerph20206930.

5. Walser T, Cui X, Yanagawa J, Lee JM, Heinrich E, Lee G, 
et al. Smoking and Lung Cancer. Proc Am Thorac Soc. 
2008;5:811–5. https://doi.org/10.1513/pats.200809-100TH

6. Riudavets M, Garcia de Herreros M, Besse B, Mezquita 
L. Radon and Lung Cancer: Current Trends and Future 
Perspectives. Cancers. 2022;14:3142. https://doi.
org/10.3390/cancers14133142.

7. de Visser KE, Joyce JA. The evolving tumor microenvironment: 
From cancer initiation to metastatic outgrowth. Cancer 
Cell. 2023;41:374–403. https://doi.org/10.1016/j.
ccell.2023.02.016.

8. Neophytou CM, Panagi M, Stylianopoulos T, Papageorgis 
P. The Role of Tumor Microenvironment in Cancer 
Metastasis: Molecular Mechanisms and Therapeutic 
Opportunities. Cancers. 2021;13:2053. https://doi.
org/10.3390/cancers13092053.

9. Singh L, Nair L, Kumar D, Arora MK, Bajaj S, Gadewar M, 
et al. Hypoxia induced lactate acidosis modulates tumor 
microenvironment and lipid reprogramming to sustain the 
cancer cell survival. Front Oncol. 2023;13:1034205. https://
doi.org/10.3389/fonc.2023.1034205.

10. Daverio Z, Balcerczyk A, Rautureau GJP, Panthu B. How 
Warburg-Associated Lactic Acidosis Rewires Cancer Cell 
Energy Metabolism to Resist Glucose Deprivation. Cancers. 
2023;15:1417. https://doi.org/10.3390/cancers15051417.

11. Lampe KJ, Namba RM, Silverman TR, Bjugstad KB, 
Mahoney MJ. Impact of Lactic Acid on Cell Proliferation and 
Free Radical Induced Cell Death in Monolayer Cultures of 
Neural Precursor Cells. Biotechnol Bioeng. 2009;103:1214–
23. https://doi.org/10.1002/bit.22352.

12. Qin Z, Zheng X, Fang Y. Long noncoding RNA TMPO-
AS1 promotes progression of non-small cell lung cancer 
through regulating its natural antisense transcript TMPO. 
Biochem Biophys Res Commun. 2019;516:486–93. https://
doi.org/10.1016/j.bbrc.2019.06.088.

13. Sui Z, Sui X. Long non-coding RNA TMPO-AS1 promotes 
cell proliferation, migration, invasion and epithelial-
to-mesenchymal transition in gallbladder carcinoma by 
regulating the microRNA-1179/E2F2 axis. Oncol Lett. 
2021;22:855. https://doi.org/10.3892/ol.2021.13116.

14. Feng Y, Xiong Y, Qiao T, Li X, Jia L, Han Y. Lactate 
dehydrogenase A: A key player in carcinogenesis and 
potential target in cancer therapy. Cancer Med. 2018;7:6124–
36. https://doi.org/10.1002/cam4.1820. 

15. Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, et al. Targeting 
the Warburg effect: A revisited perspective from molecular 
mechanisms to traditional and innovative therapeutic 
strategies in cancer. Acta Pharm Sin B. 2024;14:953–1008. 
https://doi.org/10.1016/j.apsb.2023.12.003.

16. Choudhary MI, Yousuf S, Rahman AU. Withanolides: 
Chemistry and antitumor activity. Natural Products. 
Ramawat KG, Merillon JM ed.(Berlin, Heidelberg: Springer-
Verlag). 2013:3465-95.

17. Chandrashekar DS, Bashel B, Balasubramanya SAH, 
Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK, et al. 
UALCAN: A Portal for Facilitating Tumor Subgroup Gene 
Expression and Survival Analyses. Neoplasia. 2017;19:649–
58. https://doi.org/10.1016/j.neo.2017.05.002.

18. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 
for analysis of tumor-infiltrating immune cells. Nucleic 
Acids Res. 2020;48:W509–14. https://doi.org/10.1093/nar/

gkaa407.
19. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: 

decoding miRNA-ceRNA, miRNA-ncRNA and protein–
RNA interaction networks from large-scale CLIP-Seq data. 
Nucleic Acids Res. 2014;42:D92–7. https://doi.org/10.1093/
nar/gkt1248.

20. Tang G, Cho M, Wang X. OncoDB: an interactive online 
database for analysis of gene expression and viral infection 
in cancer. Nucleic Acids Res. 2022;50:D1334–9. https://doi.
org/10.1093/nar/gkab970.

21. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an 
enhanced web server for large-scale expression profiling and 
interactive analysis. Nucleic Acids Res. 2019;47:W556–60. 
https://doi.org/10.1093/nar/gkz430.

22. Győrffy B. Transcriptome-level discovery of survival-
associated biomarkers and therapy targets in non-small-cell 
lung cancer. Br J Pharmacol. 2024;181:362–74. https://doi.
org/10.1111/bph.16257.

23. Yuan H, Yan M, Zhang G, Liu W, Deng C, Liao G, et al. 
CancerSEA: a cancer single-cell state atlas. Nucleic Acids 
Res. 2019;47:D900–8. https://doi.org/10.1093/nar/gky939

24. Bartha Á, Győrffy B. TNMplot.com: A Web Tool for the 
Comparison of Gene Expression in Normal, Tumor and 
Metastatic Tissues. Int J Mol Sci. 2021;22:2622. https://doi.
org/10.3390/ijms22052622.

25. Zhao L, Wu X, Li T, Luo J, Dong D. ctcRbase: the 
gene expression database of circulating tumor cells 
and microemboli. Database J Biol Databases Curation. 
2020;2020:baaa020. https://doi.org/10.1093/database/
baaa020.

26. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson 
K, Forsberg M, et al. Towards a knowledge-based Human 
Protein Atlas. Nat Biotechnol. 2010;28:1248–50. https://doi.
org/10.1038/nbt1210-1248.

27. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, 
Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set 
enrichment analysis web server 2016 update. Nucleic Acids 
Res. 2016;44:W90–7. https://doi.org/10.1093/nar/gkw377.

28. Liu CJ, Hu FF, Xie GY, Miao YR, Li XW, Zeng Y, et al. 
GSCA: an integrated platform for gene set cancer analysis 
at genomic, pharmacogenomic and immunogenomic levels. 
Brief Bioinform. 2023;24:bbac558.  https://doi.org/10.1093/
bib/bbac558.

29. Zhao H, Yin X, Xu H, Liu K, Liu W, Wang L, et al. LncTarD 
2.0: an updated comprehensive database for experimentally-
supported functional lncRNA-target regulations in human 
diseases. Nucleic Acids Res. 2023;51:D199–207. https://
doi.org/10.1093/nar/gkac984.

30. Schrödinger L, DeLano, W. PyMOL [Internet]. 2020. 
Available from: http://www.pymol.org/pymol.

31. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. 
PubChem 2023 update. Nucleic Acids Res. 2023;51:D1373–
80. https://doi.org/10.1093/nar/gkac956.

32. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt 
DM, Meng EC, et al. UCSF Chimera—A visualization 
system for exploratory research and analysis. J Comput 
Chem. 2004;25:1605–12. https://doi.org/10.1002/jcc.20084

33. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew 
RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: 
Automated docking with selective receptor flexibility. J 
Comput Chem. 2009;30:2785–91. https://doi.org/10.1002/
jcc.21256.

34. Morris GM, Huey R, Olson AJ. Using AutoDock for Ligand-
Receptor Docking. Curr Protoc Bioinforma. 2008;24:8.14.1-
8.14.40. https://doi.org/10.1002/0471250953.bi0814s24.

35. Laskowski RA, Swindells MB. LigPlot+: Multiple Ligand–
Protein Interaction Diagrams for Drug Discovery. J Chem 



Asian Pacific Journal of Cancer Prevention, Vol 25 3689

DOI:10.31557/APJCP.2024.25.10.3673
Prognostic Role of TMPO-AS1/let-7c-5p/ LDHA Axis in Lung Cancer

Inf Model. 2011;51:2778–86. https://doi.org/10.1021/
ci200227u. 

36. Arora S, Singh P, Tabassum G, Dohare R, Syed MA. 
miR-16-5p regulates aerobic glycolysis and tumorigenesis 
of NSCLC cells via LDH-A/lactate/NF-κB signaling. 
Life Sci. 2022;304:120722. https://doi.org/10.1016/j.
lfs.2022.120722.

37. Mishra D, Banerjee D. Lactate Dehydrogenases as 
Metabolic Links between Tumor and Stroma in the Tumor 
Microenvironment. Cancers. 2019;11:750. https://doi.
org/10.3390/cancers11060750.

38. Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer 
metabolism in the era of precision oncology. Nat Rev Drug 
Discov. 2022;21:141–62. https://doi.org/10.1038/s41573-
021-00339-6.

39. Serrano-Lorenzo P, Rabasa M, Esteban J, Hidalgo Mayoral 
I, Domínguez-González C, Blanco-Echevarría A, et al. 
Clinical, Biochemical, and Molecular Characterization of 
Two Families with Novel Mutations in the LDHA Gene 
(GSD XI). Genes. 2022;13:1835. https://doi.org/10.3390/
genes13101835.

40. Shiratori R, Furuichi K, Yamaguchi M, Miyazaki N, Aoki 
H, Chibana H, et al. Glycolytic suppression dramatically 
changes the intracellular metabolic profile of multiple 
cancer cell lines in a mitochondrial metabolism-dependent 
manner. Sci Rep. 2019;9:18699. https://doi.org/10.1038/
s41598-019-55296-3.

41. Xiong B, Huang Q, Zheng H, Lin S, Xu J. Recent advances 
microRNAs and metabolic reprogramming in colorectal 
cancer research. Front Oncol. 2023;13:1165862. https://doi.
org/10.3389/fonc.2023.1165862.

42. Menon A, Abd-Aziz N, Khalid K, Poh CL, Naidu R. miRNA: 
A Promising Therapeutic Target in Cancer. Int J Mol Sci. 
2022;23:11502. https://doi.org/10.3390/ijms231911502.

43. Huang P, Zhu S, Liang X, Zhang Q, Luo X, Liu C, et al. 
Regulatory Mechanisms of LncRNAs in Cancer Glycolysis: 
Facts and Perspectives. Cancer Manag Res. 2021;13:5317–
36. https://doi.org/10.2147/CMAR.S314502.

44. Wang J, Yuan Y, Tang L, Zhai H, Zhang D, Duan L, et al. 
Long Non-Coding RNA-TMPO-AS1 as ceRNA Binding 
to let-7c-5p Upregulates STRIP2 Expression and Predicts 
Poor Prognosis in Lung Adenocarcinoma. Front Oncol. 
2022;12:921200. https://doi.org/10.3389/fonc.2022.921200. 

45. Li L, Zhang X, Lin Y, Ren X, Xie T, Lin J, et al. Let-7b-
5p inhibits breast cancer cell growth and metastasis via 
repression of hexokinase 2-mediated aerobic glycolysis. 
Cell Death Discov. 2023;9:114. https://doi.org/10.1038/
s41420-023-01412-2.

46. Luo XJ, He MM, Liu J, Zheng JB, Wu QN, Chen YX, et al. 
LncRNA TMPO-AS1 promotes esophageal squamous cell 
carcinoma progression by forming biomolecular condensates 
with FUS and p300 to regulate TMPO transcription. Exp 
Mol Med. 2022;54:834–47. https://doi.org/10.1038/s12276-
022-00791-3.

47. Gan Z, Abudurexiti A, Hu X, Chen W, Zhang N, Sang W. 
E2F3/5/8 serve as potential prognostic biomarkers and new 
therapeutic direction for human bladder cancer. Medicine 
(Baltimore). 2024;103:e35722. https://doi.org/10.1097/
MD.0000000000035722.

48. Liu X, Hu C. Novel Potential Therapeutic Target for E2F1 
and Prognostic Factors of E2F1/2/3/5/7/8 in Human Gastric 
Cancer. Mol Ther Methods Clin Dev. 2020;18:824–38. 
https://doi.org/10.1016/j.omtm.2020.07.017.

49. Xie D, Pei Q, Li J, Wan X, Ye T. Emerging Role of E2F 
Family in Cancer Stem Cells. Front Oncol. 2021;11:723137. 
https://doi.org/10.3389/fonc.2021.723137.

This work is licensed under a Creative Commons Attribution-
Non Commercial 4.0 International License.


