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Introduction

Cancer is considered as the primary cause of mortality 
in human. It is known as an essential barrier to increasing 
life expectancy in all countries. Globally, there are 
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Background: Despite advancements in breast cancer (BC) diagnosis and treatment, it continues to be a serious health 
concern among women due to its high incidence rate. Thus, prevention strategies in BC are essential. Some nutrients such 
as vitamin D may play a preventive role against BC through different genes which have a vital role in several pathways. 
These pathways include autophagy, tumorigenesis, apoptosis, immunity, and genome stability. This study aimed to review 
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MeSH terms and keywords related to molecular and cellular mechanisms of the effects of vitamin D on breast cancer. A 
total of 200 articles were initially found, from which 14 relevant studies were selected based on specific inclusion and 
exclusion criteria. Results: Experimental studies have shown possible anti-carcinogenic effects of vitamin D-related 
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expected to be 19.3 million new cases of cancer and around 
10 million cancer-related deaths in 2020 [1]. Among 
cancer, breast cancer (BC) is one of the commonest 
morbidity and mortality cause in women worldwide. BC 
recently overtook lung cancer as the most commonly 
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diagnosed form of cancer, with about 2.3 million new 
cases in 2020 and it is expected that there would be 
over 3.2 million new cases year by 2050 [2, 3]. Despite 
significant recent advancements in early detection and 
treatment, the incidence rate of BC has been rising in some 
countries over the past few years [4]. Thus, it appears to 
be extremely important to develop primary prevention 
approaches that effectively lower incidence rates of BC. 
Recently, vitamins such as vitamin D is considered, which 
might potentially benefit in the prevention of BC via its 
anticancer properties [5, 6].

The hormone calcitriol or 1,25- dihydroxyvitamin D3 
is derived from vitamin D and affects several functions in 
human various tissues [7]. In addition to being partially 
gained from food and supplements, vitamin D can be 
generated endogenously in the skin by exposure to 
sunlight. Serum 25-hydroxyvitamin D (25[OH]D) levels 
< 25 ng/ml are considered to be insufficient levels of 
vitamin D. Vitamin D insufficiency has been reported as 
a high prevalence state in many regions. Globally, one 
billion people are expected to be vitamin D deficient [8]. 
The well-known functions of vitamin D include regulating 
bone mineralization and preserving calcium homeostasis 
[9, 10]. In addition to its benefits for bone health, new 
studies have looked into its impact in the prevention and 
treatment of a number of ailments, including cardiovascular 
disease, autoimmune disorders, as well as cancer [11-13]. 
According to research in the lab, vitamin D may have 
strong anti-cancer properties, including anti-inflammatory, 
anti-invasion, pro-apoptotic, pro-differentiating, and anti-
proliferative actions [14-19]. Observational epidemiology 
researches have demonstrated the associations between 
decreased risk of BC and increased vitamin D levels, 
including vitamin D consumption and serum 25(OH)
D [20-23]. A recently published meta-analysis of 22 
observational studies revealed a strong correlation 
between a lower risk of BC and higher vitamin D intake 
[24]. There have been published randomized controlled 
trials (RCTs) examining the impact of vitamin D on BC; 
however, the outcomes of these trials did not align with 
observational studies. A meta-analysis comprising seven 
RCTs in 2014 found that, while not statistically significant, 
vitamin D supplementation may be protective against BC 
[risk ratio (RR) = 0.97, 95% confidence interval (CI): 0.86 
to 1.09] [25].

Mechanistically, 1α,25(OH)2D3 interacts with its 
receptor named nuclear vitamin D receptor (VDR), then 
this 1,25(OH)2D/VDR complex may bind to vitamin D 
response elements (VDREs) in the promoter region of 
numerous genes to activate or inhibit transcription. In 
this way it exerts profound effects on mammary gland 
physiology and can have a role either in the prevention or 
onset and development of BC. Numerous 1α,25(OH)2D3 
responsive targets in normal mammary cells and breast 
malignancies have been identified using genomic 
profiling. This offering new insights into the molecular 
mechanisms underlying the regulation of cell cycle, 
apoptosis, and differentiation by 1α,25(OH)2D3 and the 
VDR [26]. In other words, vitamin D via its receptor can 
influence expression of thousands downstream target 
genes. Subsequently, each of these genes can play a role 

in various pathways. These pathways either can be related 
to the onset and development of BC or prevention of BC 
in case of vitamin D deficient and sufficient, respectively 
[27]. For instance, high expression of KLK6 through 
vitamin D/VDR in breast cancers has been shown in 
observational studies to improve survival [28]. Thus, for 
women with BC, the level of vitamin D may be clinically 
significant due to its receptor, VDR, which is expressed 
on the BC cells. Understanding these pathways and 
interactions can be useful in prevention and treatment of 
BC. Hence, this study aimed to review the networks of 
genes and pathways regulated by vitamin D/VDR in the 
context of BC.

Materials and Methods

For the reporting screening and selection review step, 
the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) suggestion was followed 
[29] (Figure 1).

Literature search
We conducted a comprehensive literature search 

using PubMed, ScienceDirect, and Scopus databases. 
The following MeSH terms and keywords were utilized 
in various combinations to ensure a thorough search: 
“Vitamin D”, “cholecalciferol”, “25-Hydroxyvitamin D”, 
“1,25-Dihydroxyvitamin D3”, “breast cancer”, “breast 
neoplasms”, “genomics”, “proteomics”, “metabolomics”, 
“pathway analysis”, “gene expression”, and “Vitamin D 
receptor”. Boolean operators (AND, OR) were used to 
refine the search strategy.

The initial search strategy was as follows: 
(((“Vitamin D”[MeSH Terms]) OR “cholecalciferol”[All 
Fields] OR “25-Hydroxyvitamin D”[All Fields] OR 
“1,25-Dihydroxyvitamin D3”[All Fields]) AND (“breast 
neoplasms”[MeSH Terms] OR “breast cancer”[All Fields])) 
AND (“genomics”[All Fields] OR “proteomics”[All 
Fields] OR “metabolomics”[All Fields] OR “pathway 
analysis”[All Fields] OR “gene expression”[All Fields]). 

Inclusion and Exclusion Criteria
Papers that satisfied any of the following parameters 

were considered eligible for this paper:
1. Empirical research studies published in peer-

reviewed journals.
2. Studies using different methodologies to investigate 

the role of vitamin D in breast cancer, including 
observational studies, experimental lab studies, and 
epidemiological research.

3. Studies published within the last decade (2013-
2023) to ensure the relevance and recency of the data.

4. Studies examining the effects of vitamin D on both 
normal and malignant breast cells.

5. Studies that evaluate the anti-carcinogenic effects 
of vitamin D, including its impact on autophagy, 
tumorigenesis, apoptosis, immunity, and genome stability.

6. Studies assessing the correlation between vitamin 
D levels (including serum 25-hydroxyvitamin D levels) 
and breast cancer risk or outcomes.

7. Studies that investigate the mechanistic pathways 
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Figure 1. Flow Chart of the Included Studies, Including Identification, Screening, Eligibility and the Final Sample 
Included. 

through which vitamin D influences breast cancer cell 
biology.

Papers were excluded if they met one of the following 
criteria

Non-peer-reviewed articles, opinion pieces, editorials, 
and review articles., studies not written in English, 
unpublished studies, conference abstracts, and thesis 
documents due to potential issues with peer review and 
completeness of data, studies that do not directly measure 
the effects of vitamin D on breast cancer outcomes, studies 
focusing solely on the basic metabolism of vitamin D 
without a direct link to cancer outcomes.

Data extraction 
Data were systematically extracted from the selected 

studies by two independent reviewers using a standardized 
data extraction form to ensure consistency and reduce 
bias. The form captured relevant information including 
the first author’s name, focus of study, model/method, key 
findings, implications and notes, aspect related to breast 
cancer pathophysiology (Table 1). Any discrepancies 
between the reviewers were resolved through discussion 
or by consulting a third reviewer if consensus was not 
achieved. This methodical approach to data extraction 
aimed to maximize the reliability and validity of the 
review findings. 

Results

Vitamin D/VDR Metabolism and anticancer effects
Vitamin D3 production initiated around 1.2 billion 

years ago, when organisms producing cholesterol started 
to evolve, [30]. On the other hand, vitamin D receptor 
(VDR) evolved alongside other related members of the 
nuclear receptor superfamily, farnesoid X receptor (FXR), 
liver X receptor (LXR) α and β, constitutive androstane 
receptor (CAR), pregnane X receptor (PXR), and retinoid 
X receptor (RXR) [31]. In addition, VDR evolved as an 
endocrine nuclear receptor due to the specialization of its 
ligand-binding domain for 1,25(OH)2D3, approximately 
550 million years ago [32, 33]. Furthermore, following its 
binding to the VDR, 1,25(OH)2D3 initiates to function. 
The VDR then heterodimerizes with RXR, which both are 
belong to the same superfamily as nuclear receptors [34]. 
Following VDR-RXR interaction, this complex will go 
to the nucleus where it will attach to vitamin D response 
elements (VDREs) in target genes’ regulatory regions. 
This process impacts gene transcription by engaging 
co-activators and releasing co-repressors [35-37]. VDR 
is expressed in a wide variety of tissues such as kidney, 
bone, and intestinal tissue as well as malignant ones [38, 
39]. In 1979, the identification of VDR in human cultured 
breast cancer cells lead to a great interest in a possible 
link between the vitamin D endocrine system and breast 
carcinogenesis [40]. In course of further evolution, in 
patients with benign neoplasms breast cancer, 1,25D 
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Figure 2. Overall Anti-Cancer Effect of Vitamin D through Pathways Involved in the Regulation of Genome Stability, 
Immunity, Apoptosis, Autophagy, Proliferation, Cell Growth, Invasion, and Angiogenesis in Breast Cancer.  

binding sites were found in their lymph node and breast 
tissue [41]. Subsequently, expression of VDR mRNA and 
protein in human breast cancers was validated by cloning 
the hVDR cDNA and producing anti-VDR monoclonal 
antibodies [42]. 

Vitamin D metabolic enzyme CYP27B1 (Cytochrome 
P450 family 27 subfamily B member 1), a 1a-hydroxylase 
and a member of the cytochrome P450 (CYP) superfamily 
of enzymes with monooxygenase activity, is responsible 
for converting 25-OHD into the active VDR ligand, 1a, 
25-dihydroxyvitamin D (1,25-D-OHD). The gene that 
codes for this enzyme is found at locus 12q14.1, which 
is on the same arm of the human chromosome as VDR. 
Also, it is located intracellularly in the inner membrane 
of the mitochondria. CYP27B1 is expressed in normal 
breast epithelial cells as well as breast cancer cell lines 
and makes them susceptible to produce VDR ligand [43-
46]. Since normal human breast epithelial cells contain 
both VDR and CYP27B1, they are sensitive to growth 
inhibition through physiological concentrations of 25 
hydroxyvitamin D (25D) [43, 47]. Moreover, cancerous 
breast cells during in vitro transformation showed the 
down-regulation of VDR and CYP27B1, which leads 
to reduction in sensitivity to 25D and 1,25D compared 
with  normal breast epithelial cells [14]. Another 

vitamin D metabolic enzyme is CYP24A1 (Cytochrome 
P450 family 24 subfamily A member 1). This enzyme 
catabolizes the active ligand 1,25-D-OHD to create the 
inactive metabolites 1,24,25-trihydroxyvitamin D and 
24,25-dihydroxyvitamin D [48]. CYP24A1 similar to 
CYP27B1 has been detected in normal breast epithelial 
cells and in breast cancer cell lines. However, cancerous 
breast cells with up-regulation of CYP24A1 would be less 
sensitive to 1,25D [48]. Thus, the existence of vitamin D 
metabolic enzymes adds another layer of complexity to 
the way vitamin D acts in cancer cells.

According to data from the majority of observational 
and epidemiological research, serum vitamin D levels 
and the risk of BC are inversely correlated [49]. In 
addition, patients with BC have been found to have a high 
frequency of hypovitaminosis D [50]. A systematic review 
demonstrated that serum vitamin D can have a preventive 
impact on BC in premenopausal women [51]. Recently, 
meta-analysis of observational studies revealed a direct 
link between low levels of circulating vitamin D and BC 
[24]. These findings suggested that the availability of 
1,25D may have an impact on breast cancer cells’ biology. 
Moreover, it was determined that 1,25D and a range of 
synthetic VDR agonists exhibited anticancer properties, 
via regulating apoptosis [52], differentiation [53], and 
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cells, 1,25(OH)2D3 also induces autophagy through 
activating calcium/calmodulin-dependent protein kinase 2 
(CAMKK2) and 5’ AMP-activated protein kinase (AMPK), 
both of which mediate calcium-induced autophagy [83]. 
Moreover, ATG12, BCL2, ESR1, PIK3C3, and PRKAG2 
have been reported as differentially expressed autophagy-
related genes in human datasets contain ER+ breast cancer 
patients. These genes probably function as important 
signaling nodes in the autophagy pathways that vitamin 
D targets in breast tumors [68]. 

Vitamin D and anti-Tumorigenesis
Anti-invasion and anti-metastasis: Numerous 

investigations have demonstrated that calcitriol 
(1,25-dihydroxyvitamin D3), a hormonally active 
metabolite of vitamin D, can prevent ER-negative BC 
cells from spreading and invading both in vitro and in vivo 
[56, 84]. This inhibition effect occurs through induction of 
the expression of E-cadherin in certain BC cells lacking 
the ER by CDH1-promoter demethylation, which is 
inversely associated with invasion and metastasis [85]. 
The increased expression of PA inhibitor1 (PAI1) and 
MMP inhibitor 1, as well as decreased activities of matrix 
metalloproteinases (MMPs), urokinase-type plasminogen 
activators (uPA), and tissue-type plasminogen activators 
(TPA) are the other mechanisms explaining calcitriol’s 
suppressive effects on invasion and metastasis [17]. 
Furthermore, inhibition of N-cadherin expression by 
1,25(OH)2D3 in many human BC cell lines, which 
belongs to the cadherin superfamily, has been found to 
be related to the suppressive effects of 1,25(OH)2D3 on 
invasion and metastasis [86]. Notably, invasive tumor 
cells display a high level of the mesenchymal marker 
N-cadherin [87]. N-cadherin can bind smooth muscle, 
neuronal, endothelial, and stromal fibroblast cells. 
Consequently, N-cadherin may facilitate perineural and 
stromal invasion [88]. Furthermore, it’s been documented 
that 1,25(OH)2D3 can suppress the expression of a 
number of myoepithelial markers, including b4-integrin, 
a6-integrin, and P-cadherin [86]. P-cadherin expression 
has been shown to be associated with poor prognosis, 
higher proliferation, lymph node metastasis, and high 
histological grade in estrogen or progesterone receptors 
negative BC cells [89, 90]. Recent evidence suggests that 
a6b4 and a6b1 integrins are essential for BC cell survival 
and development through increased vascular endothelial 
growth factor transcription and translation [91]. Thus, the 
inhibition of a6 and b4-integrins might potentially impede 
the process of malignant transformation.

Anti-angiogenesis
Angiogenesis is the normal physiological process 

that is essential for the growth and development of new 
blood vessels (neovascularization). It is a well-known fact 
that, neovascularization plays a key role in the transport 
of oxygen and nutrients [92]. It is necessary to maintain 
the angiogenic shift the equilibrium between pro- and 
anti-angiogenic factors for newly created blood vessels 
to mature and stabilize. This equilibrium is lost during 
the angiogenesis of tumors, which results in changed 
vascular properties and, ultimately, tumor growth, 

cell cycle arrest [54] in VDR positive breast cancer cells 
and in some animal tumor models [55-57]. Inhibition 
of epithelial mesenchymal transition (EMT) [58, 59], 
metastasis [60-62] , energy metabolism [62-67], and 
invasion [56], as well as activation of autophagy [68-72] 
are the other essential identified regulated pathways by 
1,25D in several systems of breast cancer models. It is yet 
unclear what precise pathways and processes connect the 
1,25D VDR complex to the biological effects that have 
been identified. Hence, some important pathways related 
to the general anticancer effect of vitamin D in context of 
BC are described below (Figure 2). 

Vitamin D and pro-Autophagy 
Autophagy (macro-autophagy) or “self-eating” refers 

to a highly conserved lysosomal mechanism whereby a 
cell undergoes the breakdown and elimination of aged, 
impaired, or anomalous proteins and other constituents 
inside its cytoplasm [73]. Numerous stress signals, such 
as protein aggregation, malnutrition, oxidative damage, 
hypoxia, and endoplasmic reticulum (ER) stress, can 
cause autophagy [74]. The physiological consequences of 
autophagy exhibit variability and might potentially play a 
dual role in cancer progression. It can either suppressing or 
promoting tumor growth, depending on different contexts 
and stages of cancer development [75, 76]. However, 
autophagy typically defends against damage and the onset 
of cancer in healthy tissue [76].

Autophagy is activated by vitamin D, which functions 
as a protective mechanism that inhibits oxidative stress 
and apoptosis. Following UV light exposure, vitamin 
D causes keratinocytes to enter into autophagic state 
in order to store energy and block the AKT/GSK3/
mTOR pathway. Additionally, vitamin D stimulates 
the production of reactive oxygen species (ROS) by 
activating the PINK1/PARKIN-dependent mitophagy 
process. This promotes post-UV DNA repair and inhibits 
oxidative DNA damage [77]. Modulation of autophagy by 
1,25(OH)2D3 has been indicated in a variety of cells [78]. 
For instance, vitamin D induces pro-survival autophagy 
in endothelial cells through the up-regulation of Beclin-1 
and the inactivation of the ERK1.2-AKT pathway [79]. 
Furthermore, it has been shown that vitamin D has 
a role in regulating the MEK/ERK and PTEN/PI3K/
AKT/mTOR signaling pathways. Hence can promoting 
the activation of autophagy in hepatocytes. It has been 
found that inhibiting these signaling pathways reduces 
the beneficial impact of vitamin D in mitigating hepatic 
injury [80]. Also, to prevent myocardial hypertrophy, 
vitamin D regulates autophagy in cardiomyocytes by 
inhibiting the β-catenin/TCF4/GSK-3β and mTOR 
signaling pathways [81]. Vitamin D activates autophagy 
via the AMPK/mTOR signaling pathway in chondrocyte 
cells to inhibit inflammation associated with osteoarthritis 
[82]. In terms of BC, it should be noted that, when breast 
cancer progresses, losses of induced autophagy profile in 
mammary gland tissue has been shown. Mechanistically, 
MAP1LC3B (LC3B), a crucial gene in the autophagic 
process, was constitutively inhibited by VDR in luminal 
BC cells. Treatment with 1,25(OH)2D3, however, slightly 
lead to LC3B gene over-expression [71]. In MCF7 
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multiplication, differentiation, and metastasis [93]. There 
are several molecular players in tumor angiogenesis, 
such as vascular endothelial growth factor A (VEGFA), 
transforming growth factor-β1 (TGF-β1), placental 
growth factor (PGF), basic fibroblast growth factor 
(bFGF), and matrix metalloproteinases (MMPs) [94]. 
Importantly, the process of neovascularization with pro-
angiogenic factors (VEGFA, TGF-β1, PGF, bFGF, and 
MMPs) is concurrent with the growth and progression 
of breast cancer. Recent evidence suggests that in BC 
cells vitamin D can lead to down-regulation of VEGFA, 
TGF-β1, PGF, bFGF, and MMP-9 through induce 
expression of  maternally expressed gene 3 (MEG3) [95]. 
MEG3, is a long non-coding RNA (lncRNA) that is vital 
to numerous biological processes. MEG3 is an imprinted 
gene that is 35 kb in length and has 10 exons. Through 
post-translational modifications, translation, transcription, 
and epigenetic effects, MEG3 may affect specific and 
targeted gene activity. The role of MEG3 in a variety of 
tumor types has been extensively studied and its impact 
on BC has only recently identified [96]. Furthermore, the 
effects of MEG3 on the phosphoinositide 3-kinase (PI3K)/
protein kinase B (Akt) pathway in BC cells has been 
determined [97]. PCNA [98], MMP-9 [99] and VEGFA 
[100] are downstream targets of PI3K/AKT signaling that 
promote mammary cancer proliferation, metastasis, and 
angiogenesis [101]. Thus, the aberrantly activated AKT 
signaling pathway stimulates cell proliferation and tumor 
angiogenesis, which are essential to the progression of 
BC [102]. Recent study related to the effect of MEG3 
on AKT signaling pathway has been reported that 
over-expressed MEG3 can has a suppressive effect on 
cell growth, invasion, and angiogenesis. This effect was 
attributed to the down-regulation of PCNA, MMP-9, and 
VEGFA expression by over-expressed MEG3 [95]. Thus, 
anti-angiogenesis property of vitamin D through MEG3/
AKT can be considered. 

Anti-proliferation
There are a large number of published studies that 

describe the inhibition effect of vitamin D, calcitriol, 
on human BC cell line growth and proliferation [103, 
104]. ER-positive BC cell lines are reported to be more 
susceptible than ER-negative cell lines to the growth-
inhibitory effects of calcitriol [105]. Cell cycle arrest 
in the G0/G1 phase of the cell cycle in ER-positive 
cells is an essential factor for growth-inhibitory effects 
of calcitriol. In this context, calcitriol can lead to up-
regulation of cyclin-dependent kinase inhibitors (p21Waf/
Cip1), down-regulation of cyclin-dependent kinase 
activity, and dephosphorylation of the retinoblastoma 
protein [106, 107].  Moreover, calcitriol and its analogs 
have been found to have inhibitory effects on the growth 
and proliferation of BC cells through the regulation of 
oncogenes, specifically c-myc and c-fos. Additionally, 
these compounds modulate the activities of various 
growth factors, including insulin-like growth factor-I 
(IGF-I), epidermal growth factor (EGF), and transforming 
growth factor (TGF) [103, 108]. Furthermore, another 
mechanism which contributed to the antiproliferative 
effects of 1,25(OH)2D3 is induction of CCAAT enhancer-

binding protein α (C/EBPα) expression, a member of the 
C/EBP family of transcription factors, which is a potent 
enhancer of VDR transcription in MCF-7 breast cancer 
cells [109]. 

Vitamin D and pro-Apoptosis 
In BC cells, vitamin D triggers morphological and 

biochemical alterations linked to apoptosis, such as 
DNA breakage and chromatin condensation, as well as 
the generation of reactive oxygen species, disruption of 
mitochondria, and release of cytochrome C [110-112]. 
1,25(OH)2D3 can either decreases the expression of bcl-2 
and bcl-XL, as anti-apoptotic factors or increases the bax, 
bak as pro-apoptotic factors. This action of 1,25(OH)2D3 
leads cells toward death rather than survival [113]. 
Furthermore, through the activation of caspases, calcitriol 
may enhance the death of some BC cells caused by tumor 
necrosis factor (TNF) [114, 115] and phospholipase A2 
[108]. Moreover, it has been reported that following 48 
hours of exposure to 100 nM 1,25(OH)2D3, MCF-7 cells 
display the distinguishing characteristics of apoptosis, 
including chromatin and cytoplasmic condensation, 
pyknotic nuclei, and reorganized nuclear matrix proteins 
[52, 110]. Another mechanism by which vitamin D can 
induce apoptosis is its inhibition effect on anti-apoptotic 
signaling pathway, RAS/MEK/ERK [36]. Following 
1,25(OH)2D3 treatment, RAS expression and MEK and 
ERK1/2 phosphorylation were reduced in BC cells [116].                 

Vitamin D and immune modulating 
Recently vitamin D has been demonstrated as 

immune-modulating substance, which is involved in a 
number of illnesses, including autoimmune disorders. 
The mechanism via which vitamin D exerts its immune-
modulating effects, is related to the interaction between 
vitamin D and its receptor, VDR. VDR has transcriptional 
effects and is expressed on different cell types, particularly 
immune system cells [117]. Thus, vitamin D is considered 
as regulator of certain immune cells and immune system. 
For instance, vitamin D inhibits the overreaction of 
activated T cells and other adaptive immune system cells 
that may result in autoimmune diseases such as multiple 
sclerosis and inflammatory bowel disease [118]. Based 
on the evidence, three sets of VDR target genes (i) acute 
response to infection, (ii) infection in general, and (iii) 
autoimmune can be formed based on their roles: CAMP, 
ACVRL1, CEBPB, FN1, MAPK13, NINJ1, LILRB4, 
LRRC25, SEMA6B, THBD, THEMIS2, and TREM1. 
Using these target genes of VDR, vitamin D can impact 
on the innate and adaptive immunity [119]. It should be 
noted that, stimulation of the innate and suppression of 
the adaptive immune system by vitamin D lead to its anti-
inflammatory effects [36]. Since Virchow first proposed 
in 1863 that unresolved inflammation can be the cause of 
cancer development, the role of inflammation in cancer 
progression is considered [120]. One of the defense 
mechanisms of the adaptive immune system against 
intracellular infections, such as cancer cells is related 
to the cytotoxic (CD8+) T lymphocytes. It has been 
noted that, tumor-infiltrating CD8+ lymphocytes (TILs) 
have been shown to exhibit anti-tumor actions that are 
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triggered by several pathways [121]. These anti-tumor 
actions related to the high tumor infiltration of TILs has 
been associated to a better prognosis in TNBC and HER2-
enriched BC [122-124]. In a recent experiment murine 
E0771 (ERβ+, PR+, HER2+) BC cells as a mouse model 
[125] were injected in the mammary fat pad to assess the 
impact of vitamin D3 supplementation (cholecalciferol, 
40 IU/day) on CD8+ T cell infiltration [126]. According 
to their experiments, supplementing with vitamin D3 
increased the number and activity of CD8+ T cells within 
the tumor while limiting the growth of the tumor. On the 
other hand, under situations with high dietary fat after 
supplementing vitamin D3, tumor development was 
increased and CD8+ T cell infiltration was decreased. 
Thus, low- and high-dietary fat conditions can lead to the 
different response to vitamin D3 supplementation. This 
influence can be related to the obese mice adipocytes 
expressing Cyp27a1, which led to reduced systemic 
levels of 25(OH)D3 as well as CD8+ T cell infiltration. 
According to these data, dietary intake can influence the 
effect of vitamin D3 supplementation on cytotoxic T 
cells activities and tumor growth and infiltration [126]. 
Furthermore, the gene CD14 which is associated with 
innate immunity is regulated by 1,25 vitamin D in human 
mammary epithelial cells [127]. Thus, vitamin D signaling 
can trigger innate immunity in mammary tissue. 

Vitamin D and Genome instability
Multiple studies have shown that individuals 

diagnosed with triple-negative breast cancer (TNBC) 
have the most deficient levels of vitamin D compared to 
other types of BC. This observation suggests that vitamin 
D may potentially provide a protective effect against the 
development of TNBC [128]. TNBC is an aggressive 
and therapy-resistant form of BC, which its treatment 
has some challenges [129]. Gonzalo et al. [134] has been 
showed that TNBC tumors exhibit a deficiency in lamin 
proteins. This deficiency has been found to contribute 
to genomic instability through the degradation of the 
TP53BP1 protein by cathepsin L, as well as the inhibition 
of RAD51. Consequently, these molecular events 
lead to abnormal repair of DNA double-strand breaks 
through either non-homologous end joining (NHEJ) or 
homologous recombination repair (HRR) mechanisms 
[130]. Importantly, vitamin D has been reported to has 
the potential to stimulate a cystatin that inhibits cathepsin 
L and TP53BP1 proteolytic degradation; thus, it induces 
NHEJ and, hence, the stability of the genome [128, 
131]. Moreover, despite the sensitivity of TNBC and 
BRCA1-deficient cells to the inhibitors of poly (ADP-
ribose) polymerase (PARPi), a significant fraction of 
these cancers acquire resistance [132]. The resistance of 
BRCA1-deficient cells and tumors to PARPi has been 
demonstrated to be influenced by the loss of the DNA 
repair protein 53BP1. Thus, it is possible to restore the 
sensitivity of these highly malignant tumors to PARPi 
and other genotoxic agents by raising the concentration 
of 53BP1. It should be mentioned that vitamin D has 
the ability to stabilize tumor cells’ 53BP1 levels [133]. 
BRCA1-deficient breast tumor cells degrade 53BP1 via 
cathepsin L to maintain genome stability and proliferation 

[119]. Nevertheless, 1α,25(OH)2D3 therapy may increase 
genomic instability in response to radiation or PARPi and 
reduce proliferation by maintaining 53BP1 levels [134].

Discussion

In conclusion, several reports have shown that vitamin 
D can acts as protective factor against breast cancer by 
its interaction with vitamin D receptor, VDR, which is 
exists on several cellular surface including mammary 
glands. Vitamin D/VDR complex then move to the nucleus 
and impact on various target genes transcription and/or 
translation. Each of the VDR target genes play a role in 
important pathways related to the pathophysiology of 
breast cancer. Hence, this study has reviewed the influence 
of vitamin D on autophagy, invasion and metastasis, 
angiogenesis, proliferation, immunity, and genome 
stability, which highlight the general anti-cancer effect of 
vitamin D in breast cancer. These findings suggest that in 
general vitamin D/VDR complex expression can influence 
on breast cancer progression, and may be applied as anti-
tumor substance in alongside currently available cancer 
treatments like chemotherapy. In contrast to observational 
studies, which found the protective role of vitamin D 
on breast cancer development, however, no clearly 
evidence of exact association/causality was detected 
in terms of the vitamin D protective effect on breast 
cancer risk by genome wide association study (GWAS) 
and mendelian randomization (MR) analysis [135] 
or randomized controlled trials (RCT) [6]. Therefore, 
further investigation and experimentation regarding the 
protective role of vitamin D on breast cancer progression is 
strongly recommended. The results of these interventional 
studies will extend our knowledge related to the possible 
application of vitamin D in both the prevention and 
treatment of breast cancer. 
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