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Introduction

Glioblastoma is the most common heterogenous 
type of brain cancer, knowing as the malignant tumor 
of glioma [1]. The likelihood of developing this tumor 
varies with sex, being more prevalent in males. In 
addition, the risk of acquiring this tumor increases 
with age [2]. Taking immediate action to address the 
issue is crucial due to its lethal nature and the lack of 
effective treatment options. The treatment choices are 
surgical approaches, radiation therapy, and alkylating 
chemotherapy. This deadly cancer leads to fatalities 
within a year of diagnosis [3]. Molecular analysis could 
be helpful in terms of identifying prominent biomarkers 
of the underlying disease mechanism. Moreover, various 
molecular approaches, including genetic, genomic, and 
epigenetic factors, suggest the presence of heterogeneity 
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in Glioblastoma. This necessitates the development 
of targeted therapies tailored to the specific subtypes 
of individuals rather than a one-size-fits-all approach 
[4]. However, the complexity of Glioblastoma made it 
challenging for drug targeting design. The grim prognosis 
associated with this cancer makes it a prominent research 
focus, particularly in the realm of biomarker discovery 
for early detection, prognosis assessment, follow-up care, 
targeted therapies, and treatment strategies, as previously 
mentioned [5, 6]. Currently, many studies are focusing on 
targeting biomarkers of Glioblastoma with different drug-
targeting attempts. On of these is RNA-based treatment, 
which targets genes and ncRNAs (non-coding RNAs). 
This regulator has also been reported to treat other cancers 
[7]. Our study utilized a prior investigation, in which one 
of their key findings was the identification of integrin 
α3β1 as a potential target involved in the formation of 
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vessels in glioblastoma [1]. Taken together, by applying 
post-data analysis in terms of protein-protein interaction 
network analysis, further knowledge can be derived from 
the nature of Glioblastoma.

This scale-free network shows how many genes are 
significant in the network stability and foundation strength. 
The limited number of genes with these features highlights 
their possible roles as candidate biomarkers in terms of 
network centrals. The reliability of the data obtained 
by the network could be subjected to validation tests of 
backbone network investigations by setting some scores 
to the central genes of the network [8]. These scores show 
the importance of these genes in the network structure and 
functions. Deletion or dysregulation of these genes can 
greatly impact network instability and, ultimately, disease 
development. Therefore, in this study we considered the 
glioblastoma PPI network for identification of potential 
robust biomarkers for the future clinical purposes. 

Materials and Methods

Data collection: Expression data from a study of 
glioblastoma comparison with normal adjacent cells was 
conducted in 2022. A total of 9 samples, which were two 
groups of three normal brain endothelial cells (the NECs 
samples) and six glioblastoma tumor cells with positive 
CD3 (the TECs individuals) were the subjects of the 
study. This research subsequently led to a research paper 
authored by Eunnyung Bae and collaborators [1]. This data 
was derived from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/). Data are 
recorded as GSE137900 in GEO database.

Pre-evaluation analysis
GEO2R is an online tool available in GEO that 

compares comprehensively. Following this, the R 
programming software comprehensively analyzed the 
entire dataset according to the specified statistical criteria. 
Codes were obtained from GEO2R and then imported into 
R Studio for further examination. The statistical analyses 
including t-tests, Log Fold Change calculations, ANOVA, 
and using the Limma R package for the R analysis were 
applied. Different methods, including Boxplot, Uniform 
Manifold Approximation and Projection (UMAP), Venn 
diagram, and Mean difference, presented data visualization 
for this study. 

PPI network analysis
The number of identified DEGs by R were determined 

and then were used for Cytoscape analysis. In Cytoscape 
3.10.2 (https://cytoscape.org/), the protein-protein 
interaction network of Glioblastoma of these genes was 
constructed by the application of STRING database 
(https://string-db.org/). A network of quired genes with 
the confidence score cutoff 0.5 was then constructed. The 
network underwent some processes before the topological 
analysis with “Network Analyzer”. 

Here, we focused on two centrality parameters
degree and betweenness centrality. Degree centrality 

represents the number of genes connected to the gene 

of interest, while betweenness centrality indicates the 
gene’s position within the network, determining whether 
it acts as a bridge facilitating connections within the 
network. Essentially, a gene’s value in betweenness 
centrality is determined by its significance as a connector 
between pairs of nodes in the shortest paths [9]. Nodes 
or genes with high degree values are hubs, and those 
with high betweenness centrality values are considered 
bottlenecks. Nodes possessing both characteristics are 
referred to as hub-bottlenecks. However, if a node lacks 
one or both of these traits, it may be classified as either 
a hub-non-bottleneck or a non-hub-bottleneck. All these 
node classifications are examined in our study. To test 
and validate hub-bottlenecks, a backbone network was 
also constructed. 

Gene ontology analysis
Central genes were then analyzed in terms of gene 

ontology to gain a better understanding of their role in 
the pathogenicity of Glioblastoma. The examination was 
conducted by ClueGO+CluePedia Plug-ins. 

Statistical analysis
The statistical analysis are as follow: The statistical 

analyses include Kappa Statistics and the adjustment of 
p-values using Bonferroni correction to mitigate false 
discovery rates [10].

Results

A box plot analysis was performed in Figure 1 to 
determine the comparability of normal and Glioblastoma, 
because the gene expression profiles of samples are 
median center. In this boxplot analysis, green represents 
normal samples, while purple represents patients with 
Glioblastoma.

Another visualization method for determining 
biological variation is UMAP, as shown in Figure 2. 
Normal groups are assigned a green color, whereas 
Glioblastoma is assigned purple. This analysis displays the 
distribution of Normal and Glioblastoma samples, visually 
comparing the similarities between each group’s samples.

Detection of DEGs in a visualization pattern was 
handled with a Venn diagram (see Figure 3). A total of 
3484 DEGs are present across our groups. These genes are 
appropriate candidates for further analysis regarding the 
PPI interaction network and gene ontology identifications. 

A mean difference plot (see Figure 4) could illustrate 
the visualization of the distribution of regulation 
differences in genes. Differentially expressed genes are 
visualized as colored spots in this analysis. Fold change 
equal and above 1.5 are the colored spots. 

After gene query in Cytoscape, several 2093 genes and 
9765 connections were resulted. The network is obtained 
by a score confidence cut-off of 0.5 (data is not shown). 
Additionally, the network was analyzed for topological 
features defined as hub and bottlenecks. For this purpose, 
we processed the constructed network did some haircuts, 
ultimately providing a subnetwork of 1,760 nodes. This 
network is now ready for centrality analysis by Network 
Analyzer as the scatter plot indicates the distribution of 
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Figure 1. Boxplot View of Gene Expression Distribution Across Groups of Samples. Each sample is pointed out in the 
horizontal axis of box plot while distribution of normalized amounts of gene expression value for each gene is shown 
in the vertical axis.

Figure 2. UMAP Plot of Normal-Glioblastoma Gene 
Expression Profiles Analysis. The horizontal and vertical 
axes (UMAP-1 and UMAP-2) determine separation of 
samples via analysis. 

Figure 3. Venn Diagram View of DEGs Across 
Compared Groups of Samples. The Glioblastoma 
samples are differentiated from Normal individuals by 
3484 significant DEGs.

Row Display name Degree Betweenness Centrality
1 TP53 220 0.16
2 EGFR 209 0.12
3 FN1 147 0.04
4 JUN 129 0.05
5 CDC42 123 0.08
6 CD44 118 0.02
7 TGFB1 109 0.02
8 HIF1A 104 0.03
9 COL1A1 94 0.01
10 KDR 93 0.02
11 STAT1 92 0.03
12 FGF2 92 0.02
13 MMP2 89 0.01
14 PPARG 85 0.02
15 NFKB1 84 0.02
16 PECAM1 83 0.0
17 CCND1 82 0.01
18 APP 80 0.03

Table 1. The List of Hubs and Bottlenecks of the 
Glioblastoma Network

centrality values (see Figure 5). This plot indicates a scale-
free network with a limited number of nodes in the high 
centrality value. It is reported that top 10% of the nodes a 
PPI network based on degree value can be selected as hub 
nodes [11]. In the present study, large number of hubs were 
identified. Therefore, 1% of top nodes based on degree 
value were determined as the potent hubs. Table 1 lists 
the 1% highest-valued degree and betweenness centrality.
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Figure 4. Mean Difference Depicts the Presence of Significant Down-Regulated and Up-Regulated Genes in Blue and 
Red Color. 

Figure 5. Distribution of Degree Versus Betweenness Pattern for the Subnetwork of Glioblastoma. The higher degree 
values are correlated to the larger values of betweenness centrality.

Following the application of the top 1% highest-
ranked hubs, we established a degree cutoff of 100 for 
our central genes, identifying hub bottlenecks and hub 
non-bottlenecks for further analysis. However, only hub 
bottlenecks are the focus of further analysis. To validate 
the identified Hub bottlenecks, a backbone network 
was created consisting of these five genes along with 
50 neighboring nodes. The topological analysis of this 
backbone network indicates all the hub-bottleneck genes 
of the main network are present in the 14 top-ranked nodes 
of the backbone network. This finding indicates that the 
central nodes are valid and could have potential properties 
about centrality. The next step is identifying corresponding 
biological processes to the hub bottlenecks, providing 

more insight into our DEGs’ behavior and underlying 
mechanisms (see Figure 6). 

Using GO term fusion, the number of genes per group 
was set to 2, and the percentage of genes present in the 
groups was set to 3. This analysis also depicts the parents 
of nodes (biological processes) as smaller circles. 

Only four of the five queried genes met the statistical 
criteria and cutoffs specified in the query. The biological 
analysis identified three major processes related to the Hub 
bottlenecks: positive regulation of miRNA maturation, 
regulation of fibroblast proliferation, and regulation 
of transcription from RNA polymerase Ⅱ promoter 
in response to stress. TP53 contributes to all derived 
biological processes terms, and this finding shows its 
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Figure 6. Percentage of Mapped Genes Per Term in a Backbone Network View. The associated genes are labeled in 
red. The group of biological processes are shown as larger circles. 

significance in cancer. 

Discussion

The limited therapeutic options available for 
Glioblastoma (GBM) underscore the need for intensified 
molecular studies to advance research in this area [12]. 
One of the approaches is through computational analysis 
of expression data gathered by microarray [1]. This way, 
biomarkers and their corresponding biological processes 
identified by array study could be further analyzed and 
introduced as better candidates for future drug targeting 
approaches. The application for this purpose is PPI 
network analysis. In this complementary study, the 
physical interactions between the DEGs were assessed to 
better understand the role of potential biomarkers. 

As depicted in Figures 1-4, the expression difference 
between the two samples was compared and visualized 
by applying boxplot analysis, UMAP plot, Venn diagram, 
and Meandiff plot. A considerable number of genes 
demonstrate both up-regulation and down-regulation 
in this sample.The total number of 3438 genes, almost 
all of which also indicate significant fold change, were 
then chosen for PPI network assessment. In the network 
construction, key factors such as statistical criteria were 
applied. First, for better and more robust analysis, a strong 
confidence score cut-off was set, and then the network 
was processed more till a subnetwork was obtained. 
This subnetwork is required for topological exploration 
considering hub and bottleneck parameters, which were 

In addition, a scattered network showed a scale-free 
network since most of the network’s elements have a low 

degree or betweenness [13]. A limited number of nodes 
have values of these parameters. These genes serve as 
hubs, bottlenecks, or both. A cut-off was then set to explore 
the most ranked genes in this analysis for reviewing the 
literature. Previous findings related to the linkage of these 
central genes to glioblastoma provide additional notable 
information for collecting the best biomarker panels. 
From this perspective, starting with TP53, a pivotal gene 
implicated in various types of cancer, can potentially 
expedite clinical interventions. This study identified 
tumor suppressor protein p53 (TP53) as an up-regulated 
gene in glioblastoma. This gene is involved in different 
malignancies, and GBM develops inflammation.

The mutation of this gene has been found to 
significantly correlate with the outcome of prognostic 
procedures and treatment approaches [14]. Due to its 
frequent association with glioblastoma in prior studies [15] 
and our own findings indicating its central PPI topological 
role in glioblastoma tumorigenesis, this gene emerges as 
a promising candidate for targeted drug interventions. 

The next central hub-bottleneck, epidermal growth 
factor receptor (EGFR), showed resistance in glioblastoma 
treatment appears to be facilitated by epigenetic 
mechanisms, enabling cancer cells to adapt to drug 
exposure [16]. In the gene expression data, this gene 
is down-regulated. EGFR is also reported as a target 
for treatment approaches for different malignancies. 
Treatments for this gene include tyrosine kinase 
inhibitions and monoclonal antibodies since EGFR is a 
tyrosine kinase [17]. 

Fibronectin 1 (FN1) is also a hub bottleneck in 
the glioblastoma network that is significantly down-
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regulated in this cancer. Previous studies suggested the 
prognostic role of this gene Previous studies suggested the 
prognostic role of this gene [18]. JUN is an up-regulated 
hub-bottleneck in Glioblastoma that limited tumors 
reported with its dysregulation. This gene is responsible 
for key functions in the cell including cell proliferation, 
cell death, and malignant conversion. The up-regulation 
of this c-Jun correlates with the progress of glioblastoma 
[19]. 

Cell division cycle 42 (CDC42) the last hub-
bottleneck and, as a Rho-GTPase is the regulator of 
cell proliferation and the mechanism of apoptosis 
[20]. This gene is up-regulated in this cancer and is an 
important key for invasion [21]. Collectively, these hub-
bottlenecks have been implicated in the development 
of Glioblastoma cancer, as evidenced by significant 
roles in previous studies. Furthermore, expression data 
analysis corroborates this finding. Moreover, our study 
reveals that these genes are important at various levels 
of molecular analysis, but they also form the backbone 
of the glioblastoma protein-protein interaction network. 
This positions them as crucial contributors to network 
stability and the foundation of the network itself. Targeting 
this panel comprising TP53, EGFR, FN1, JUN, and 
CDC42 and their related biological processes could yield 
remarkable effects in treating glioblastoma followed by 
comprehensive complementary analysis. 

In conclusion, it can be concluded that introducing 
potential hubs and bottlenecks in glioblastoma PPI 
network can minimize the side effects of traditional 
invasive therapies. It seems; TP53, EGFR, FN1, JUN, and 
CDC42 and their related biological processes are suitable 
drug targets to control glioblastoma. It can be suggested 
that effect of expression modification of the mentioned 
genes (separately or in combination with each other) on 
controlling of glioblastoma be investigated. Nevertheless, 
additional analysis and validation analyses are encouraged 
in this regard.
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